PULL-BACKS IN HOMOTOPY THEORY

MICHAEL MATHER

Introduction. The (based) homotopy category consists of (based) topological spaces and (based) homotopy classes of maps. In these categories, pull-backs and push-outs do not generally exist. For example, no essential map between Eilenberg-MacLane spaces of different dimensions has a kernel. In this paper we define homotopy pull-backs and push-outs, which do exist and which behave like pull-backs and push-outs, and we give some of their properties. Applications may be found in [3;5;6 and 14].

I would like to thank Peter Fantham and Marshall Walker for their help with this paper. They have worked with these techniques $[\mathbf{3} ; \mathbf{1 4}]$ and helped me organise my ideas.

We work throughout in the topological category Top or the based topological category Top*. In fact our descriptions will generally be given in Top*. To change to Top simply omit references to the base point. We will denote these categories ambiguously by T.

1. Homotopy pull-backs and push-outs. Let

denote a square with a homotopy H from $h \circ f$ to $k \circ g$. There is another square

where $E_{h, k}=\left\{(b, \theta, c) \in B \times D^{I} \times C ; h(b)=\theta(0), k(c)=\theta(1)\right\}, D^{I}$ is taken in the unbased sense, and with the compact-open topology, $E_{h, k}$ is topologised as a subset of $B \times D^{I} \times C, p$ and q are the restrictions of the projections, and

[^0]$G((b, \theta, c), t)=\theta(t)$. There is also a map, which we call a whisker map, $w: A \rightarrow E_{h, k}$ given by $w(a)=(f(a), H \mid a \times I, g(a))$. This satisfies:
(i) $p \circ w=f$
(ii) $q \circ w=g$
(iii) $G \circ w=H$.
(We prefer writing w rather than $w \times 1$ in (iii), where a map is composed with a homotopy.) We call the square (1) a homotopy pull-back if w is a homotopy equivalence. We sometimes call the space A, rather than the whole square, a homotopy pull-back for

The square

is itself called the standard homotopy pull-back.
It is obvious that homotopy pull-backs exist for all such pairs of maps (h, k), and that the space A is unique up to homotopy equivalence. Later we will discuss the pull-back property of this construction, and demonstrate a more precise form of uniqueness. Note that the concept of homotopy pullback is symmetric in B and C.

The Hilton-Eckmann dual of this definition is just as good. In this case we let $C_{f, 0}=B \cup A \times I \cup C / a \times 0 \sim f(a), a \times 1 \sim g(a), * \times I$, and get a square

and a dual whisker map $w^{\prime}: C_{f, g} \rightarrow D$. Then (1) is called a homotopy pushout if w^{\prime} is a homotopy equivalence. (This square is called the standard homotopy push-out.)

Examples. (1) If h is a fibration, then the topological pull-back with the static homotopy is a homotopy pull-back. Indeed, in this case the topological pull-back is a strong deformation retract of $E_{h, k}$.
(2) In particular

is a homotopy pull-back. (We use $*$ to denote a one-point space.)
(3)

where $G(\omega, t)=\omega(t)$, is a homotopy pull-back.
(4) If f is a cofibration, then the topological push-out is a homotopy pushout.
(5) In particular, in Top*,

is a homotopy push-out. (Note, however, that in the unbased theory, the inclusions ${ }^{*} \subset X$ and ${ }^{*} \subset Y$ may fail to be cofibrations, in which case $X \vee Y$ must be replaced by the long wedge, namely

$$
X \cup I \cup Y /{ }_{X} \sim 0,{ }_{Y}^{*} \sim 1
$$

Of course, in Top*, $* \subset X$ and $* \subset Y$ are always cofibrations, by definition of a cofibration.)
(6)

where $G(b, t)=[(b, t)]$, is a homotopy push-out.
(7) The standard homotopy push-out of

is, of course, the mapping cone of f.
(8) If $* \subset X$ and $* \subset Y$ are closed unbased cofibrations then $X \vee Y \subset$
$X \times Y$ is a cofibration. (See, for example, Spanier [10, Ex 1.E7, p. 58]). In this case

is a homotopy push-out. Otherwise it would seem appropriate to define $X \wedge Y$ to be the standard homotopy push-out, i.e., the mapping cone of $X \vee Y \rightarrow$ $X \times Y$.
(9) $X * Y$ is the standard homotopy push-out of

2. Homotopy commutative diagrams. In order to be able to discuss the properties of homotopy pull-backs and homotopy push-outs, we need to define what constitutes a homotopy commutative diagram.

Let $f, g: X \rightarrow Y$ be maps and let $F, G: X \times I \rightarrow Y$ be homotopies from f to g. Then F and G are called equivalent if there is a map $H: X \times I \times I \rightarrow Y$ such that
(i) $H(x, 0, t)=f(x)$
(ii) $H(x, 1, t)=g(x)$
(iii) $H(x, s, 0)=F(x, s)$
(iv) $H(x, s, 1)=G(x, s)$ for all $(x, s, t) \in X \times I \times I$.

If this happens we write $F \sim G$. This is clearly an equivalence relation.
Remark. It is our general philosophy to study equivalence classes of homotopies, and to ignore differences between higher homotopies. For most purposes this is the appropriate consideration. In an earlier version of this paper I used higher coherent homotopies. This approach has now been discussed more thoroughly by Vogt [13]. (It should also be noted that Vogt allows, for example, a diagram

in which f and g are not homotopic. We do not do this.)
Remark. Let + denote the usual track addition of homotopies (given by

$$
\begin{aligned}
(G+H)(x, t) & =G(x, 2 t) \quad \text { if } t \leqq \frac{1}{2} \\
& \left.=H(x, 2 t-1) \quad \text { if } t \geqq \frac{1}{2}\right)
\end{aligned}
$$

and let - denote the reverse, given by

$$
(-G)(x, t)=G(x, 1-t) .
$$

These operations induce the structure of a groupoid on sets of equivalence classes of homotopies (in the sense of a category in which every morphism is invertible, not in the sense of a set with a binary operation).

A homotopy commutative diagram is defined to consist of
$H C D 1$. A set of objects of T and morphisms between them, together with the compositions of these morphisms. (This set of objects may include more than one "copy" of an object Y of T. In this case each morphism to or from Y must specify which copy is meant, and compositions may not confuse two different copies. For example, the diagram $Y_{1} \stackrel{f}{\rightarrow} Y_{2}$, where Y_{1} and Y_{2} are different copies of Y, does not include $f \circ f$.)
$H C D 2$. For each pair $\beta, \gamma: B \rightarrow C$ in the diagram, a homotopy $H_{\beta, \gamma}$ from β to γ such that
$H C D 3 . H_{\beta, \beta}$ is equivalent to the static homotopy.
HCD4. If $\beta, \gamma, \delta: B \rightarrow C$ then $H_{\beta, \gamma}+H_{\gamma, \delta} \sim H_{\beta, \delta}$, and
HCD5. If $\alpha: A \rightarrow B, \beta, \gamma: B \rightarrow C$ and $\epsilon: C \rightarrow D$ then $H_{\epsilon \rho \beta \alpha \alpha, \epsilon \epsilon \gamma \alpha} \sim \epsilon \circ H_{\beta, \gamma} \circ \alpha$.
A commutative diagram becomes a homotopy commutative diagram when provided with the appropriate static homotopies. Such a diagram is called flat.

We will specify a homotopy commutative diagram by giving the set of objects and maps together with enough homotopies so that the others, at least up to equivalence, can be deduced from $H C D 4 \& 5$. (In most cases there is, in fact an obvious choice for the missing homotopies. Also, we may omit mention of some or all homotopies if there is no need to be specific about them.)

Examples. (1) The squares we have already been dealing with, which have a homotopy across them, are homotopy commutative diagrams.
(2) The cube mentioned in the following definition.

We say that a homotopy commutative square

if there is a homotopy commutative cube

with the given squares as upper and lower faces and with all the vertical maps homotopy equivalences. (The condition on the homotopies for homotopy commutativity is

$$
\left.f_{4} \circ G+F_{4} \circ \beta+\delta^{\prime} \circ F_{2} \sim F_{3} \circ \alpha+\gamma^{\prime} \circ F_{1}+G^{\prime} \circ f_{1} .\right)
$$

We define equivalence of other diagrams similarly.
We will need the following eleven results, which we prove in Appendix 1.
Lemma 1. On squares, this is indeed an equivalence relation.
Lemma 2. Let $f: A \rightarrow B$ be a homotopy equivalence, and suppose we are given two maps $g, h: X \rightarrow A$ and a homotopy H from $f \circ g$ to $f \circ h$. Then there is a homotopy G from g to h such that $f \circ G \sim H$.

