
3
Interactions and diagrammatic

techniques

Unfortunately it is not possible to carry out the functional integration
in closed form when the Lagrangian contains terms that are more than
quadratic in the fields. The reader is invited to verify this. Thus, it is
important to develop approximation techniques. An approximation that
is expected to be useful when the interactions are weak is found by expand-
ing the partition function in powers of the interaction. The convergence
properties of these perturbation expansions have not been established
with any degree of mathematical rigor, however. An alternative approach
is to evaluate the partition function containing a given Lagrangian on a
spacetime lattice using numerical Monte Carlo methods. This approach
is described in Chapter 10.

3.1 Perturbation expansion

Consider a single scalar field φ. Other, more physical, theories such as
QED, QCD, the Glashow–Weinberg–Salam model, and effective nuclear
models will be considered in later chapters. The reader must be prepared
now to learn some basic techniques before tackling more complicated but
physically relevant theories.

The partition function is

Z = N ′
∫

[dφ]eS (3.1)

The action can be decomposed as

S = S0 + SI (3.2)

where S0 is at most quadratic in the field and SI, the part due to inter-
actions, is of higher order. We may expand (3.1) in a power series in
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34 Interactions and diagrammatic techniques

the part due to interaction, SI:

Z = N ′
∫

[dφ]eS0

∞∑
l=0

1
l!
Sl

I (3.3)

Taking the logarithm on both sides we get

lnZ = ln
(
N ′
∫

[dφ]eS0

)
+ ln

(
1 +

∞∑
l=1

1
l!

∫
[dφ]eS0Sl

I∫
[dφ]eS0

)
= lnZ0 + lnZI (3.4)

This explicitly separates the interaction contributions from the ideal gas
contribution, which we have evaluated already. The relevant quantity that
we actually need to compute is

〈Sl
I〉0 =

∫
[dφ]eS0Sl

I∫
[dφ]eS0

(3.5)

which is the value of SI raised to an arbitrary positive integral power
and averaged over the unperturbed ensemble, represented by S0. The
normalization of the functional integration is now irrelevant, as it cancels
in the expression (3.5).

3.2 Diagrammatic rules for λφ4 theory

The task of actually evaluating (3.4) and (3.5) is significantly more dif-
ficult than our compact notation would suggest. It is in fact useful to
associate diagrams with the mathematical expressions in the expansion.
Diagrams are a common language in particle physics, nuclear physics, sta-
tistical physics and condensed matter physics and allow for the exchange
of ideas and concepts among these different disciplines.

Consider the lowest-order correction to lnZ0 in λφ4 theory. It is

lnZ1 =
−λ
∫
dτ
∫
d3x

∫
[dφ]eS0φ4(x, τ)∫

[dφ]eS0
(3.6)

If we express φ(x, τ) as a Fourier series as in (2.30), and insert this into
(3.6) we get

lnZ1 = −λ

∫
dτ

∫
d3x

∑
n1,...,n4

∑
p1,...,p4

β2

V 2

× exp[i(p1 + · · · + p4) · x] exp [i(ωn1 + · · · + ωn4)τ ]
A

B
(3.7)
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3.2 Diagrammatic rules for λφ4 theory 35

where

A =
∏
l

∏
q

∫
dφ̃l(q) exp

[− 1
2β

2(ωl
2 + q2 + m2)φ̃l(q)φ̃−l(−q)

]
× φ̃n1(p1)φ̃n2(p2)φ̃n3(p3)φ̃n4(p4)

and

B =
∏
l

∏
q

∫
dφ̃l(q) exp

[− 1
2β

2(ω2
l + q2 + m2)φ̃l(q)φ̃−l(−q)

]
The integrations over x and τ yield a factor βV δn1+···+n4,0 δp1+···+p4,0 .
The numerator of the whole expression for ln Z1 will be zero by symmet-
ric integration unless n3 = −n1, p3 = −p1 and n4 = −n2, p4 = −p2, or
the other two permutations thereof. This will satisfy the constraints of
the Kronecker deltas and the integrals will factorize. The integrals in the
numerator are canceled by those in the denominator except for the two
corresponding to l = n1, q = p1 and l = n2, q = p2, and the other two
permutations. Using ∫∞

−∞ dx x2e−ax2/2∫∞
−∞ dx e−ax2/2

=
1
a

(3.8)

we obtain

lnZ1 = −3λβV

(
T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

)2

(3.9)

Here we have defined the propagator in frequency–momentum space as

D0(ωn,p) =
1

ω2
n + p2 + m2

(3.10)

The expression (3.9) can be associated with a diagram in the following
way. Remember that we are calculating lnZ1 to first order in λ. With
φ4(x, τ) we associate a cross with four arms (because of the fourth power
of φ), with the vertex located at (x, τ):

φ4(x, τ) : (x, τ)

After expressing each field φ(x, τ) as a Fourier series we draw the figure

(p2, ωn2) (p3, ωn3)

