
Canad. J. Math. Vol. 70 (4), 2018 pp. 925–942
http://dx.doi.org/10.4153/CJM-2017-028-0
©Canadian Mathematical Society 2017

Edge-Maximal Graphs on Surfaces

Colin McDiarmid and David R. Wood

Abstract. We prove that for every surface Σ of Euler genus g, every edge-maximal embedding of a
graph in Σ is at most O(g) edges short of a triangulation of Σ. _is provides the ûrst answer to an
open problem of Kainen (1974).

1 Introduction

For a graph class G, a graph G ∈ G is edge-maximal if adding any non-edge to G
produces a graph not in G. We emphasise that “graph” here means a simple graph
with no parallel edges and no loops. A graph class G is pure if ∣E(G)∣ = ∣E(H)∣ for
all edge-maximal graphs G ,H ∈ G with ∣V(G)∣ = ∣V(H)∣. For example, each of the
following graph classes is pure: forests, outerplanar graphs, planar graphs; and for
each positive integer k, the k-degenerate graphs, the graphs of treewidth at most k,
and the chordal graphs with clique number at most k + 1 (where the last two classes
have the same edge-maximal members, the k-trees). On the other hand, toroidal
graphs are not pure: [2] proved that K8 − E(C5) is an edge-maximal toroidal graph
but is not a toroidal triangulation (see Figure 1).

Motivated by this example, Kainen [4] posed the following open problem: by how
many edges can an edge-maximal graph embeddable in a given surface fail to be a tri-
angulation? _is paper addresses this natural question, which surprisingly has been
ignored in the literature. We prove that for every surface Σ of Euler genus g, every
edge-maximal graph embeddable in Σ is O(g) edges short of a triangulation (regard-
less of the number of vertices).

We formulate this result as follows. A graph classG is k-impure if ∥E(G)∣−∣E(H)∥ ⩽
k for all edge-maximal graphs G ,H ∈ G with ∣V(G)∣ = ∣V(H)∣. _us, G is 0-impure
means that it is pure. We introduce this notation as a measure of how far G is from
being pure. For h ⩾ 0, let Sh be the sphere with h handles. For c ⩾ 0, let Nc be the
spherewith c cross-caps. Every surface is homeomorphic to Sh orNc . _e Euler genus
of Sh is 2h. _e Euler genus of Nc is c. _e Euler genus of a graph G is theminimum
Euler genus of a surface in which G embeds. See [8] for deûnitions and background
regarding graphs embedded in surfaces. _e following is our main theorem; see_e-
orems 3.3 and 3.4 for fuller forms of this result.

_eorem 1.1 _e class of graphs embeddable in a surface Σ of Euler genus g is
O(g)-impure.
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Figure 1: An embedding of K8 − E(C5) in the torus. Every such embedding has one 4-face,
which induces K4 , so no non-edge can be added.

To add some perspective to this result, note that several interesting graph classes
are not at all pure. Consider, for example, the K5-minor-free graphs. _e 8-vertex
Mobius ladder W is K5-minor-free with 12 edges. Pasting copies ofW on edges (in
an arbitrary way) produces a K5-minor-free graph with n ≡ 2 (mod 6) vertices and
(11n − 16)/6 edges (see Figure 2). It is edge-maximal with no K5-minor by Wagner’s
characterisation [16]. On the other hand, every n-vertex edge-maximal planar graph
is edge-maximal with no K5-minor, yet has 3(n − 2) edges for n ⩾ 3. _us, the diòer-
ence between the numbers of edges in these two classes of edge-maximal K5-minor-
free graphs grows with n, and indeed is Ω(n). In general, Kt-minor-free graphs can
have asmany as ct

√
log t n edges [5,13,14], but there are edge-maximalKt-minor-free

graphs, namely (t − 2)-trees, with only (t − 2)n − (t−1
2 ) edges (for n ⩾ t − 1).

Figure 2: Pasting copies ofW .