Corollary 3. If $f: A \rightarrow B$ is a homotopy equivalence, $g, h: X \rightarrow A$ are maps and G, H are homotopies from g to h such that $f \circ G \sim f \circ H$, then $G \sim H$.

The next two results are the duals of the last two.
Lemma 4. Let $f: A \rightarrow B$ be a homotopy equivalence, and suppose we are given two maps $g, h: B \rightarrow Y$ and a homotopy H from $g \circ f$ to $h \circ f$. Then there is a homotopy G from g to h such that $G \circ f \sim H$.

Corollary 5. If $f: A \rightarrow B$ is a homotopy equivalence, $g, h: B \rightarrow Y$ are maps and G, H are homotopies from g to h such that $G \circ f \sim H \circ f$, then $G \sim H$.

Lemma 6. If a square is equivalent to a homotopy pull-back then it is a homotopy pull-back.

Corollary 7. If, in the homotopy commutative cube above, the upper and lower faces are homotopy pull-backs and the last three vertical maps are homotopy equivalences, then so is the first.

The next two results are the duals of the last two.
Lemma 8. If a square is equivalent to a homotopy push-out, then it is a homotopy push-out.

Corollary 9. If, in the homotopy commutative cube above, the upper and lower faces are homotopy push-outs and the first three vertical maps are homotopy equivalences then so is the last.

We say that a homotopy commutative square

has the pull-back property if, given another square

then
$P B 1$. There is a map $\phi: X \rightarrow P$ (also called a whisker map) and
$P B 2$. There are the necessary extra homotopies so that, with G and H, $P B 3$. The diagram

is homotopy commutative and, further,
PB4. If

is another such homotopy commutative diagram, then there is a homotopy M from ϕ to ϕ^{\prime} such that $K+\alpha \circ M \sim K^{\prime}$ and $\beta \circ M+L^{\prime} \sim L$.

We refer to $P B 4$ by saying that the diagram of $P B 3$ is essentially unique.
The push-out property is defined dually.
Theorem 10. A square has the pull-back property if and only if it is a homotopy pull-back.

Theorem 11. A square has the push-out property if and only if it is a homotopy push-out.

3. Elementary properties of homotopy pull-backs and push-outs.

Lemma 12. Let

be a homotopy commutative diagram. If the left and right squares are homotopy pull-backs then so is the large square.

Proof. It is well known (Spanier [10, p. 99], for example) that $f: C \rightarrow F$ may be factored as

$$
C \xrightarrow{f^{\prime}} C^{\prime} \xrightarrow{f^{\prime \prime}} F
$$

in such a way that f^{\prime} is a homotopy equivalence and $f^{\prime \prime}$ is a fibration. Then there is a commutative diagram

in which the diagonal maps are the identity except for $f^{\prime}: C \rightarrow C^{\prime}$.
Let

be the fibred pull-backs (i.e., $P_{1} \rightarrow E$ and $P_{2} \rightarrow D$ are the induced fibrations). These are flat homotopy pull-backs. Hence, by Theorem 10, there is a homotopy commutative diagram

and, for the same reason, this extends to a homotopy commutative diagram

By Corollary 7, B $\rightarrow P_{1}$ is a homotopy equivalence and, similarly, so is $A \rightarrow P_{2}$. Thus

But the latter is a fibred pull-back and hence a homotopy pull-back. Thus, by Lemma 6 , the large square of the original diagram is a homotopy pull-back.

Lemma 13. If, in the same diagram, the left and right squares are homotopy push-outs then so is the large square.

Proof. This is the dual of the last result, and has the dual proof.
Lemma 14. If, in the same diagram, the right and large squares are homotopy pull-backs, then so is the left square.

Proof. Let

be a homotopy pull-back. Then, by Theorem 10, we have a homotopy commutative diagram

Applying Lemma 12,

is a homotopy pull-back and hence, applying Corollary 7 to the outside squares, $A \rightarrow P$ is a homotopy equivalence. We now apply Lemma 6 to the left hand half of the diagram to get the required result.

Note: Reference in $[\mathbf{5} ; \mathbf{6}]$ to Theorem 14 of this paper should be to Theorem 47.

Lemma 15. If, in the same diagram, the left and large squares are homotopy push-outs then so is the right square.

Proof. This is the dual of the last result, and has the dual proof.
Lemma 16. If, in the same diagram, the left and large squares are homotopy pull-backs, it does not follow that the right square is a homotopy pull-back, even if E is path-connected. (It does so follow if we also assume that all the spaces are CW-complexes. See Lemma 37 below.)

Proof. If we are in Top*, we obtain an example as follows.
Let $S=\left\{(0,0),(1,0),\left(\frac{1}{2}, 0\right),\left(\frac{1}{3}, 0\right), \ldots\right\}$ in R^{2}, and let X be the join in R^{2} of $(0,1)$ with S. We use $(0,0)$ as base point.

Now ΩX is contractible, since the homotopy type of ΩX does not depend on the choice of base point in X and X is itself contractible if $(0,1)$ is the base point. On the other hand, X with $(0,0)$ as base point is not contractible, as follows. Let $H: X \times I \rightarrow X$ be a contraction. Then $H^{-1}(0,1)$ contains points arbitrarily close to $(0,0) \times I$ but no point of $(0,0) \times I$ and so is not closed.

Thus the following diagram, with trivial homotopies and identity maps, is an example:

In Top we replace X by $X \vee X$. We leave the details to the reader.
Lemma 17. If, in the same diagram, the right and large squares are homotopy push-outs, it does not follow that the left square is a homotopy push-out, even if A, B and D are connected and all the spaces are $C W$-complexes. (It does so follow if we also assume that B and D are simply connected. See Lemma 41.)

Proof. Let L be Epstein's space [2]. This is too complicated to describe here, but has the following properties:
(i) L is a connected $C W$-complex;
(ii) L is not contractible;
(iii) the suspension ΣL of L is contractible.

Thus

(with trivial homotopies and identity maps) provides an example.

Note: Reference in [6] to Theorem 17 of this paper should be to Theorem 50.
4. The first cube theorem. The purpose of this section is to state and prove the following theorem. We draw attention to the fact that we place no restriction on the spaces involved. We work throughout this section in Top.

Theorem 18. Suppose that we have a homotopy commutative diagram

in which
(i) the left and rear faces are homotopy pull-backs, and
(ii) the top and bottom faces are homotopy push-outs.

Then the front and right faces are homotopy pull-backs.
We will need several lemmas to prove this result. The main technique is to use the weak covering homotopy property (WCHP). (See Dold [1].) We first remind the reader of the definition of this property.

A map $p: E \rightarrow B$ is said to have the $W C H P$ if, given a map $f: X \rightarrow E$ and a homotopy $\bar{H}: X \times I \rightarrow B$ such that $\bar{H}(x, t)=p f(x)$ whenever $0 \leqq t \leqq \frac{1}{2}$, there is a homotopy $H: X \times I \rightarrow E$ with $p \circ H=\bar{H}$ and $f=H \mid X \times 0$.

Lemma 19. Let

be a topological pull-back and let p have the WCHP. Then this square, with the static homotopy, is a homotopy pull-back.

Proof. Let $\bar{E}_{p, f} \subset E_{p, f}$ be the subset given by

$$
\bar{E}_{p, f}=\left\{\left(e, \theta, b^{\prime}\right) ; p(e)=\theta(t) \text { all } t \in\left[0, \frac{1}{2}\right]\right\} .
$$

Then $\bar{E}_{p, f}$ is a weak deformation retract of $E_{p, f}$ and E^{\prime} is a weak deformation retract of $\bar{E}_{p, f}$. Hence the result.