(p1, ωn1) (p4, ωn4)
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36 Interactions and diagrammatic techniques

The directions of the arrows reflect the signs of the momenta and fre-
quencies. By convention, we draw them pointing towards the vertex, but
we could have chosen a convention in which they all point away. The
functional integration vanishes unless n3 = −n1, p3 = −p1 and n4 = −n2,
p4 = −p2, etc. Thus we connect the ends in pairs. There are three possible
pairings. We then have

lnZ1 = 3 (3.11)
(p1, ωn1)(p2, ωn2)

With each closed loop we associate a factor

T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

With the vertex we associate a factor −λ (coming from LI = −λφ4) and
a factor

βδωin,ωoutV δpin,pout → βδωin,ωout(2π)3δ(pin − pout)

Since the arguments of the frequency–momentum-conserving deltas are
zero we simply get an overall factor βV . The factor V makes lnZ1 a
properly extensive quantity. Pictorially, (3.11) corresponds precisely with
(3.9).

Next we look at order λ2 in lnZI. From (3.4) it is

lnZ2 = −1
2

(∫
[dφ]eS0SI∫
[dφ]eS0

)2

+ 1
2

∫
[dφ]eS0S2

I∫
[dφ]eS0

(3.12)

The first term in (3.12) is simply

−1
2(lnZ1)2 = −1

2

(
3 ⊗ 3

)
(3.13)

The second term in (3.12) may be analyzed algebraically using func-
tional integrals or it may be analyzed diagrammatically. Choosing the lat-
ter approach, we draw two crosses corresponding to the factors φ4(x, τ)
and φ4(x′, τ ′) contained in 1

2〈S2
I 〉0:
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3.2 Diagrammatic rules for λφ4 theory 37

We then pair the lines as before. Counting in the factor one-half and all
the possible pairings, we obtain

1
2
× 3 ⊗ 3 +

6 × 6 × 2
2

+
4 × 3 × 2

2
(3.14)

Combining (3.13) and (3.14), we observe that all the disconnected dia-
grams cancel. We are thus left with

lnZ2 = 36 + 12 (3.15)

What is needed at some arbitrary order N in the perturbative expansion
of lnZI should now be clear. We formally expand in powers of λ:

lnZI =
∞∑

N=1

lnZN (3.16)

where lnZN is proportional to λN . The “finite-temperature Feynman
rules” at order N are:

1 Draw all connected diagrams.
2 Determine the combinatoric factor for each diagram.
3 Include a factor T

∑
n

∫
[d3p/(2π)3]D0(ωn,p) for each line.

4 Include a factor −λ for each vertex.
5 Include a factor (2π)3δ(pin − pout)βδωin,ωout for each vertex, correspond-

ing to energy(frequency)–momentum conservation. There will be one
factor β(2π)3δ(0) = βV left over.

We now understand why D is called a propagator: it propagates a
particle (or field) from one vertex to the next. We have illustrated the
cancellation mechanism only at second order. However, it is clear why
disconnected diagrams cancel. If, at some order, there existed a contribu-
tion that was the product of K connected diagrams then this contribution
would be proportional to V K . If we have done our job correctly, then lnZI

is an extensive quantity proportional to V and thus no such contribution
can arise.

The formal proof that in lnZI the disconnected diagrams cancel goes
as follows. From (3.3) and (3.5) we have

ZI =
∞∑
l=0

1
l!
〈Sl

I〉0 (3.17)

In general, 〈Sl
I〉0 can be written as a sum of terms, each of which is a

product of connected parts (see (3.14)). Denoting a connected part by a
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38 Interactions and diagrammatic techniques

subscript c, we may write

〈Sl
I〉0 =

∞∑
a1,a2,...=0

l!
a1!a2!(2!)a2a3!(3!)a3 · · · 〈SI〉a1

0c〈S2
I 〉a2

0c · · · δa1+2a2+3a3+··· ,l

(3.18)

The combinatoric factor takes into account indistinguishability, and the
Kronecker delta picks out the contribution of order λl. Substituting (3.18)
into (3.17) and summing over l eliminates the Kronecker delta:

ZI =
∞∑

a1,a2,...=0

〈SI〉a1
0c

a1!
〈S2

I 〉a2
0c

a2!(2!)a2
· · · = exp

( ∞∑
n=1

1
n!
〈Sn

I 〉0c
)

(3.19)

Hence lnZ1 is simply the sum of the connected diagrams.
As an example, let us apply these rules to the second diagram of (3.15).

We get

= βV (−λ2)T
∑
n1

∫
d3p1

(2π)3
· · ·T

∑
n4

∫
d3p4

(2π)3

× D0(ωn1 ,p1) · · · D0(ωn4 ,p4)(2π)3δ(p1 + · · · + p4)βδn1+···+n4,0

(3.20)

The evaluation of expressions such as (3.20) is not simple and will be
discussed in detail in Section 3.4. The diagrammatic technique is a conve-
nient means for keeping track of the combinatoric factors and the order of
the coupling constant in a perturbative expansion of the partition func-
tion. It circumvents much of the tedious algebra associated with the direct
evaluation of functional integrals.