Let GH denote the class of graphs not containing H as a minor. McDiarmid and
Przykucki [6] proved that (ignoring K1) the only connected graphs H such that GH
is pure are K2, K3, K4, and P3 (the 3-vertex path). Furthermore, for each connected
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graph H, either GH is k-impure for some k, or there are n-vertex graphs Gn and G′
n

in GH such that ∣E(Gn)∣ − ∣E(G′
n)∣ is Ω(n).

2 Main Proof

An embedding of a graph G in a surface is edge-maximal if for every non-edge e of
G, it is not possible to add e to the embedding (without changing the embedding of
G or creating parallel edges or loops). Observe that an embedding of a graph G in a
surface is edge-maximal if and only if for each face F, the set of vertices on F induce
a clique in G. Also note that a graph G is edge-maximal embeddable in a surface Σ
if and only if every embedding of G in Σ is edge-maximal. Wementioned above that
_eorems 3.3 and 3.4 give fuller forms of _eorem 1.1; in fact, they concern edge-
maximal embeddings (as well as giving explicit constants). _e distinction between
edge-maximal embeddings and edge-maximal embeddable graphs is exempliûed by
the following fact. An embedding is cellular (or 2-cell) if each face is homeomorphic
to an open disc.

Proposition 2.1 For each surface Σ, there are inûnitelymany planar graphs, eachwith
an edge-maximal cellular embedding in Σ.

Proof First suppose that Σ = Ng . LetG0 be a triangulation of the spherewith at least
g faces. Say F1 , . . . , Fg are distinct faces of G0. Note that K4 has a cellular embedding
in the projective planewith two triangular faces and one face of length 6 (see Figure 3).
Let Q1 , . . . ,Qg be g copies of this embedding of K4. For i ∈ [1, g], identify Fi with
a triangular face of Q i . We obtain a graph G embedded in Ng , in which each face
induces a clique. _us, this embedding of G is edge-maximal. Note that G is a planar
triangulation, since it is obtained fromG0 by simply adding a degree-3 vertex inside g
faces of G0. An analogous proof works for Σ = Sh , since K4 has a cellular embedding
in the torus with one triangular face and one face of length 9 (see Figure 3).

Figure 3: Embeddings of K4 in N1 and S1 .
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A pseudograph is a graph possibly with parallel edges and loops. A (pseudograph)
triangulation is a cellular embedded (pseudo)graph in which each face has length ex-
actly 3. Euler’s formula implies that every pseudograph with n ⩾ 3 vertices that em-
beds in a surface of Euler genus g such that each face has length at least 3 has at most
3(n + g − 2) edges, with equality if and only if the embedding is a pseudograph tri-
angulation. Of course, every face in an embedding of a graph (with at least three
vertices) has length at least 3. _us, every graph with n ⩾ 3 vertices that embeds in
a surface of Euler genus g has at most 3(n + g − 2) edges, with equality if and only
if the embedding is a triangulation. Also note that Euler’s formula implies that every
bipartite graph with n ⩾ 3 vertices that embeds in a surface of Euler genus g has at
most 2(n + g − 2) edges. We implicitly use these facts throughout the paper.

Given an embedding of an n-vertex graph in a surface Σ of Euler genus g (where
n+ g ⩾ 3),we can add edges (if necessary) to obtain a pseudograph triangulationwith
exactly 3(n+g−2) edges. Moreover, note as an aside that if n ⩾ 3, thenwe do not need
loops, as shown in Proposition 4.1. When we say that an edge-maximal embedding
in Σ or an edge-maximal graph embeddable in Σ is “k edges short of a triangulation”,
wemean that it has exactly 3(n + g − 2) − k edges.

We need the following lemmas about edge-maximal embeddings. _e ûrst says
that we can restrict our attention to cellular embeddings.