Let $p: E^{\prime} \rightarrow B$ be a map and $E \subset E^{\prime}$. Then a weak deformation retraction of E^{\prime} to E over B is defined to be a homotopy $H: E^{\prime} \times I \rightarrow E^{\prime}$ such that
(i) $1_{E^{\prime}}=H \mid E^{\prime} \times 0$
(ii) $H(E \times I) \subset E$
(iii) $H\left(E^{\prime} \times 1\right) \subset E$
(iv) $p \circ H$ is static.

Lemma 20. Let $p: E^{\prime} \rightarrow B$ be a map, $E \subset E^{\prime}$, and suppose that there is a weak deformation retraction of E^{\prime} to E over B. If $p \mid E: E \rightarrow B$ has the CHP then p has the WCHP.

Proof. This is obvious.
Lemma 21. In order to prove Theorem 18, it is sufficient to prove the theorem in the case where f_{2} and f_{3} are fibrations, where the rear face is a topological pullback (with the static homotopy), and where the left face is flat.

Proof. We first show that f_{2} may be assumed to be a fibration. Again, by Spanier [10, p. 99], f_{2} may be factored as

$$
B^{\prime} \xrightarrow{f_{2}^{\prime}} B^{\prime \prime} \xrightarrow{f_{2}^{\prime \prime}} B,
$$

in which $f_{2}{ }^{\prime}$ is a homotopy equivalence and $f_{2}{ }^{\prime \prime}$ is a fibration. Form a cube

as follows. Let $f_{2}{ }^{\prime-1}$ be a homotopy inverse for $f_{2}{ }^{\prime}$, and let K be a homotopy from $f_{2}{ }^{\prime}-1 \circ f_{2}{ }^{\prime}$ to $1_{B^{\prime}}$. Then the maps in (3) are the same as in (2) except those involving $B^{\prime \prime}$. $A^{\prime} \rightarrow B^{\prime \prime}$ is the composition of $A^{\prime} \rightarrow B^{\prime} \rightarrow B^{\prime \prime}, B^{\prime \prime} \rightarrow B$ is $f_{2}{ }^{\prime \prime}$, and $B^{\prime \prime} \rightarrow D^{\prime}$ is the composition of $B^{\prime \prime} \xrightarrow{f_{2}^{\prime--1}} B^{\prime} \rightarrow D^{\prime}$. The homotopies across the front, rear, left, and bottom squares are the same as in (2), and if

are the other two faces in (2), then the corresponding faces in (3) are

where $\bar{L}=\gamma^{\prime} \circ K \circ \alpha^{\prime}$ and \bar{M} is given by Lemma 4.
Now (2) is clearly equivalent to (3). Hence we may assume that f_{2} is a fibration.

Symmetrically, we may assume that f_{3} is a fibration.
It follows easily from Lemma 4 and Corollary 5 that we may assume that the rear face is a topological pull-back (with the static homotopy).

By altering the map $A^{\prime} \rightarrow C^{\prime}$ by a homotopy, we may also assume that the left face is flat. This proves the lemma.

We work from now on in the case described by this lemma.
Suppose we are given

in which f_{2} and f_{3} are fibrations, the rear face is a topological pull-back, and the left face is flat. We make the following construction.

Let \bar{A} be the topological pull-back in the left face, so that we get a commutative diagram

in which, of course, ϕ is a homotopy equivalence by Theorem 10. Let M be the mapping cylinder of ϕ (with \bar{A} at the "one" end). Let $A^{\prime \prime} \subset M \times I$ be given by

$$
A^{\prime \prime}=\left\{(m, t) ; m \in A^{\prime} \times 0 \text { if } t \leqq \frac{1}{3}, m \in \bar{A} \text { if } t \geqq \frac{2}{3}\right\} .
$$

Now let $D_{1}^{\prime}=B^{\prime} \cup A^{\prime \prime} \cup C^{\prime} /\left(a^{\prime}, 0,0\right) \sim \alpha^{\prime}\left(a^{\prime}\right),(\bar{a}, 1) \sim \beta^{\prime \prime}(\bar{a})$.

Define a homotopy $K: A^{\prime} \times I \rightarrow D_{1}{ }^{\prime}$ by

$$
\begin{aligned}
K\left(a^{\prime}, t\right) & =\left(a^{\prime}, 0,3 t / 2\right) & & \text { for } t \leqq \frac{1}{3} \\
& =\left(a^{\prime}, 3 t / 2-1, \frac{1}{2}\right) & & \text { for } \frac{1}{3} \leqq t \leqq \frac{2}{3} \\
& =\left(\phi\left(a^{\prime}\right), 1,3 t / 2-\frac{1}{2}\right) & & \text { for } \frac{2}{3} \leqq t .
\end{aligned}
$$

Then we have a homotopy commutative square

Lemma 22. This is a homotopy push-out.
Proof. There is a weak deformation retraction of $A^{\prime \prime}$ to the subset

$$
A_{1}=\left\{(m, t) ; m \in A^{\prime} \times 0 \text { if } t<\frac{1}{2}, m \in \bar{A} \text { if } t>\frac{1}{2}\right\}
$$

keeping ends fixed. Hence there is a weak deformation retraction of $D_{1}{ }^{\prime}$ to $B^{\prime} \cup A_{1} \cup C^{\prime}$, keeping B^{\prime} and C^{\prime} fixed.

Now, similarly to the proof that the mapping cones of homotopic maps are homotopy equivalent, $B^{\prime} \cup A_{1} \cup C^{\prime}$ is homotopy equivalent to the standard homotopy push-out. Hence the result.

Let D_{1} be the standard homotopy push-out of

that is to say, $D_{1}=B \cup A \times I \cup C /(a, 0) \sim \alpha(a), \quad(a, 1) \sim \beta(a)$. Let $f_{5}: D_{1}^{\prime} \rightarrow D_{1}$ be f_{2} on B^{\prime}, f_{3} on C^{\prime} and, on $A^{\prime \prime}$, let

$$
\begin{aligned}
f_{5}\left(a^{\prime}, s, t\right) & =\left(f_{1}\left(a^{\prime}\right), t\right) \\
f_{5}(\bar{a}, t) & =\left(\bar{f}_{1}(\bar{a}), t\right) .
\end{aligned}
$$

Then we have a homotopy commutative diagram
(4)

in which the vertical faces are flat.
Lemma 23. f_{5} has the WCHP.
Proof. Let $E_{1}, E_{2} \subset D_{1}$ be the open sets given by

$$
\begin{aligned}
& E_{1}=B \cup A \times\left[0, \frac{2}{3}\right) \\
& E_{2}=A \times\left(\frac{1}{3}, 1\right] \cup C
\end{aligned}
$$

By Lemma $20, f_{5}$ has the $W C H P$ over each of E_{1} and $E_{2} .\left\{E_{1}, E_{2}\right\}$ is obviously a numerable covering of D_{1}. Hence, by Dold [1, Theorem 5.12 (a)], f_{5} has the $W C H P$.

Corollary 24. The front face of (4) is a homotopy pull-back.
Proof. This follows from Lemma 23 and Lemma 19.
Proof of Theorem 18. Under the circumstances given by Lemma 21, we clearly have a homotopy commutative diagram

in which the maps $D_{1}^{\prime} \rightarrow D^{\prime}$ and $D_{1} \rightarrow D$ are homotopy equivalences. Therefore

is a homotopy pull-back. Hence so is

The right hand square follows similarly. Thus we have proved the theorem.
5. The second cube theorem. The purpose of this section is to state and prove the following theorem. Again we remark that there are no restrictions on the spaces involved. Note also that, in view of Lemma 37 below, if we consider only the case where all the spaces are $C W$-complexes, Theorem 25 is an easy corollary of Theorem 18.

Theorem 25. Suppose we have a homotopy commutative diagram

in which

(i) all the vertical faces are homotopy pull-backs, and
(ii) the lower face is a homotopy push-out.

Then the upper face is a homotopy push-out.
We break the proof into several lemmas.
We say that a homotopy push-out

is in standard form if there are subsets $\bar{B} \subset B$ and $\bar{C} \subset C$ such that
(i) $B \cong \bar{B} \cup A \times\left[0, \frac{1}{2}\right] / a \times 0 \sim \alpha(a), * \times\left[0, \frac{1}{2}\right]$ where α is some map from A to \bar{B};
(ii) $C \cong A \times\left[\frac{1}{2}, 1\right] \cup \bar{C} / a \times 1 \sim \beta(a), * \times\left[\frac{1}{2}, 1\right]$ where β is some map from A to \bar{C};
(iii) $D \cong \bar{B} \cup A \times[0,1] \cup \bar{C} / a \times 0 \sim \alpha(a), a \times 1 \sim \beta(a), * \times[0,1]$;
(iv) the maps are the obvious inclusions (where A is identified with $A \times \frac{1}{2}$) and the homotopy is static.