3.3 Propagators

We shall define a finite-temperature propagator in position space by

D(x1, τ1;x2, τ2) = 〈φ(x1, τ1)φ(x2, τ2)〉 (3.21)

where the angle brackets denote an ensemble average. Owing to trans-
lation invariance, D depends only on x1 − x2 and τ1 − τ2. The Fourier
transform is, with x1 = x, x2 = 0, τ1 = τ , τ2 = 0,

D(ωn,p) =
∫ β

0
dτ

∫
d3x e−i(p·x+ωnτ)D(x, τ)

=
∑
n1,n2

∑
p1,p2

β

V
〈φ̃n1(p1) φ̃n2(p2)〉

∫ β

0
dτ

∫
d3x

× exp[i(p1 − p) · x] exp[i(ωn1 − ωn)τ ] (3.22)
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3.3 Propagators 39

The ensemble average vanishes by symmetric integration unless n1 = −n2,
p1 = −p2. Then

D(ωn,p) = β2〈φ̃n(p)φ̃−n(−p)〉 (3.23)

We remind the reader at this point of the concept of a functional deriva-
tive. Consider the integral

I = I[f ] =
∫

dxf(x)w(x)

where w(x) is some weight function and I is a functional of f(x), i.e., it
depends on the function f(x). The functional derivative of I with respect
to f(y) is

δI

δf(y)
= w(y)

The generalization to more complicated functionals of f(x) is immediate.
Recalling (3.3), (2.31), and (3.10), we discover that D(ωn,p) can be

expressed as a functional derivative of lnZ with respect to D0(ωn,p).
Then

D(ωn,p) = β2

∫
[dφ]eSφ̃n(p)φ̃−n(−p)∫

[dφ]eS

= −2
δ lnZ

δD−1
0

= 2D2
0

δ lnZ

δD0
(3.24)

Unless otherwise indicated, the symbol D will from now on refer to the
propagator in frequency–momentum space.

We define the self-energy Π(ωn,p) by

D(ωn,p) =
[
ω2
n + p2 + m2 + Π(ωn,p)

]−1

= (1 + D0Π)−1 D0 (3.25)

We shall see shortly that, in the absence of interactions, Π = 0 and D =
D0, the free-particle propagator. Using (3.25) and (3.24),

(1 + D0Π)−1 = 2D0
δ lnZ

δD0
(3.26)

Recall from (2.33) that

lnZ0 = 1
2

∑
n

∑
q

ln
[D0(ωn,q)β−2

]
(3.27)

Thus
δ lnZ0

δD0(ωn,p)
= 1

2D−1
0 (ωn,p) (3.28)
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40 Interactions and diagrammatic techniques

and so (3.26) becomes

(1 + D0Π)−1 = 1 + 2D0
δ lnZI

δD0
(3.29)

It is useful to consider the formal expansion of Π in a power series in λ:

Π =
∞∑
l=1

Πl (3.30)

Here Πl is ostensibly of order l in the coupling constant. Let us see how
(3.29) works at the first few orders. Expanding to first order, we obtain

1 −D0Π1 = 1 + 2D0
δ lnZ1

δD0

= 1 + 2D0
δ

δD0

(
3

)
= 1 + 12D0 (3.31)

Thus, differentiating lnZ1 with respect to D0 is equivalent to cutting
each line in the diagram, as inspection of (3.9) shows. A factor 2 appears
because we can choose either of the two lines in the “figure 8”. Thus

Π1 = −12 (3.32)

Continuing in this way, we seek the second-order contribution to Π.
Again differentiating (3.29) and keeping terms of order λ2, we obtain

−D0Π2 + D0Π1D0Π1 = 2D0
δ lnZ2

δD0

= 2D0
δ

δD0

(
36 + 12

)

= 144D0 + 96D0

+144D0 (3.33)

The term D0Π1D0Π1 on the left-hand side simply cancels the last diagram
on the right-hand side. Thus

Π2 = −144 − 96 (3.34)

The last diagram in (3.33) is one-particle reducible; that is, by cutting one
line we can break the diagram into two disconnected parts. The first two
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3.4 First-order corrections to Π and lnZ 41

diagrams in (3.33) are not of that form, they are one-particle irreducible
(1PI). It is apparent that the one-particle reducible diagrams arise from
the iteration of D0Π in the denominator of (3.29),

Π = −2
(
δ lnZI

δD0

)
1PI

(3.35)

where by 1PI we mean that only the 1PI diagrams contribute to Π. The
procedure is then as follows. First draw all diagrams which contribute
to lnZI up to a given order, then differentiate with respect to D0, and,
lastly, throw away the one-particle reducible diagrams. This yields the
diagrammatic expansion of Π.