Lemma 2.2 Let c ⩾ 3, and assume that for every g and every surface Σ of Euler
genus g, every edge-maximal cellular embedding in Σ is at most cg edges short of a
triangulation of Σ. _en for every g and every surface Σ of Euler genus g, every edge-
maximal embedding in Σ is at most cg edges short of a triangulation of Σ

Proof Consider an edge-maximal embedding of a graphG in some surface Σ of Eu-
ler genus g. _is embedding deûnes a combinatorial embedding of G, which corre-
sponds to a cellular embedding in some surface Σ′ of Euler genus g′ ⩽ g. If a non-edge
of G can be added to this embedding in Σ′, then the same non-edge can be added to
the original embedding in Σ. Since the embedding in Σ is edge-maximal, so too is the
embedding in Σ′. By assumption, G is at most cg′ edges short of a triangulation in
Σ′. _at is,

∣E(G)∣ ⩾ 3( ∣V(G)∣ + g′ − 2) − cg′ = 3( ∣V(G)∣ − 2) − (c − 3)g′

⩾ 3( ∣V(G)∣ − 2) − (c − 3)g = 3( ∣V(G)∣ + g − 2) − cg .
_at is, G is at most cg edges short of a triangulation in Σ.

For a vertex v in a graph G, let N(v) ∶= {w ∈ V(G) ∶ vw ∈ E(G)} be the open
neighbourhood of v and let N[v] ∶= N(v) ∪ {v} be the closed neighbourhood of v.

Lemma 2.3 Every graph G with n ⩾ 4 vertices that has an edge-maximal cellular
embedding in some surface is 3-connected.

Proof _e graph G is connected, since the embedding is edge-maximal and Euler
genus is additive on components and blocks [8]. If G contains a vertex v of degree 1
and vw is the edge incident to v, then w has a distinct neighbour, so the facial walk
startingwith vw is followed bywx for some x /∈ {v ,w}, and the edge vx can be added
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to G, contradicting the edge-maximality of the embedding of G. _us, G has min-
imum degree at least 2. Let πv denote the cyclic ordering of edges incident to each
vertex v in an embedding of G in Σ.

Suppose G contains a vertex v of degree 2. Let u andw be the neighbours of v. We
can assume that the edges uv and vw have signature +1. For clarity, observe that the
edge uw must be in G, since if not we could add it. Since G is connected and n ⩾ 4,
at least one of u and w, say w, has a neighbour not in {u, v ,w}. Consider the cyclic
order πw : if wu follows wv, then let wx be the edge preceding wv, otherwise, let wx
be the edge followingwv. Note that x is not in {u, v ,w}. We can add the edge vx,with
signature +1, as follows. Insert vx in πv a�er vw and insert xv in πx before xw. _e
original facial walk W starting xwvu . . . is replaced by two facial walks W1 = xwvx
andW2 = xvu . . ., whereW2 is obtained fromW by replacing the two-edge path xwv
by the single edge xv. By maximality, G has minimum degree at least 3.

We now prove that G is locallyHamiltonian; that is, for each vertex v the subgraph
induced on N(v) has aHamilton cycle. Without loss of generality, the edges incident
to v have signature +1. Let (vv1 , vv2 , . . . , vvd) be the cyclic ordering of the edges in-
cident to v, where d ⩾ 3. We claim that v1v2 . . . vd is a cycle. For suppose that say v1
and v2 are not adjacent. If F is the face with facial walk starting (v1v , vv2 , . . . ), then
we can add the edge v1v2 across F, which is a contradiction. _us G is locallyHamil-
tonian. Finally, every connected locally Hamiltonian graph is 3-connected. _is was
shown in [15, Proposition 7.1], but we give a proof here for completeness since it is
short. Clearly G cannot have a separating vertex. Suppose G has a separating pair of
vertices u, v. _us, V(G) ∖ {u, v} can be partitioned into two non-empty parts U
andW such that there are no U–W edges. _en v must have a neighbour a ∈ U and
b ∈ W (otherwise u is a separating vertex), and there are two internally disjoint ab-
paths in G − v (around a Hamilton cycle in N(v)). But both paths must go through
u, a contradiction. Hence G is 3-connected.

Lemma 2.4 Let G be a graph with at least four vertices that has an edge-maximal
cellular embedding in a surface. _en every non-triangular face contains four distinct
vertices that are consecutive on the facial walk. Furthermore, for each string of six ver-
tices that are consecutive on the facial walk, at least one of the three substrings of length
4 consists of distinct vertices.