Lemma 26. A homotopy push-out is equivalent to one in standard form.
Proof. Given a homotopy push-out

the definition constructs a homotopy push-out in standard form and the two are obviously equivalent.

Lemma 27. It suffices to prove the theorem in the case where the lower face is in standard form.

Proof. Given a homotopy commutative cube

satisfying the conditions of the theorem we obtain, by the previous lemma, a homotopy commutative diagram

in which the lowest face is in standard form, and the lower vertical maps are homotopy equivalences. It follows readily from Lemma 6 that the large vertical squares are homotopy pull-backs. Hence, by considering the large cube, it suffices to prove the theorem when the lower face is in standard form.

Lemma 28. It suffices to prove the theorem when we also suppose that the map $D^{\prime} \rightarrow D$ is a fibration.

Proof. Let $D^{\prime} \rightarrow D$ be factored into a homotopy equivalence and a fibration

$$
D^{\prime} \xrightarrow{f_{4}^{\prime}} D_{1}^{\prime} \xrightarrow{f_{4}^{\prime \prime}} D,
$$

again as in Spanier. Then we obtain a homotopy commutative cube

in which the maps and the homotopy into D^{\prime} have been composed with $f_{4}{ }^{\prime}$ and the other maps (except $f_{4}{ }^{\prime \prime}$) and homotopies are unchanged.

Clearly

is equivalent to

so it suffices to prove that the latter is a homotopy push-out.
Lemma 29. It suffices to prove the theorem when we also assume that the vertical faces are topological pull-backs with static homotopies.

Note, however, that although the top face is therefore commutative, we put no restriction at this stage on the homotopy across that face.

Proof. Let

be the topological pull-back. Since $f_{4}{ }^{\prime \prime}$ is a fibration this is a homotopy pullback (with the static homotopy) and hence has the pull-back property. Thus, if

is the front face of the cube, there is a homotopy commutative diagram

in which $f_{4}{ }^{\prime \prime} \circ K+\delta \circ L \sim H$, and ϕ is a homotopy equivalence. Then we
obtain a homotopy commutative diagram

from which we can extract the homotopy commutative cube

and the front face has the required form.
Clearly

is equivalent to

so we may assume that the front face has the required form.
Similarly we may assume that the right and rear faces have the required form.

Now the left face is, say,

in which $f_{3}{ }^{\prime \prime}$ is a fibration, the square is a topological pull-back, and there is some homotopy across the square.

Since $f_{3}{ }^{\prime \prime}$ is a fibration there is a homotopy $H: A_{1}{ }^{\prime} \times I \rightarrow C_{1}{ }^{\prime}$ such that
(i) $f_{3}{ }^{\prime \prime} \circ H=F_{2}$
(ii) $H \mid A_{1}{ }^{\prime} \times 0=\beta_{1}$.

Let $H \mid A_{1}{ }^{\prime} \times 1$ be $\beta_{1}{ }^{\prime}$. Then we get a homotopy commutative cube

in which the left face is flat, and if the top face was

where $M=J-\delta_{1}{ }^{\prime} H$. This completes the lemma.
Lemma 30. It suffices to prove the theorem when we also assume that the top face is flat.

Proof. Let the top face be

where we note that $\gamma^{\prime} \circ \alpha^{\prime}=\delta^{\prime} \circ \beta^{\prime}$. Thus $P\left|A^{\prime} \times 0=P\right| A^{\prime} \times 1$.
We claim that there is a homotopy $P^{\prime}: A^{\prime} \times I \rightarrow C^{\prime}$ from β^{\prime} to β^{\prime} such that $\delta^{\prime} \circ P^{\prime} \sim P$, as follows. Since the cube is homotopy commutative, $f_{4} \circ P$ is equivalent to the static homotopy. Hence, since f_{4} is a fibration, P is equivalent to a homotopy $P^{\prime \prime}$ with the property that $f_{1} \circ P^{\prime \prime}$ is static. Then the image of $P^{\prime \prime}$ lies in the image of δ^{\prime}, so that $P^{\prime \prime}$ factors through $C^{\prime \prime}$ as, say,

$$
A^{\prime} \times I \xrightarrow{P^{\prime}} C^{\prime} \xrightarrow{\delta^{\prime}} D^{\prime}
$$

as required.
Now, by performing the homotopy $-P^{\prime}$ on β^{\prime}, we see that the cube is equivalent to the same cube but with the static homotopy across the top and $f_{3} \circ P^{\prime}$ across the left face. But $\delta \circ f_{3} \circ P^{\prime}$ is static, and hence $f_{3} \circ P^{\prime}$ is static. Thus the whole cube is equivalent to the flat cube. This completes the lemma.

Completion of Theorem 25. We may assume that we have a flat cube

in which the lower face is in standard form, $D^{\prime} \rightarrow D$ is a fibration, and the vertical faces are topological pull-backs. Further, by the particular way that f_{4} was constructed, over $A \times\left[\frac{1}{4}, \frac{3}{4}\right], f_{4}$ is topologically equivalent to the map $f_{1} \times 1: A^{\prime} \times\left[\frac{1}{4}, \frac{3}{4}\right] \rightarrow A \times\left[\frac{1}{4}, \frac{3}{4}\right]$. Thus

$$
D^{\prime}=f_{4}^{-1}\left(\bar{B} \cup A \times\left[0, \frac{1}{3}\right]\right) \cup\left(A^{\prime} \times\left[\frac{1}{3}, \frac{2}{3}\right]\right) \cup f_{4}^{-1}\left(A \times\left[\frac{2}{3}, 1\right] \cup \bar{C}\right)
$$

But $f_{4}^{-1}\left(\bar{B} \cup A \times\left[0, \frac{1}{3}\right]\right) \simeq B^{\prime}$ and $f_{4}^{-1}\left(A \times\left[\frac{2}{3}, 1\right] \cup \bar{C}\right) \simeq C^{\prime}$.
Hence the top face is a homotopy push-out, as required.
To complete this section we give a result which helps to make this theorem useful.

Lemma 31. Let

be homotopy commutative, and let $f_{4}: D^{\prime} \rightarrow D$ be a map. Then there is a homotopy commutative cube

in which the vertical faces are homotopy pull-backs.

Proof. Take three homotopy pull-backs

thereby defining $f_{1}, f_{2}, f_{3}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}, F_{2}, F_{3}$ and F_{4}. Form the diagram

Then we have a diagram

with homotopies F_{3} from $f_{4} \circ \gamma^{\prime}$ to $\gamma \circ f_{2}$ and $F_{4} \circ \beta+\delta \circ F_{2}+G \circ f_{1}$ from $f_{4} \circ \delta^{\prime} \circ \gamma^{\prime}$ to $\gamma \circ \alpha \circ f_{1}$. Hence, by the pull-back property, there is:
a) a whisker map $\alpha^{\prime}: A^{\prime} \rightarrow B^{\prime}$;
b) a homotopy G^{\prime} from $\gamma^{\prime} \circ \alpha^{\prime}$ to $\delta^{\prime} \circ \gamma^{\prime}$; and
c) a homotopy F_{1} from $f_{2} \circ \alpha^{\prime}$ to $\alpha \circ f_{1}$ such that

$$
f_{4} \circ\left(-G^{\prime}\right)+F_{3} \circ \alpha^{\prime}+\gamma \circ F_{1} \sim F_{4} \circ \beta+\delta \circ F_{2}+G \circ f_{1} .
$$

But this is precisely the condition we need to make

homotopy commutative. That the rear face is a homotopy pull-back follows from Lemmas 12 and 14.
6. The case of $C W$-complexes. For convenience we work throughout this section in Top*.

Let $f: P \rightarrow B$ be a map. Then we define the fibre of f to be the homotopy pull-back

Of course, this is defined only up to equivalence. We sometimes call F the fibre, rather than the whole square.