3.4 First-order corrections to Π and lnZ

Let us evaluate the one-loop diagram in (3.32). It yields the expression

Π1 = 12λT
∑
n

∫
d3p

(2π)3
1

ω2
n + ω2

(3.36)

where ω2 = p2 + m2. We could do the frequency sum using (2.97), but
there is a more elegant method, which we sketch below.

Suppose we want to evaluate a frequency sum of the form

T

∞∑
n=−∞

f(p0 = iωn = 2πnTi) (3.37)

Here we think of p0 as the fourth component of a Minkowski four-vector.
We may express (3.37) as a contour integral,

T

2πi

∮
c
dp0f(p0)

1
2
β coth

(
1
2
βp0

)
(3.38)

where the contour C is as shown in the following figure:

p
0

C
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42 Interactions and diagrammatic techniques

The function 1
2β coth(1

2βp0) has poles at p0 = 2πnTi and is everywhere
else bounded and analytic. The contour can be deformed into

p
0

Then, with a suitable rearrangement of the exponentials in the hyperbolic
cotangent, we get

1
2πi

∫ −i∞−ε

i∞−ε
dp0f(p0)

(
−1

2
− 1

e−βp0 − 1

)
+

1
2πi

∫ i∞+ε

−i∞+ε
dp0f(p0)

(
1
2

+
1

eβp0 − 1

)
(3.39)

Setting p0 → −p0 in the first integral,

T

∞∑
n=−∞

f(p0 = iωn) =
1

2πi

∫ i∞

−i∞
dp0

1
2

[f(p0) + f(−p0)]

+
1

2πi

∫ i∞+ε

−i∞+ε
dp0 [f(p0) + f(−p0)]

1
eβp0 − 1

(3.40)

This expression is correct as long as f(p0) has no singularities along the
imaginary p0 axis. The frequency sum then naturally separates into a
temperature-independent part (the vacuum part) and a part contain-
ing the Bose–Einstein distribution (the matter part). In some sense, the
replacement of frequency sums by contour integrals, as in (3.40), is equiv-
alent to switching from imaginary time (discrete frequencies in Euclidean
space) to real time (continuous energies in Minkowski space). However
this is only a matter of mathematical convenience and involves no new
physics.

Using (3.40), Π1 can now be evaluated. With f(p0) = −1/(p2
0 − ω2) we

obtain

Π1 = Πvac
1 + Πmat

1 (3.41)
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3.4 First-order corrections to Π and lnZ 43

where

Πvac
1 = 12λ

∫
d4p

(2π)4
1

p2
4 + p2 + m2

Πmat
1 = 12λ

∫
d3p

(2π)3
1
ω

1
eβω − 1

For Πvac
1 we have simply defined p4 = ip0 and d4p = dp4d

3p, with p4 inte-
grated from −∞ to ∞. This is the standard result of T = 0 field theory in
four Euclidean dimensions. For Πmat

1 , we have closed the contour about
the only pole in the right-hand half-plane, located at p0 = ω. There is
no surface contribution since the integrand falls off sufficiently rapidly as
|p0| → ∞.

The vacuum contribution to Π is actually divergent. This divergence
needs to be regulated. The most straightforward way of doing this is to
place a high-momentum cutoff, Λc, on p ≡

√
p2
4 + p2. Since the solid angle

subtended by a hypersphere in n dimensions is Ωn = 2πn/2[Γ(n/2)]−1, we
get

Πvac
1 =

3λ
2π2

∫ Λc

0

p3dp

p2 + m2
=

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c + m2

m2

)]
→ 3λ

4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)]
(3.42)

where the arrow indicates that terms that vanish as Λc → ∞ have been
dropped. At T = 0, the inverse propagator to first order in λ is

D−1(p4,p) = p2
4 + p2 + m2 + Πvac

1 (3.43)

In order to avoid a divergent mass we add a counterterm −1
2δm

2φ2 to the
Lagrangian. Treating this as an additional interaction, we see from (3.4)
and (3.5) that to lowest order this counterterm contributes to lnZI as

−1
2δm

2〈φ2〉0 = −1
2 (3.44)

The cross represents δm2. The corresponding contribution to the self-
energy is, from (3.35),

= δm2 (3.45)

Adding (3.45) to (3.42) we obtain the renormalized self-energy. We choose
the counterterm so that

Πvac,ren
1 =

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)]
+ δm2 = 0 (3.46)
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44 Interactions and diagrammatic techniques

Then m remains as the physical mass of the particle. More generally, we
expand δm2 in a power series in λ:

δm2 =
∞∑
n=1

cn(Λc)λn (3.47)

and determine coefficients such that Πvac,ren(p2 = M2) = 0 at each order
in perturbation theory, at some arbitrary subtraction point M . This is
part of the renormalization program, which is outside the scope of this
book. The relevance of the renormalization group at finite temperature
and chemical potential is discussed briefly in Chapter 4.