Proof If a, b, c are consecutive vertices on a face F, then a, b, c are distinct, as oth-
erwise deg(b) = 1, which would contradict Lemma 2.3. _us, if F has length 4 or
5, then all the vertices on F are distinct, and we are done. Now assume that F has
length at least 6. Let v1 , . . . , v6 be consecutive vertices on F. If v1 = v4 and v2 = v5
and v3 = v6, then the sequence is v1 , v2 , v3 , v1 , v2 , v3, and the graph is K3 (embedded
in N1). Without loss of generality, v1 /= v4, implying that v1 , v2 , v3 , v4 are distinct.

We noted earlier that Euler genus is additive on components and blocks. _emain
tool used in our proof is the following, more general, additivity theorem, proved in-
dependently by several authors.
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_eorem 2.5 ([1, 7, 10]) If graphs G1 and G2 have at most two vertices in common,
then the Euler genus of G1 ∪ G2 is at least the Euler genus of G1 plus the Euler genus
of G2.

Say a sequence v1 , . . . , vs of vertices in a graph G is ordered if for each i ∈ [2, s],

∣N[v i] ∩ (
i−1
⋃
j=1

N[v j]) ∣ ⩽ 2.

_eorem 2.5 implies the following result.

Corollary 2.6 ([3,9]) If v1 , . . . , vs is an ordered sequence of vertices in a graph G, and
each N[v i] is a clique on at least ûve vertices, then the Euler genus of G is at least s.

We prove in (2.2) that given integers g ⩾ 0 and s ⩾ 1, there is an integer b such
that for every bipartite graph G with Euler genus at most g, if (A, B) is a bipartition
of G such that ∣B∣ > b and every vertex in B has degree at most 4, then B contains
an ordered sequence of s vertices. Let fg(s) be the least such integer b. We now give
some illustrative examples. Since one vertex forms an ordered sequence, fg(1) = 0 for
each g ⩾ 0. _e planar bipartite graph Q shown in Figure 4 has a colour class B with
three vertices, each pair of which has three common neighbours. _us, B contains
no ordered sequence of length 2. _us, f0(2) ⩾ 3. It is easily seen that f0(2) ⩽ 3
(using a straightforward adaptation of the proof of Lemma 3.1). _us, f0(2) = 3. Now
consider general g ⩾ 0. Ringel [11, 12] proved that the Euler genus of K3,2g+2 equals g.
If B is the colour class of degree-3 vertices in K3,2g+2, then each pair of vertices in B
has three common neighbours. _us, B contains no ordered sequence of length 2, and
fg(2) ⩾ 2g+2. Lemma 3.1 proves this inequality is tight for g ⩾ 1. _ese constructions
can be combined as follows. Fix g ⩾ 0 and s ⩾ 2. Let G be the graph obtained from
K3,2g+2 by adding s − 2 disjoint copies of Q. _en G has Euler genus g, and G has a
bipartition (A, B)where ∣B∣ = 2g+2+3(s−2), and every ordered sequence in B has at
most one vertex from each of the s − 1 components of G. _us B contains no ordered
sequence of length s, and

(2.1) fg(s) ⩾ 2g + 3s − 4.

_e next lemmamotivates the deûnition of fg(s).

Lemma 2.7 Every edge-maximal embedding of a graph G in a surface Σ of Euler
genus g ⩾ 1 is at most 5 fg(g + 1) − 1 edges short of a triangulation of Σ.

Proof Note that fg(g + 1) ⩾ 5g − 1 by (2.1), which implies that 5 fg(g + 1) − 1 ⩾ 3g.
_us, we can assume this embedding is cellular by Lemma 2.2. Let n ∶= ∣V(G)∣. If
n ⩽ 7g, then the number of edges in a triangulation, 3(n + g − 2), is at most 24g − 6 <
5(5g−1)−1 ⩽ 5 fg(g+1)−1 by (2.1), and the resultholds. Now assume that n ⩾ 7g+1 ⩾ 8.
By Lemma 2.3, G has minimum degree at least 3. We can assume the embed-

ding of G is not a triangulation. Let G′ be the embedded pseudograph obtained from
G as follows. Consider in turn each face F in G with length t ⩾ 4. We shall add
edges to G across F so that each of the resulting faces in G′ still contains at least four
distinct vertices. By Lemma 2.4, F contains four distinct consecutive vertices. Let
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Figure 4: _e graph Q.