If f is a fibration we may take F to be the inverse image of the base point of B. Thus the following lemma does little more than assert the existence of the exact sequence of a fibration. However, we would like to mention the proof given.

Lemma 32. Let

be a homotopy pull-back. Then there is a long exact sequence

$$
\ldots \Pi_{n} F \rightarrow \Pi_{n} P \rightarrow \Pi_{n} B \rightarrow \Pi_{n-1} F \rightarrow \ldots \rightarrow \Pi_{0} B .
$$

Proof. That $\Pi_{n} F \rightarrow \Pi_{n} P \rightarrow \Pi_{n} B$ is exact is immediate from the pull-back property.

Let

be the homotopy pull-back. Then, by Lemma $12, F^{\prime} \simeq \Omega B$. Thus we get a homotopy commutative diagram of homotopy pull-backs

where the map from ΩP to ΩB is Ωf, as follows.

The given diagram gives rise to a homotopy commutative diagram

and, by the uniqueness part of the pull-back property for the lower square, the map $\Omega P \rightarrow \Omega B$ must be homotopic to Ωf.

The long exact sequence now follows by applying the first sentence of the proof to (4).

Lemma 33. If B is connected and F is contractible and P and B are $C W$-complexes, then f is a homotopy equivalence.

Proof. It follows immediately from the exact sequence that $\Pi_{n} P \rightarrow \Pi_{n} B$ is an isomorphism for all n. Hence, by the J. H. C. Whitehead theorem, f is a homotopy equivalence.

Corollary 34. Suppose that

is a homotopy pull-back, P and B are $C W$-complexes, and B is connected. If g is a homotopy equivalence then so is f.

Proof. The fibre of g is contractible and hence, by Lemma 12, so is the fibre of f.

Corollary 35. Suppose that

is a homotopy pull-back, P and B are $C W$-complexes, and $\Pi_{0} C \rightarrow \Pi_{0} B$ is onto. If g is a homotopy equivalence then so is f.

Proof. The given square is obviously equivalent to a static square, so we may assume the given square is static. If we consider each component of B separately, together with its inverse images in P, C, and A, we can introduce base points and apply the previous corollary.

Lemma 36. Let

be a homotopy pull-back, and suppose that A, B, C have the homotopy types of $C W$-complexes. Then P has the homotopy type of a $C W$-complex.

Proof. This is a corollary of Milnor [7, Theorem 3, p. 276].
Lemma 37. In the homotopy commutative diagram

suppose that all the spaces are $C W$-complexes, that $\Pi_{0} D \rightarrow \Pi_{0} E$ is onto, and that the left and large squares are homotopy pull-backs. Then the right hand square is a homotopy pull-back.

Proof. Let

be homotopy pull-backs, and let $B \rightarrow B^{\prime}, A \rightarrow A^{\prime}$ be the corresponding whisker maps. Then we have a homotopy commutative diagram

By applying Lemma 8 to

we see that

is a homotopy pull-back. However, by hypothesis and Lemma 12,

are both homotopy pull-backs, so $A \rightarrow A^{\prime}$ is a homotopy equivalence.
Now $\Pi_{0} D \rightarrow \Pi_{0} E$ is onto, by hypothesis, so it follows easily that $\Pi_{0} A^{\prime} \rightarrow$ $\Pi_{0} B^{\prime}$ is onto. But B and B^{\prime} have the homotopy types of $C W$-complexes (the latter by Lemma 36). Hence, by Corollary $35, B \rightarrow B^{\prime}$ is a homotopy equivalence, which gives the desired result.

We now study the dual situation.
Let $f: A \rightarrow B$ be a map. Then we define the cofibre of f to be the homotopy push-out

Of course this is defined only up to equivalence. We sometimes call K the cofibre, instead of the whole square.

Lemma 38. For any Abelian coefficient group G there is a long exact sequence $\widetilde{H}^{0}(K ; G) \rightarrow \widetilde{H}^{0}(B ; G) \rightarrow \widetilde{H}^{0}(A ; G) \rightarrow \widetilde{H}^{1}(K ; G) \rightarrow \ldots$
Proof. $\widetilde{H}^{n}(X ; G)=[X: K(G, n)]$, and the proof is dual to that of Lemma 32.
Lemma 39. If A and B are $C W$-complexes, A is simply connected and K is contractible then f is a homotopy equivalence.

Proof. This is well known, so we omit the proof.
Corollary 40. If

is a homotopy push-out, A is a simply connected $C W$-complex, B is a $C W$-complex and g is a homotopy equivalence then f is a homotopy equivalence.

Proof. The cofibre of g is contractible, and hence so is the cofibre of f.
It is obvious that a homotopy push-out of $C W$-complexes has the homotopy type of a $C W$-complex.

Lemma 41. In the homotopy commutative diagram

suppose that all the spaces are $C W$-complexes, that A is connected and B and D are simply connected, and that the right and large squares are homotopy push-outs. Then the left square is a homotopy push-out.

Proof. Dually to the proof of Lemma 37, we put in homotopy push-outs to form the diagram

Since A is connected and B and D are simply connected, it is clear that E^{\prime} is simply connected. The rest of the proof is dual to Lemma 37, and is left to the reader.

Appendix 1. In this appendix we give the proofs which we omitted in Section 2. We give them in a different order.

Lemma 2. Let $f: A \rightarrow B$ be a homotopy equivalence, and suppose we are given two maps $g, h: X \rightarrow A$ and a homotopy H from $f \circ g$ to $f \circ h$. Then there is a homotopy G from g to h such that $f \circ G \sim H$.

Proof. Let $f^{\prime}: B \rightarrow A$ be the inverse homotopy equivalence, let F be a homotopy from $f^{\prime} \circ f$ to 1_{A} and let F^{\prime} be a homotopy from $f \circ f^{\prime}$ to 1_{B}.

If H^{\prime} is a homotopy from $f \circ g$ to $f \circ h$, possibly different from H, define a corresponding homotopy G from g to h by

$$
G=(-F) \circ g+f^{\prime} \circ H^{\prime}+F \circ h .
$$

This is defined at least up to equivalence. We will show how to choose H^{\prime} so that $f \circ G \sim H$.

Now, $f \circ G \sim f \circ(-F) \circ g+f \circ f^{\prime} \circ H^{\prime}+f \circ F \circ h$. Thus $f \circ G \sim H$ if and only if $H \sim f \circ(-F) \circ g+f \circ f^{\prime} \circ H^{\prime}+f \circ F \circ h$ i.e., $f \circ F \circ g+H+f \circ(-F) \circ h \sim f \circ f^{\prime} \circ H^{\prime}$.

Now $f \circ f^{\prime}$ is homotopic to 1_{B} by F^{\prime} so that

$$
f \circ f^{\prime} \circ H^{\prime} \sim F^{\prime} \circ f \circ g+H^{\prime}+\left(-F^{\prime}\right) \circ f \circ h .
$$

Thus $f \circ G \sim H$ if and only if

$$
H^{\prime} \sim\left(-F^{\prime}\right) \circ f \circ g+f \circ F \circ g+H+f \circ(-F) \circ h+F^{\prime} \circ f \circ h
$$

and so we choose to define H^{\prime} by this equation. This gives the required result.
Corollary 3. If $f: A \rightarrow B$ is a homotopy equivalence, $g, h: X \rightarrow A$ are maps and G, H are homotopies from g to h such that $f \circ G \sim f \circ H$ then $G \sim H$.

Proof. $G-H$ is a homotopy from g to g, and hence may be thought of as a map $k: X \times S^{1} \rightarrow A$. Clearly $G \sim H$ if and only if k extends over $X \times D^{2}$, i.e., if and only if $k \sim g \circ p_{1}: X \times S^{1} \rightarrow A$.

But $f \circ G \sim f \circ H$, so $f \circ k \sim f \circ g \circ p_{1}: X \times S^{1} \rightarrow B$. Hence, by the lemma above, $k \sim g \circ p_{1}$ and $G \sim H$, as required.

Lemma 4 and Corollary 5 are the duals of the last two results and have the dual proofs.