The complete renormalized self-energy at T > 0 at first order in λ is
then

Πren
1 = 12λ

∫
d3p

(2π)3
1
ω

1
eβω − 1

→ λT 2 (3.48)

where the arrow indicates its value as m → 0. Notice that Πren
1 is finite

and vanishes when T = 0. It is also momentum independent, but this is
not generally true for higher-order diagrams.

Next we calculate the lowest-order correction to lnZ. It is

3 − 1
2 = −3λβV

(
T
∑
n

∫
d3p

(2π)3
D0(ωn,p)

)2

− 1
2βV δm2T

∑
n

∫
d3p

(2π)3
D0(ωn,p)

= −3λβV
(∫

d3p

(2π)3
1
ω

1
eβω − 1

)2

+
3λβV
256π4

Λ4
c

[
1 −

(
m2

Λ2
c

)
ln
(

Λ2
c

m2

)]2

(3.49)

The last term is a (divergent) contribution to the zero-point energy and
pressure of the vacuum (at T = 0, P = lnZ/βV = −E/V ). Since only
pressure and energy differences are physically measurable, this term does
not contribute to the finite-temperature pressure. If we agree to normalize
the vacuum pressure and energy density to zero then the physical pressure
contribution at order λ is

P1 = −3λ
(∫

d3p

(2π)3
1
ω

1
eβω − 1

)2

(3.50)
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When m = 0 and λ � 1 then, from (2.40) and (3.50),

P = T 4

(
π2

90
− λ

48
+ · · ·

)
(3.51)

The pressure should be proportional to T 4 by dimensional analysis.
In these calculations, no new ultraviolet (high-momentum or short-

distance) divergences appear at finite temperature. All such divergences
are already present at T = 0; whatever regulation and renormalization is
necessary at T = 0 is sufficient at T > 0 as well. This can be understood
in three alternative ways. (i) We construct a complete set of states that
are eigenstates of the Hamiltonian with energies ES . In practice, for an
interacting field theory this is usually impossible, but let us imagine it
has been done. Then the partition function is obtained directly as

Z =
∑
S

e−βES (3.52)

and no new T > 0 divergences can arise. (ii) We go back to the transition
amplitude (2.16) and compute this quantity as a function of tf . To obtain
the thermodynamic partition function we simply analytically continue
from real to imaginary time. (iii) We recall that in the diagrammatic
expansions each internal loop involves a frequency sum. The frequency
sum can be expressed as a sum of contour integrals, one corresponding
to T = 0 and the other to T > 0; see (3.40). The vacuum integral can
give rise to quadratic or logarithmic ultraviolet divergences. The finite-
temperature integral is cut off exponentially in the ultraviolet region by
the Bose–Einstein distribution. That is to say, the very-short-distance
behavior of the theory is unaffected by finite temperature.

3.5 Summation of infrared divergences

The next-order contribution to lnZ when m = 0 is actually of order λ3/2

and not λ2 because of a finite-temperature infrared divergence in the per-
turbative expansion. To see this, consider the second diagram in (3.15).
To study its infrared structure, let n1 = n2 = n3 = n4 = 0 and p1 ∼ p2 ∼
p3 ∼ p4 ∼ p. In the limit p → 0 this diagram behaves like βV λ2T 3dp,
which is infrared convergent. The first diagram in (3.15) has an entirely
different structure. Each of the two end loops is proportional to Π1. Set-
ting n = 0 in the middle loop and letting p denote the three-momentum
flowing in that loop, we find that the behavior is βV Π2

1Tdp p
−2. This is

infrared (small-p) divergent. This divergence is unrelated to the ultra-
violet divergences of the field theory at T = 0. This new divergence at
T > 0, when m = 0, is due to the fact that Π1 
= 0. The boson develops
a dynamically generated mass-squared, m2

eff = Πren
1 = λT 2. However, we
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46 Interactions and diagrammatic techniques

are expanding perturbatively with a propagator that has zero mass. The
dynamically generated mass should then damp the infrared divergence.

At order λN it is easy to see that the dominant infrared divergent
diagram is

(2 × 3!)N

2N
(N loops) ∼ βV ΠN

1 Tdp p−2(N−1) (3.53)

The combinatoric factor arises as follows: a factor 3! for two connecting
lines at each vertex; a factor 2 for the connection of the remaining two
lines at each vertex to the adjacent vertices; a factor (N − 1)!/2 giving
the number of ways to order the vertices in a circle; and a factor 1/N !
coming from SN

I /N !. We see that the divergence becomes more and more
severe at each successive order. Because of the similarity in structure, it
is possible to sum this infinite series of diagrams. Summing from N = 2
to ∞ we get

1
2βV T

∑
n

∫
d3p

(2π)3

∞∑
N=2

1
N

[−Π1(ωn,p)D0(ωn,p)]N

= 1
2

⎡⎣1
2 − 1

3
+ · · ·

⎤⎦
= −1

2βV T
∑
n

∫
d3p

(2π)3
[ln(1 + Π1D0) − Π1D0] (3.54)

This set of diagrams is sometimes called the set of ring, correlation, or
plasmon diagrams in the literature (Gell-Mann and Brueckner) [1]. A
more complete summation of the sub-dominant infrared divergent dia-
grams actually yields the full self-energy in (3.54) instead of the self-energy
calculated to first order.