(v0 , v1 , v2 , . . . , vt−1) be a facialwalk of F,where v0 , v1 , v2 , v3 are distinct. Add the edge
v0v i to G whenever i ≡ 3 (mod 5) and 3 ⩽ i ⩽ t − 5; this divides F into ⌊ t+2

5 ⌋ faces in
G′, each containing at least four distinct vertices (since v0 , v1 , v2 , v3 are distinct, and
every other face contains six consecutive vertices in F, and thus, by Lemma 2.4, has
at least four distinct vertices).
For each non-triangular face F ofG′, add a vertex inside F adjacent to four distinct

vertices of F. Let B be the set of these added vertices, and let G′′ be the resulting
embedded graph. Since the embedding of G is edge-maximal, each face of G induces
a clique. _us, NG′′[v] induces K5 for each v ∈ B.
Consider a non-triangular face F of length t in G. _en B contains exactly ⌊ t+2

5 ⌋
vertices corresponding to F. Note that t − 3 ⩽ 5⌊ t+2

5 ⌋− 1 edges are suõcient (and nec-
essary) to triangulate F. _us, the embedding ofG can be extended to a triangulation
by adding at most 5∣B∣ − 1 edges.

LetG′′′ be the induced bipartite subgraphofG′′with bipartition {B,∪v∈BNG′′(v)}.
By construction, G′′′ embeds in Σ and every vertex in B has degree 4.

Suppose for a contradiction that ∣B∣ > fg(g + 1). _us, B contains an ordered
sequence v1 , . . . , vg+1 in G′′. Since NG′′[v i] induces K5, by Corollary 2.6, the Euler
genus of G′′ is at least g + 1, which is a contradiction. _us, ∣B∣ ⩽ fg(g + 1). Hence G
is at most 5 fg(g + 1) − 1 edges short of a triangulation.

It remains to show how to ûnd ordered sequences. _e next lemma is useful.

Lemma 2.8 Fix an integer c ⩾ 7. LetG be a bipartite graphwith bipartition A, B and
with Euler genus at most g. If B is non-empty and ∣B∣ > 2c

c−6 (g − 2), then some vertex
in B has at most two neighbours with degree at least c.

Proof Let A′ be the set of vertices in Awith degree at least c. Suppose for a contra-
diction that every vertex in B has at least three neighbours in A′. Double-counting
the edges with endpoints in A′ and B gives c∣A′∣ ⩽ 2(∣A′∣ + ∣B∣ + g − 2) and 3∣B∣ ⩽
2(∣A′∣ + ∣B∣ + g − 2). Adding 2 times the ûrst inequality plus c − 2 times the second
inequality gives ∣B∣ ⩽ 2c

c−6 (g − 2), which is the desired contradiction.

We have the following recursive upper bound for fg(s).
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Lemma 2.9 For integers g ⩾ 1 and s ⩾ 2 and c ⩾ 7,

fg(s) ⩽ max{ 2c
c − 6

(g − 2), 2c − 3 + fg(s − 1)} .

Proof Let G be a bipartite graph with Euler genus at most g, where (A, B) is a bi-
partition of G such that ∣B∣ > max{ 2c

c−6 (g − 2), 2c − 3 + fg(s − 1)} and every vertex
in B has degree at most 4. Our goal is to show that B contains an ordered sequence of
s vertices. Since B is non-empty and ∣B∣ > 2c

c−6 (g − 2), by Lemma 2.8, some vertex vs
in B has at most two neighbours with degree at least c. If deg(vs) ⩽ 2 then let X ∶= ∅.
Otherwise, let X be the set of neighbours of vs other than two of highest degree. _us
∣X∣ ⩽ 2 and each vertex u ∈ X has degree at most c − 1. Let G′ be obtained from G
by deleting N[u] for each u ∈ X. Let A′ , B′ be the bipartition of G′ inherited from G.
Note that

∣B′∣ ⩾ ∣B∣ − (2c − 3) > max{ 2c
c−6 (g − 2), 2c − 3 + fg(s − 1)} − (2c − 3) ⩾ fg(s − 1).