Before we prove Lemma 1 we need an extra lemma.
Lemma 42. Let $f_{1}: A \rightarrow A^{\prime}$ be a homotopy equivalence, with inverse $f_{1}{ }^{\prime}: A^{\prime} \rightarrow$ A, and let H_{A} be a homotopy from $f_{1}^{\prime} \circ f_{1}$ to 1_{A}. Similarly, let $f_{2}: B \rightarrow B^{\prime}$ be a homotopy equivalence, with inverse $f_{2}{ }^{\prime}: B^{\prime} \rightarrow B$ and let H_{B} be a homotopy from $f_{2}{ }^{\prime} \circ f_{2}$ to 1_{B}. Consider the diagram

in which there is one homotopy, as marked. Then there is a homotopy $F_{1}{ }^{\prime}$ from $f_{2}{ }^{\prime} \circ \alpha^{\prime}$ to $\alpha \circ f_{1}{ }^{\prime}$ such that

$$
f_{2}^{\prime} \circ F_{1}+F_{1}^{\prime} \circ f_{1} \sim H_{B} \circ \alpha-\alpha \circ H_{A} .
$$

Proof. The condition shows that we want

$$
F_{1}^{\prime} \circ f_{1} \sim-f_{2}^{\prime} \circ F_{1}+H_{B} \circ \alpha-\alpha \circ H_{A} .
$$

Such a homotopy $F_{1}{ }^{\prime}$ exists by Lemma 2, and is unique by Corollary 3.
Lemma 1. On squares, equivalence is an equivalence relation.
Proof. The reflexive and transitive properties are obvious. We show that equivalence is symmetric.

Thus, we suppose that we are given a homotopy commutative cube

in which the maps f_{i} are homotopy equivalences. The condition for homotopy commutativity may be written

$$
f_{4} \circ G+F_{4} \circ \beta+\delta^{\prime} \circ F_{2}-G^{\prime} \circ f_{1}-\gamma^{\prime} \circ F_{1}-F_{3} \circ \alpha \sim 0
$$

Let $f_{i}{ }^{\prime}$ be a homotopy inverse of f_{i} for each i. Then we will define homotopies $F_{i}{ }^{\prime}$ to make the following diagram homotopy commutative. This will complete the proof of the lemma.

Choose homotopies H_{A}, from $f_{1}^{\prime} \circ f_{1}$ to 1_{A}, and H_{B}, H_{C}, H_{D} similiary. Then the homotopies $F_{i}{ }^{\prime}$ are given by the previous lemma. This defines the cube, and it just remains to check that, if

$$
K=f_{4}^{\prime} \circ G^{\prime}+F_{4}^{\prime} \circ \beta^{\prime}+\delta \circ F_{2}^{\prime}-G \circ f_{1}^{\prime}-\gamma \circ F_{1}^{\prime}-F_{3}^{\prime} \circ \alpha^{\prime}
$$

then $K \sim 0$.
We claim that $K \circ f_{1} \sim 0$, as follows.
(i) $F_{4}{ }^{\prime} \circ \beta^{\prime} \circ f_{1} \sim-f_{4}{ }^{\prime} \circ \delta^{\prime} \circ F_{2}+F_{4}{ }^{\prime} \circ f_{3} \circ \beta+\delta \circ f_{3} \circ F_{2}$ since F_{2} is a homotopy from $f_{3} \circ \beta$ to $\beta^{\prime} \circ f_{1}$

$$
\sim-f_{4}^{\prime} \circ \delta^{\prime} \circ F_{2}+\left[-f_{4}^{\prime} \circ F_{4}+H_{D} \circ \delta-\delta \circ H_{c}\right] \circ \beta+\delta \circ f_{3}^{\prime} \circ F_{2}
$$ by the definition of $F_{4}{ }^{\prime}$.

(ii) $\delta \circ F_{2}^{\prime} \circ f_{1} \sim \delta \circ\left[-f_{3}^{\prime} \circ F_{2}+H_{C} \circ \beta-\beta \circ H_{A}\right]$
(iii) $G \circ f_{1}^{\prime} \circ f_{1} \sim \gamma \circ \alpha \circ H_{A}-H_{D} \circ \gamma \circ \alpha+f_{4}^{\prime} \circ f_{4} \circ G+H_{D} \circ \delta \circ \beta-$ $\delta \circ \beta \circ H_{A}$

$$
\begin{aligned}
& \text { (iv) } \gamma \circ F_{1}^{\prime} \circ f_{1} \sim \gamma \circ\left[-f_{2}^{\prime} \circ F_{1}+H_{B} \circ \alpha-\alpha \circ H_{A}\right] . \\
& \text { (v) } F_{3}^{\prime} \circ \alpha^{\prime} \circ f_{1} \sim-f_{4}^{\prime} \circ \gamma^{\prime} \circ F_{1}+F_{3}^{\prime} \circ f_{2} \circ \alpha+\gamma \circ f_{2}^{\prime} \circ F_{1} \\
& \\
& \\
& \sim-f_{4}^{\prime} \circ \gamma^{\prime} \circ F_{1}+\left[-f_{4}^{\prime} \circ F_{3}+H_{D} \circ \gamma-\gamma \circ H_{B}\right] \circ \alpha+ \\
& \gamma \circ f_{2}^{\prime} \circ F_{1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& K \circ f_{1} \sim f_{4}^{\prime} \circ G^{\prime} \circ f_{1} \\
& -f_{4}^{\prime} \circ \delta^{\prime} \circ F_{2}-f_{4}^{\prime} \circ F_{4} \circ \beta+H_{D} \circ \delta \circ \beta-\delta \circ H_{C} \circ \beta+ \\
& \delta \circ f_{3} \circ F_{2} \\
& -\delta \circ f_{3}{ }^{\prime} \circ F_{2}+\delta \circ H_{C} \circ \beta-\delta \circ \beta \circ H_{A} \\
& +\delta \circ \beta \circ H_{A}-H_{D} \circ \delta \circ \beta-f_{4} \circ \circ f_{4} \circ G+H_{D} \circ \gamma \circ \alpha \\
& -\gamma \circ \alpha \circ H_{A} \\
& +\gamma \circ \alpha \circ H_{A}-\gamma \circ H_{B} \circ \alpha+\gamma \circ f_{2} \circ F_{1} \\
& -\gamma \circ f_{2}^{\prime} \circ F_{1}+\gamma \circ H_{B} \circ \alpha-H_{D} \circ \gamma \circ \alpha+f_{4}^{\prime} \circ F_{3} \circ \alpha \\
& +f_{4}^{\prime} \circ \gamma^{\prime} \circ F_{1}
\end{aligned}
$$

and this expression cancels down to

$$
f_{4}^{\prime} \circ\left[G^{\prime} \circ f_{1}-\delta^{\prime} \circ F_{2}-F_{4} \circ \beta-f_{4} \circ G+F_{3} \circ \alpha+\gamma^{\prime} \circ F_{1}\right]
$$

which is equivalent to the static homotopy since the original cube is homotopy commutative.

Now $K \circ f_{1} \sim 0 \circ f_{1}$ implies $K \sim 0$, by Corollary 5 . Hence the last cube is homotopy commutative and we have shown that equivalence of squares is symmetric and hence an equivalence relation, as required.

We now move to Lemma 6 . This has been proved in much greater generality by Vogt [13]. However, for completeness, we include a proof here. We need three lemmas.

Lemma 43. Let $f: A \rightarrow A^{\prime}$ be a homotopy equivalence, with inverse $f^{\prime}: A^{\prime} \rightarrow A$, and let H be a homotopy from f^{\prime} of to 1_{A}. Then there is a homotopy H^{\prime} from $f \circ f^{\prime}$ to $1_{A^{\prime}}$, unique up to equivalence, such that

$$
H \circ f^{\prime} \sim f^{\prime} \circ H^{\prime}
$$

and

$$
f \circ H \sim H^{\prime} \circ f
$$

Proof. $H \circ f^{\prime}$ is a homotopy from $f^{\prime} \circ f \circ f^{\prime}$ to f^{\prime}. Hence, by Lemma 2, there is a homotopy H^{\prime} from $f \circ f^{\prime}$ to $1_{A^{\prime}}$, such that $H \circ f^{\prime} \sim f^{\prime} \circ H^{\prime}$. By Corollary 3, such H^{\prime} is unique up to equivalence.