In obtaining (3.54) we summed only the diagrams from (3.53). In addi-
tion, there will be diagrams like (3.53) except that any number of the
exterior loops are replaced by crosses corresponding to the mass counter-
term δm2. Including those as well (this is left as an exercise), the factor
Π1 in (3.54) is replaced by Πren

1 = λT 2:

−1
2βV T

∑
n

∫
d3p

(2π)3

[
ln
(

1 +
λT 2

ω2
n + p2

)
− λT 2

ω2
n + p2

]
=

βV

12π
λ3/2T 4 + · · ·

(3.55)

The λ3/2 term arises solely from the n = 0 mode, which yields the domi-
nant infrared divergence. The n 
= 0 modes produce higher-order correc-
tions in λ. The origin of this nonanalyticity in λ is the fact that the boson
acquires a mass proportional to λ1/2T . The weak coupling expansion for

https://doi.org/10.1017/9781009401968.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.004


3.6 Yukawa theory 47

the pressure is thus

P =
π2

90
T 4

[
1 − 15

8

(
λ

π2

)
+

15
2

(
λ

π2

)3/2

+ · · ·
]

(3.56)

A nonanalyticity in the couplings of this type is also found in QED and
QCD. It is good to see how this happens in a simpler theory such as λφ4

first.
The same nonanalyticity should also be expected in Π because of the

close relationship between Π and ZI, as expressed in (3.35). The dominant
infrared contribution at order λN comes from the diagram

−(2 × 3!)N (N − 1 loops)

= 12λT
∑
n

∫
d3p

(2π)3
[−Π1(ωn,p)]N−1 DN

0 (ωn,p) (3.57)

Summing (3.57) from N = 1 to ∞, we obtain

Π = 12λT
∑
n

∫
d3p

(2π)3
1

ω2
n + p2 + Π1

= −12

D1

(3.58)

which has the nice interpretation that the free propagator is replaced by
the first-order-corrected propagator D1 in the one-loop self-energy dia-
grams. Actually, we are suppressing all other similar diagrams involving
the replacement of Π1 by δm2, just as in (3.54). Taking into account
the mass counterterms simply replaces Π1 by Π1 + δm2 = Πren

1 in (3.58).
Recalling (3.41) leads to

Πren
1 = λT 2

[
1 − 3

(
λ

π2

)1/2

+ · · ·
]

(3.59)

Thus there is a term in the self-energy of order λ3/2, just as in lnZI.

3.6 Yukawa theory

The simplest theory involving interacting fermions is one in which
fermions are coupled to a neutral field by the Yukawa interaction

LI = gψ̄ψφ (3.60)
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48 Interactions and diagrammatic techniques

The perturbation expansion in this case proceeds as in the previous sec-
tions with only a few changes. Since

SI =
∫ β

0
dτ

∫
d3xLI(x, τ) (3.61)

is linear in φ, it follows that 〈Sl
I〉 = 0 if l is odd. Here the expansion of

lnZ is formally an expansion in g2. The lowest-order correction to lnZ0

is

lnZ2 = 1
2〈S2

I 〉0 = 1
2g

2

∫
dτ1dτ2

∫
d3x1d

3x2

∑
n1,...,n4

∑
l1,l2

∑
p1,...,p4

∑
q1,q2

β

V 3

× exp[i(q1 + p3 − p1) · x1] exp[i(q2 + p4 − p2) · x2]

× exp[i(ωl1 + ωn3 − ωn1)τ1] exp[i(ωl2 + ωn4 − ωn2)τ2]
A

B
(3.62)

where

A =
∏
α,n,l

∏
p,q

∫
d ˜̄ψα;n(p)dψ̃α;n(p)dφ̃l(q)

× eS0 ˜̄ψρ;n1(p1)ψ̃ρ;n3(p3) ˜̄ψγ;n2(p2)ψ̃γ;n4(p4)φ̃l1(q1)φ̃l2(q2)

and

B =
∏
α,n,l

∏
p,q

∫
d ˜̄ψα;n(p)dψ̃α;n(p)dφ̃l(q)eS0

Furthermore,

S0 = β
∑
n

∑
p

˜̄ψα;n(p)G−1
0 (ωn,p)αρψ̃ρ;n(p)

− 1
2β

2
∑
n

∑
p

φ̃n(p)D−1
0 (ωn, p)φ̃−n(−p) (3.63)

The free-particle fermion propagator G0 is defined, in analogy to the free-
particle boson propagator, as

G−1
0 (ωn,p) =
p−M (3.64)

Here p0 ≡ iωn + μ, M is the fermion mass, and m is the boson mass (see
(2.91)). We have changed our variable of integration from iψ† to ψ̄, which
is conventional.