_us, B′ contains an ordered sequence v1 , . . . , vs−1 in G′. By construction, vs has at
most two neighbours in G′. _us v1 , . . . , vs is an ordered sequence in G.

Since fg(1) = 0, Lemma 2.9 implies that for all integers c ⩾ 7 and s ⩾ 1,

(2.2) fg(s) ⩽ (2c − 3)(s − 2) +max{ 2c
c−6 (g − 2), 2c − 3} .

With any choice of c ⩾ 7, this implies that fg(g + 1) is O(g). Lemma 2.7 then implies
that every edge-maximal embedding in a surface Σ of Euler genus g is O(g) edges
short of a triangulation of Σ. _erefore the graphs embeddable in Σ areO(g)-impure,
which is themain result of this paper (_eorem1.1). For example,with c = 8 and g ⩾ 4,

fg(g + 1) ⩽ 13(g − 1) +max{8(g − 2), 13} = 21g − 29,

and by Lemma 2.7 every edge-maximal graph embeddable in a surface of Euler genus
g ⩾ 4 is at most 105g − 146 edges short of a triangulation.

3 Improving the Constants

Our proof of_eorem 1.1 shows that the class of graphs embeddable in a given surface
of Euler genus g ⩾ 4 is (105g − 146)-impure. In this section we shall improve this
bound; see_eorems 3.3 and 3.4. We ûrst give a precise result for ordered sequences
of length 2, improving on the bound in (2.2) with s = 2.

Lemma 3.1 fg(2) = 2g + 2 for g ⩾ 1.

Proof We proved above that K3,2g+2 shows that fg(2) ⩾ 2g + 2 for g ⩾ 1. We now
prove the corresponding upper bound.

Let G be a bipartite graph G with Euler genus at most g. Assume that (A, B) is a
bipartition of G such that every vertex in B has degree at most 4 and ∣B∣ ⩾ 2g + 3.
We claim that B contains an ordered sequence of two vertices. _at is, B contains two
verticeswith at most two common neighbours. Suppose for a contradiction that each
pair of vertices in B has at least three common neighbours.
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By adding degree-1 vertices in A, we can assume that every vertex in B has degree
exactly 4. Without loss of generality, A = ⋃b∈B N(b). We have 4∣B∣ ⩽ ∣E(G)∣ ⩽
2(∣A∣ + ∣B∣ + g − 2) implying ∣B∣ ⩽ ∣A∣ + g − 2 and ∣A∣ ⩾ (2g + 3) − (g − 2) = g + 5 ⩾ 6.

Let a, b ∈ B haveN(a) /= N(b). Let X = N(a)∩N(b) andY = N(a)∪N(b). _en
∣X∣ = 3 and ∣Y ∣ = 5. Let N(a) = X ∪ {a′} and N(b) = X ∪ {b′}. Since ∣A∣ ⩾ 6, there
is a vertex c ∈ B with N(c) not contained in Y . If a′ ∈ N(c), then ∣N(c) ∩ N(b)∣ ⩽ 2,
so a′ /∈ N(c); and similarly b′ /∈ N(c). Hence N(c) ∩ Y = X, so we can write N(c) =
X ∪ {c′}. Note that a′ , b′ , c′ are distinct and not in X, so we have symmetry between
(a, a′), (b, b′), and (c, c′).

Now for any v ∈ B,N(v) cannot contain {a′ , b′ , c′} (since then for example ∣N(v)∩
N(a)∣ ⩽ 2); so assume without loss of generality that c′ /∈ N(v). But then we must
have N(v)∩N(c) = X, and so N(v) contains X. We have shown that N(v) contains
X for each v ∈ B. But now the induced bipartite graphwith parts X and B is complete.
Hence 3∣B∣ ≤ 2(3 + ∣B∣ + g − 2), implying ∣B∣ ≤ 2g + 2 < 2g + 3. _is contradiction
completes the proof.

Lemmas 2.9 and 3.1 imply that for g ⩾ 1 and s ⩾ 2,

(3.1) fg(s) ⩽
⎧⎪⎪⎨⎪⎪⎩

2g + 2 if s = 2,
min{max{ 2cs

cs−6 (g − 2), 2cs − 3 + fg(s − 1)} ∶ cs ⩾ 7} if s ⩾ 3.