Now we notice that, if K is a homotopy from k_{0} to k_{1} and L is a homotopy from l_{0} to l_{1} and $K \circ L$ is defined, then

$$
k_{0} \circ L \sim K \circ l_{0}+k_{1} \circ L-K \circ l_{1} .
$$

Thus

$$
\begin{aligned}
f \circ H \circ f^{\prime} & \sim f \circ f^{\prime} \circ H^{\prime} \\
& \sim H^{\prime} \circ f \circ f^{\prime}+H^{\prime}-H^{\prime} \\
& \sim H^{\prime} \circ f \circ f^{\prime}
\end{aligned}
$$

so that $f \circ H \sim H^{\prime} \circ f$ by Corollary 3 . This completes the lemma.
Lemma 44. Under the circumstances of Lemma 42, let $H_{A}{ }^{\prime}$ and $H_{B}{ }^{\prime}$ be as constructed in Lemma 43. Then, in the following diagram, which has two homotopies,

we have

$$
f_{2} \circ F_{1}^{\prime}+F_{1} \circ f_{1}^{\prime} \sim H_{B}^{\prime} \circ \alpha^{\prime}-\alpha^{\prime} \circ H_{A}^{\prime}
$$

Proof. We calculate as follows:

$$
\begin{aligned}
& f_{2}^{\prime} \circ\left(f_{2} \circ F_{1}^{\prime}+F_{1} \circ f_{1}{ }^{\prime}\right)+F_{1}{ }^{\prime} \circ f_{1} \circ f_{1}^{\prime} \sim f_{2}^{\prime} \circ f_{2} \circ F_{1}^{\prime}+ \\
&\left(H_{B} \circ \alpha-\alpha \circ H_{A}\right) \circ f_{1}^{\prime} \\
& \sim\left(H_{B} \circ f_{2}^{\prime} \circ \alpha^{\prime}+F_{1}^{\prime}-H_{B} \circ \alpha \circ f_{1}^{\prime}\right)+\left(H_{B} \circ \alpha-\alpha \circ H_{A}\right) \circ f_{1}^{\prime} \\
& \sim H_{B} \circ f_{2}^{\prime} \circ \alpha^{\prime}+F_{1}^{\prime}-\alpha \circ H_{A} \circ f_{1}^{\prime} \\
& \sim f_{2}^{\prime} \circ H_{B}^{\prime} \circ \alpha^{\prime}+F_{1}^{\prime}-\alpha \circ f_{1}^{\prime} \circ H_{A}^{\prime} \text { by Lemma } 43 \\
& \sim\left(f_{2}^{\prime} \circ H_{B}^{\prime} \circ \alpha^{\prime}-f_{2}^{\prime} \circ \alpha^{\prime} \circ H_{A}^{\prime}\right) \\
& \quad+\left(f_{2}^{\prime} \circ \alpha^{\prime} \circ H_{A}^{\prime}+F_{1}^{\prime}-\alpha \circ f_{1}^{\prime} \circ H_{A}{ }^{\prime}\right) \\
& \sim f_{2}^{\prime} \circ\left(H_{B}^{\prime} \circ \alpha^{\prime}-\alpha^{\prime} \circ H_{A}^{\prime}\right)+F_{1}^{\prime} \circ f_{1} \circ f_{1}^{\prime} .
\end{aligned}
$$

Therefore $f_{2}{ }^{\prime} \circ\left(f_{2} \circ F_{1}{ }^{\prime}+F_{1} \circ f_{1}{ }^{\prime}\right) \sim f_{2}^{\prime} \circ\left(H_{B}{ }^{\prime} \circ \alpha^{\prime}-\alpha^{\prime} \circ H_{A}{ }^{\prime}\right)$ and hence, by Corollary 3 ,

$$
f_{2} \circ F_{1}^{\prime}+F_{1} \circ f_{1}^{\prime} \sim H_{B}^{\prime} \circ \alpha^{\prime}-\alpha^{\prime} \circ H_{A}^{\prime}
$$

as required.
Lemma 45. Given

in which the maps f_{i} are homotopy equivalences, the induced mapf: $E_{\gamma, \delta} \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}$ is a homotopy equivalence.

Proof. Clearly, if we change f_{i} by homotopies and alter F_{3} and F_{4} accordingly, we will change f by a homotopy.

Now use Lemma 42 above on each square to construct the homotopy commutative diagram

Then, clearly, the composition

$$
E_{\gamma, \delta} \stackrel{f}{\rightarrow} E_{\gamma^{\prime}, \delta^{\prime}} \rightarrow E_{\gamma, \delta}
$$

is homotopic to the identity. By Lemma 44, we can construct a homotopy commutative diagram by putting the lower half of the diagram above on top of the upper half. Thus the composition

$$
E_{\gamma^{\prime}, \delta^{\prime}} \rightarrow E_{\gamma, \delta} \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}
$$

is also homotopic to the identity. This completes the result.
Lemma 6. If a square is equivalent to a homotopy pull-back then it is a homotopy pull-back.

Proof. The situation we are given is a homotopy commutative cube as shown on page 229 , in which the lower face is a homotopy pull-back and all the vertical maps are homotopy equivalences. We wish to show that the upper face is also a homotopy pull-back.

Let $w: A \rightarrow E_{\gamma, \delta}$, and $w^{\prime}: A^{\prime} \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}$ be the whisker maps. Define $g: E_{\gamma, \delta} \rightarrow$ $E_{\gamma^{\prime}, \delta^{\prime}}$ by

$$
g(b, \theta, c)=\left(f_{2}(b), \theta^{\prime}, f_{3}(c)\right)
$$

where

$$
\begin{aligned}
\theta^{\prime}(t) & =F_{3}(b, 1-3 t) \quad \text { if } t \leqq 1 / 3 \\
& =f_{4} \theta(3 t-1) \quad \text { if } 1 / 3 \leqq t \leqq 2 / 3 \\
& =F_{4}(c, 3 t-2) \quad \text { if } 2 / 3 \leqq t .
\end{aligned}
$$

Now g is a homotopy equivalence, by the previous lemma. Hence we need only show that $g \circ w \simeq w^{\prime} \circ f_{1}$ to complete the proof of the lemma.

Well, $g \circ w: A \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}$ is given by

$$
g \circ w(a)=\left(f_{2} \circ \alpha(a),\left(-F_{3} \circ \alpha+f_{4} \circ G+\beta \circ F_{4}\right) \mid a \times I, f_{3} \circ \beta(a)\right)
$$

and $w^{\prime} \circ f_{1}: A \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}$ is given by

$$
w^{\prime} \circ f_{1}(a)=\left(\alpha^{\prime} \circ f_{1}(a), G^{\prime} \circ f_{1} \mid a \times I, \beta^{\prime} \circ f_{1}(a)\right)
$$

But $G^{\prime} \circ f_{1} \sim-\delta^{\prime} \circ F_{1}-F_{3} \circ \alpha+f_{4} \circ G+\beta \circ F_{4}+F_{2} \circ \gamma^{\prime}$ so $w^{\prime} \circ f_{1}$ is homotopic to the map from A to $E_{\gamma^{\prime}, b^{\prime}}$ given by

$$
\begin{array}{r}
a \mapsto\left(\alpha^{\prime} \circ f_{1}(a),-\delta^{\prime} \circ F_{1}-F_{3} \circ \alpha+f_{4} \circ G+\beta \circ F_{4}+F_{2} \circ \gamma^{\prime} \mid a \times I,\right. \\
\left.\beta^{\prime} \circ f_{1}(a)\right)
\end{array}
$$

and this is obviously homotopic to $g \circ w$. This completes the proof of the lemma.
Corollary 7. If, in the homotopy commutative cube on page 229 the upper and lower faces are homotopy pull-backs and the last three vertical maps are homotopy equivalences then the first map is a homotopy equivalence.

Proof. Let $w^{\prime}: A^{\prime} \rightarrow E_{\gamma^{\prime}, \delta^{\prime}}$ be the whisker map in the lower square. Then $w^{\prime} \circ f_{1}$ is a homotopy equivalence by Lemma 6 . But w^{\prime} is a homotopy equivalence, and hence so is f_{1}.