The integration over the spatial and temporal coordinates in (3.62) can
be done immediately. It leads to an overall factor of β2V 2 and to the
constraints

p1 = p3 + q1 p2 = p4 + q2 n1 = n3 + l1 n2 = n4 + l2 (3.65)
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3.6 Yukawa theory 49

The integration over the scalar field leads to the constraints

q2 = −q1 l2 = −l1 (3.66)

The integration over the spinor field leads to either of the following
constraints:

p1 = p3 p2 = p4 n1 = n3 n2 = n4

or
p1 = p4 p2 = p3 n1 = n4 n2 = n3 (3.67)

These two possibilities lead to two topologically distinct diagrams:

lnZ2 = 1
2 − 1

2 (3.68)

The first of these represents

1
2βV

g2

m2

(
T
∑
n

∫
d3p

(2π)3
TrG0(ωn,p)

)2

(3.69)

and the second represents

−1
2βV g2T 2

∑
n1n2

∫
d3p1d

3p2

(2π)6

×Tr[G0(ωn1 ,p1)D0(ωn2 − ωn1 ,p2 − p1)G0(ωn2 ,p2)] (3.70)

The solid lines represent fermions and the broken lines represent bosons.
The arrows on the fermion lines indicate the flow of fermion number
and follow from the fact that in (3.62) a ψ̄ must always be matched to
a ψ to get a nonzero contribution. The trace operation in (3.69) and
(3.70) is over the Dirac indices. The minus sign in (3.70) comes from
anticommuting the fermion fields (which are Grassmann variables) to put
them into the canonical ordering of (2.80) and (2.81). The boson line in
the first diagram carries zero frequency and momentum and gives rise to
the factor D0(0,0) = m−2. The reader is encouraged to verify that indeed
(3.68)–(3.70) follow directly from the functional integral of (3.62).

The “finite-temperature Feynman rules” are similar to those listed in
Section 3.2. The new aspects are:

1 There is a factor T
∑

n

∫
[d3p/(2π)3]G0(ωn,p) for each fermion line.

2 There is a factor g at each vertex.
3 There is a trace over Dirac indices for each closed fermion loop as well

as a minus sign coming from the Grassmann nature of the fermion field.
4 All connected diagrams are constructed from the following elementary

vertex:
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It turns out that the one-particle reducible diagrams (one of which
is seen in (3.68)) arise from the fact that the scalar field φ develops a
nonzero thermal average. It is in some sense analogous to a Bose–Einstein
condensate. This condensate is however driven by the interaction with the
fermions. All such diagrams can be summed by the use of the mean field
expansion. This will be illustrated in later chapters.

The frequency sum for fermions can be converted to contour integrals
in a manner closely paralleling the procedure for bosons. The fermion
propagator depends on the combination p0 = iωn + μ with ωn = (2n +
1)πT . A straightforward analysis yields

T
∑
n

f(p0 = iωn + μ) = − 1
2πi

∫ i∞+μ+ε

−i∞+μ+ε
dp0 f(p0)

1
eβ(p0−μ) + 1

− 1
2πi

∫ i∞+μ−ε

−i∞+μ−ε
dp0 f(p0)

1
eβ(μ−p0) + 1

+
1

2πi

∮
C
dp0 f(p0) +

1
2πi

∫ i∞

−i∞
dp0 f(p0)

(3.71)

The contour C is as shown in the following figure:

-- i

p
0

C

i

0 μ

The first two terms in (3.71) correspond to particle and antiparticle con-
tributions and vanish at T = 0. The third term is T -independent and gives
the T = 0 finite-density contribution. The last term is the vacuum contri-
bution.
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The boson self-energy Π is still defined by (3.25) and still satisfies (3.35).
From (3.68) the lowest-order diagram is

Π2 = (3.72)

The fermion self-energy Σ is defined by the equation

G−1 = G−1
0 + Σ =
p−M + Σ(ωn,p) (3.73)

In position space, the full fermion propagator is defined by

G(x1 − x2, τ1 − τ2) =
〈
Tτ

[
ψ̄(x1, τ1)ψ(x2, τ2)

] 〉
(3.74)

where the angle brackets denote the exact ensemble average. It can be
shown that the analog of (3.35) is

Σ =
δ lnZI

δG0
(3.75)

From (3.68) the lowest-order diagrams are

Σ2(ωn,p) = − (3.76)

Explicit evaluations of loop diagrams involving fermions will be taken
up in the later chapters on theories that represent nature.