Fornon-orientable surfaces,Table 1 shows the optimal choice of c3 , . . . , cg+1 in (3.1)
for each value of g ⩽ 20, along with the corresponding lower bound on the number
of edges in an edge-maximal graph.

_e next lemma shows a method for choosing the constants cs in (3.1). All loga-
rithms are natural.

Lemma 3.2 Let λ = 25 − 11( 48332
114345 +

16
33 log 2) ≈ 16.6533 ⋅ ⋅ ⋅ to four decimal places.

_en for g ⩾ 2,

fg(g + 1) ⩽ λ(g − 2) + 2⌈
√

3
2 (g − 2)⌉ + 33.

Proof For i ⩾ 7, let

α i ∶=
∞
∑
j=i+1

12
( j − 7)( j − 6)(2 j − 3) .

_en
0.758757 ⋅ ⋅ ⋅ = α7 > α8 > α9 > ⋅ ⋅ ⋅ .

_ese numbers α i are used below to calculate the values cs in (3.1). For example,
α7 ≈ 0.76means that cs = 7 roughly for 0.76g ⩽ s ⩽ g, and α8 ≈ 0.30means that cs = 8
roughly for 0.30g ⩽ s ⩽ 0.76g. _is behaviour is evident in the lower rows of Table 1.
_e deûnition of α i is designed to minimise the “max” operation in (3.1).

We now upper bound αk . Since ( j − 6)(2 j − 3) ⩾ 2( j − 7)2 for j ⩾ 7,

αk =
∞
∑

j=k+1

12
( j − 7)( j − 6)(2 j − 3) ⩽

∞
∑

j=k+1

6
( j − 7)3 ⩽ ∫

∞

k+1

6
( j − 8)3 d j =

3
(k − 7)2 .
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Table 1: Number of edges in an edge-maximal graph embeddable in a non-orientable
surface.

g surface c3 , . . . , cg+1 impurity ⩽ ∣E(G)∣ ⩾
1 N1 19 3n − 22
2 N2 7 84 3n − 84
3 N3 7, 7 149 3n − 146
4 N4 8, 7, 7 224 3n − 218
5 N5 8, 8, 7, 7 299 3n − 290
6 N6 9, 8, 8, 7, 7 384 3n − 372
7 N7 9, 8, 8, 7, 7, 7 459 3n − 444
8 N8 10, 8, 8, 8, 7, 7, 7 534 3n − 516
9 N9 10, 9, 8, 8, 8, 7, 7, 7 619 3n − 598
10 N10 10, 9, 8, 8, 8, 8, 7, 7, 7 699 3n − 675
11 N11 11, 9, 8, 8, 8, 8, 8, 7, 7, 7 784 3n − 757
12 N12 11, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7 864 3n − 834
13 N13 11, 10, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7 944 3n − 911
14 N14 12, 10, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7 1024 3n − 988
15 N15 12, 10, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7 1109 3n − 1070
16 N16 12, 10, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7 1189 3n − 1147
17 N17 13, 10, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7 1269 3n − 1224
18 N18 13, 10, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7 1359 3n − 1311
19 N19 13, 11, 10, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7 1439 3n − 1388
20 N20 13, 11, 10, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7 1519 3n − 1465

With k ∶= ∣
√

3/2(g − 2)∣ + 7, we have

(k − 7)2 ⩾ 3/2(g − 2) and αk(g − 2) ⩽ 3/(k − 7)2(g − 2) ⩽ 2.

Let k be theminimum integer such that αk(g − 2) ⩽ 2. _us, k ⩽ ∣
√

3/2(g − 2)∣ + 7.
For i ∈ [7, k], deûne

β i ∶= ⌈α i(g − 2)⌉ and γ i ∶= β i − α i(g − 2).