Lemma 8 and Corollary 9 are the duals of the last two results.
Lemma 46. The homotopy commutative square

has the pull-back property.
Proof. Suppose we are given a homotopy commutative diagram

Define $\phi: X \rightarrow E_{f, g}$ by $\phi(x)=(u(x), H \mid x \times I, v(x))$. Then we obviously
get a homotopy commutative diagram

in which the homotopies K and L are static.
Now suppose that we have another such homotopy commutative diagram

Let $\phi^{\prime}(x) \in A \times C^{I} \times B$ be denoted by $\left(\phi_{1}{ }^{\prime}(x), \phi_{2}{ }^{\prime}(x), \phi_{3}{ }^{\prime}(x)\right.$). Then homotopy commutativity means that

$$
f \circ K^{\prime}+\phi_{2}^{\prime}+g \circ L^{\prime} \sim H
$$

That is to say, there is a map $N: X \times I \times I \rightarrow C$ such that

$$
\begin{aligned}
N(x, 0, t) & =f \circ u(x) \\
N(x, 1, t) & =g \circ v(x) \\
N(x, s, 0) & =H(x, s) \\
N(x, s, 1) & =f \circ K^{\prime}(x, 3 s) \quad \text { for } s \leqq \frac{1}{3} \\
& =\phi_{2}{ }^{\prime}(x)(3 s-1) \text { for } \frac{1}{3} \leqq s \leqq \frac{2}{3} \\
& =g \circ L^{\prime}(x, 3 s-2) \quad \text { for } \frac{2}{3} \leqq s .
\end{aligned}
$$

$s=0$

$$
s=1
$$

Diagram of N

We will use this to construct a homotopy M from ϕ to ϕ^{\prime} satisfying axiom $P B 4$.
We define maps $M_{1}: X \times I \rightarrow A, M_{2}: X \times I \times I \rightarrow C, M_{3}: X \times I \rightarrow B$ so that we can set $M(x, s)=\left(M_{1}(x, s), M_{2}(x, s, \cdot), M_{3}(x, s)\right)$, as follows.

$$
\begin{aligned}
& M_{1}(x, s)=\left\{\begin{array}{l}
u(x) \text { for } s \leqq \frac{1}{2} \\
K^{\prime}(x, 2 s-1)
\end{array} \text { for } \frac{1}{2} \leqq s\right. \\
& M_{2}(x, s, t)=\left\{\begin{array}{l}
N(x, t, 2 s) \text { for } s \leqq \frac{1}{2} \\
N\left(x, \frac{1}{3}(2 s+5 t-1-4 s t), 1\right) \quad \text { for } \frac{1}{2} \leqq s
\end{array}\right. \\
& M_{3}(x, s)=\left\{\begin{array}{l}
v(x) \text { for } s \leqq \frac{1}{2} \\
L^{\prime}(x, 2-2 s)
\end{array} \text { for } \frac{1}{2} \leqq s .\right.
\end{aligned}
$$

Now it is simple to check that
(i) $M(x, s) \in E_{f, 0}$;
(ii) M is continuous;
(iii) $M(x, 0)=\phi(x)$;
(iv) $M(x, 1)=\phi^{\prime}(x)$;
(v) $\alpha \circ M \sim K^{\prime}$;
(vi) $\beta \circ M \sim-L^{\prime}$.

This completes the lemma.
Theorem 10. A square has the pull-back property if and only if it is a homotopy pull-back.

Proof. If a square is a homotopy pull-back then it follows readily from Lemma 46, using Lemma 2 and Corollary 3, that it has the pull-back property.

Conversely, suppose that

has the pull-back property. Then we get homotopy commutative diagrams:

In the usual way, the compositions

$$
E_{f, g} \rightarrow P \rightarrow E_{f, g} \text { and } P \rightarrow E_{f, g} \rightarrow P
$$

must be homotopic to the respective identity maps. Hence

$$
P \rightarrow E_{f, g}
$$

is a homotopy equivalence, and the given square is a homotopy pull-back, as required.

Theorem 11. A square has the push-out property if and only if it is a homotopy push-out.

This is the dual of the previous theorem and is left to the reader.
Appendix 2. In this appendix we give two results which are needed in [5] and [6].

Versions of Theorem 47 have been given by Ganea [4], Nomura [8;9] and Svarc [11]. We work in Top*.

Theorem 47. In the homotopy commutative diagram

suppose that the outside square is a homotopy pull-back, the inside square is a homotopy push-out, and A, B, C are connected. Let F and G be the fibres of $A \rightarrow C$, $B \rightarrow C$ respectively. Then the fibre of $Q \rightarrow C$ is $F * G$. It follows that, if $A \rightarrow C$ is r-connected and $B \rightarrow C$ is s-connected then $Q \rightarrow C$ is at least $(r+s+1)$-connected.

Proof. By Lemma 31 we can construct, from the given diagram, a homotopy commutative diagram (with some spaces K and L):

in which the vertical squares are homotopy pull-backs.

By applying Lemma 12 to

and Lemma 14 to

we see that the outside top square of (5) is a homotopy pull-back, so that $K \simeq F \times G$ in such a way that the maps $K \rightarrow F$ and $K \rightarrow G$ are homotopic to the projections.

By Theorem 25, the square

is a homotopy push-out, so that $L \simeq F * G$. This proves the theorem.
We now assume that we are working with $C W$-complexes.
Lemma 48. Let $A \rightarrow B$ be n-connected. Then there is a homotopy commutative diagram

in which B^{\prime} is obtained from A by attaching cells of dimension $\geqq n+1$.
The proof is clear.
Corollary 49. If

is a homotopy push-out and $A \rightarrow C$ is n-connected, then so is $B \rightarrow D$.

Proof. Replace $A \rightarrow C$ by the map $A \rightarrow C^{\prime}$ given by the previous lemma. Let

be the topological push-out. Since $A \rightarrow C^{\prime}$ is a cofibration, this is also a homotopy push-out, and $B \rightarrow D^{\prime}$ has the same homotopy type as $B \rightarrow D$. But D^{\prime} is obtained from B by adding cells of dimension $\geqq n+1$. Hence the result.

The following is a type of relative Hurewicz theorem.
Theorem 50. For any r-connected map $A \rightarrow C$ with C s-connected there is a map from the suspension of the fibre to the cofibre which is $(r+s+1)$-connected.

Proof. Take the homotopy pull-back

so that F is the fibre of $A \rightarrow C$, and construct successively three homotopy push-outs

(thereby defining P, Q and K) to obtain a homotopy commutative diagram

By Lemma $13, K$ is the cofibre of $A \rightarrow C$. Also by Lemma $13, Q \simeq \Sigma F$. Thus we have the desired map from ΣF to K.

By Theorem 47, $P \rightarrow C$ is $(r+s+1)$-connected and hence, by Corollary $49, \Sigma F \rightarrow K$ is $(r+s+1)$-connected, as required.

References

1. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255.
2. D. B. A. Epstein, A group with zero homology, Proc. Cambridge Phil. Soc. 64 (1968), 599-601.
3. P. H. H. Fantham and M. Mather, On James's construction, Typescript.
4. T. Ganea, A generalisation of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
5. M. Mather, Hurewicz theorems for pairs and squares, Math. Scand. 32 (1973), 269-272.
6. - A generalisation of Ganea's theorem on the mapping cone of the inclusion of a fibre, J. London Math. Soc. (2), 11(1975), 121-122.
7. J. Milnor, On spaces having the homotopy type of $C W$-complexes, Trans. Amer. Math. Soc. 90 (1959), 272-280.
8. Y. Nomura, On extensions of triads, Nagoya Math. J. 27 (1966), 249-277.
9. -The Whitney join and its dual, Osaka J. Math. 7(1970), 353-373.
10. E. H. Spanier, Algebraic topology (McGraw-Hill, 1966).
11. A. S. Svarc, On the genus of a fibred space, Dokl. Akad. Nauk. SSSR. 126 (1959), 719-722. (Russian)
12. R. M. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627-629.
13. - Homotopy limits and colimits, Math. Z. 134 (1973), 11-52.
14. M. Walker, Duality in homotopy theory, Ph.D. thesis, University of Toronto, 1972.

University of Toronto,
Toronto, Ontario; and
University of Otago,
Dunedin, New Zealand

[^0]: Received August 26, 1971 and in revised form, September 29, 1975.
 This research was partially supported by a grant from the National Research Council.