3.7 Remarks on real time perturbation theory

The perturbative treatment discussed up to now has been in the so-called
imaginary time formalism. The functional integral representation of the
partition function involves an integration over “imaginary time” from 0
to β. A Fourier decomposition of the fields leads to a discrete frequency
sum; for bosons ωn = 2πnT and for fermions ωn = (2n + 1)πT .

The one-loop expression in (3.41) can be written alternatively as

Π1 = 12λ
∫ ∞

−∞
d3p

(2π)3

∫ ∞

−∞
dp0

2π

(
i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2)
)

(3.77)

This has the interpretation that the propagator consists of the sum of
a vacuum part and a finite-temperature part. Instead of a summation
over discrete frequencies there is an integration over a real, continuous,
energy p0. Because of the presence of the Dirac delta function, the finite-
temperature contribution is trivial to obtain.
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The above suggests the possibility of a “real time” perturbation theory.
The rules of Section 3.2 could perhaps be modified according to

T
∑
n

→
∫ ∞

−∞
dp0

2π

1
ω2
n + ω2

→ i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2) (3.78)

βδωin,ωout → 2πδ(p0
in − p0

out)

The advantage would be that no frequency sums need to be done. The
finite-temperature contributions are naturally separated. In addition, the
Green’s functions so obtained are functions of real Minkowski momenta
pμ, which facilitates certain applications such as linear response analyses,
discussed in Chapter 6.

Unfortunately, there are cases where the simple substitution (3.78) does
not work [2]. As an example, consider a massive boson field with a cubic
self-interaction. The one-loop self-energy diagram is

Π(k) = (3.79)
k k

The (unrenormalized) self-energy evaluated at zero four-momentum
(k = 0) is

T
∑
n

∫
d3p

(2π)3
1

(ω2
n + ω2)2

(3.80)

This expression is logarithmically divergent in the ultraviolet regime
(|p| → ∞), but this divergence is regulated by the usual T = 0 countert-
erm; no new T > 0 divergences appear. If we perform the substitution
(3.78) we obtain

∫ ∞

−∞

dp0

2π

∫
d3p

(2π)3

(
i

p2 −m2 + iε
+

2π
eβ|p0| − 1

δ(p2 −m2)
)2

(3.81)

There is now a severe mathematical singularity owing to the square of the
delta function. The expression (3.81) is ill-defined.

It is possible to formulate a real time perturbation theory reminiscent of
(3.78) [3, 4]. Essentially, the number of independent fields doubles. Instead
of a single scalar field φ, we encounter two scalar fields, φ1 and φ2, called
type-1 and type-2 fields. The propagator becomes a 2 × 2 matrix even
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though the bosons are neutral and have no spin. The propagator is

D =
(

cosh θ sinh θ
sinh θ cosh θ

)⎛⎜⎝
i

p2 −m2 + iε
0

0
−i

p2 −m2 − iε

⎞⎟⎠( cosh θ sinh θ
sinh θ cosh θ

)

=

⎛⎜⎝
i

p2 −m2 + iε
0

0
−i

p2 −m2 − iε

⎞⎟⎠
+

2π
eβ|p0| − 1

δ(p2 −m2)
(

1 −eβ|p0|/2

−eβ|p0|/2 1

)
(3.82)

There are two types of vertex. A type-1 vertex has only type-1 fields
emerging from it and has its usual value, while a type-2 vertex has only
type-2 fields emerging from it and has a value opposite in sign to its type-1
counterpart. For example, for a cubic coupling,

1

1

1

= −2

2

2

The ultimate reason for this field doubling is to avoid singularities of the
type that arise in (3.81). Explicit calculations show the cancellation aris-
ing from the two components. In this regard, the delta function appearing
in (3.82) is represented as

δ(p2 −m2) = lim
ε→0

1
π

ε

(p2 −m2)2 + ε2
(3.83)

Similar field doublings appear for spin-1/2 fermions and for spin-1 vector
bosons.

It is interesting that perturbation theory at finite temperature can be
formulated directly in real time as well as in imaginary time. Our prefer-
ence is for the imaginary time formalism and this is the one adopted in
this book.

3.8 Exercises

3.1 Derive the diagrammatic rules for the neutral scalar field with a
cubic self-interaction gφ3 in 5 + 1 dimensions. Derive the lowest-
order diagrams for lnZI and Π.

3.2 Derive (3.35) to all orders.
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54 Interactions and diagrammatic techniques

3.3 Show that 1
2β coth (1

2βp0) has simple poles at p0 = 2πnTi with
residue 1 and is elsewhere analytic and bounded.

3.4 Show that Π1 is replaced by Πren
1 = Π1 + δm2 in (3.54) when the

corresponding diagrams with counterterms are included.
3.5 Show that (3.59) follows from (3.41) when λ � 1.
3.6 Prove (3.71).
3.7 Prove (3.75).
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