We claim that βk = 2. If not, then αk(g − 2) ⩽ 1, implying

12
(k − 7)(k − 6)(2k − 3) = αk−1(g − 2) − αk(g − 2) > 2 − 1 = 1,

which has no solution. _us, βk = 2. Deûne β2g+2 ∶= 1.
For i ∈ [7, 2g + 2], deûne

L i ∶=
⎧⎪⎪⎨⎪⎪⎩

(β i + 1, β i + 2, . . . , β i−1) if i ∈ [8, 2g + 2],
(β7 + 1, β7 + 2, . . . , g + 1) if i = 7.
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_en L2g+2 , . . . , L7 is a partition of [2, g+ 1]. Deûne ℓ i ∶= ∣L i ∣. _en for i ∈ [8, 2g+2],

ℓ i = (α i−1 − α i)(g − 2) + (γ i−1 − γ i) =
12(g − 2)

(i − 7)(i − 6)(2i − 3) + (γ i−1 − γ i),(3.2)

ℓ7 = g + 1 − β7 = g + 1 − α7(g − 2) − γ7 = (1 − α7)(g − 2) − γ7 + 3.(3.3)

It may be that ℓ i = 0 for some values of i. (For example, that there is no 12 in
c3 , . . . , cg+1 in the ûnal row of Table 1 corresponds to ℓ12 = 0.) If ℓ i > 0 and i < 2g + 2,
then let i∗ ∶= min{ j > i ∶ ℓ j > 0}. Since ℓ2g+2 > 0, this iswell deûned. Note that ℓ j = 0
for j ∈ [i + 1, i∗ − 1] and β i∗ + ℓ i∗ = β i . For s ∈ [2, g + 1], there is a unique integer i
such that ℓ i > 0 and s ∈ L i , in which case deûne cs ∶= i. _us, cs ⩾ 7. Note that s can
be uniquely written s = β i + z for some i ∈ [7, 2g +2]with ℓ i > 0 and z ∈ [1, ℓ i]. _ese
deûnitions are summarised as follows:

L2g+2 = (2 = β2g+2 + 1),
L2g+1 = ∅,

⋮
Lk+1 = ∅,
Lk = (3 = βk + 1, βk + 2, . . . , βk + ℓk = βk−1),
⋮

L i∗ = (β i∗ + 1, β i∗ + 2, . . . , β i∗ + ℓ i∗ = β i),
L i∗−1 = ∅,

⋮
L i+1 = ∅,
L i = (β i + 1, β i + 2, . . . , β i + ℓ i = β i−1),
⋮

L8 = (β8 + 1, β8 + 2, . . . , β8 + ℓ8 = β7),
L7 = (β7 + 1, β7 + 2, . . . , β7 + ℓ7 = g + 1).

Deûne

f ′g(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

2g + 2 if s = 2,
max{ 2cs

cs−6 (g − 2), 2cs − 3 + f ′g(s − 1)} if s ⩾ 3.

It follows by induction on s that fg(s) ⩽ f ′g(s). _us, to prove the desired upper
bound on fg(s) it suõces to prove the same upper bound on f ′g(s). It is helpful to
note that f ′g(s) is calculated by a row-by-row traversal of the above table, where the
row corresponding to L i uses cs = i in the calculation of f ′g(s). _us, for s = β i + z
where z ∈ [1, ℓ i],

(3.4) f ′g(β i + z) = f ′g(β i + 1) + (z − 1)(2i − 3).

_us, our focus is on estimating f ′g(β i + 1), which equals

max{ 2i
i − 6

(g − 2), 2i − 3 + f ′g(β i)} .
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In Claim 1 below, we show that 2i
i−6 (g − 2) is ‘close’ to 2i − 3+ f ′g(β i). To do so, deûne

the following recursive “error” function. First, let E2g+2 ∶= 0 and let Ek ∶= 0. _en for
i such that ℓ i > 0, let

E i ∶= max{0, (
i∗−1

∑
j=i+1

2γ j) + (2i − 1)γ i − (2i∗ − 3)γ i∗ + E i∗} .

Claim 1 For s ∈ [2, g + 1], if s = β i + z where z ∈ [1, ℓ i], then

f ′g(β i + z) ⩽ 2i
i − 6

(g − 2) + (z − 1)(2i − 3) + E i .

Proof We proceed by induction on s. First consider the base case s = 2. _en with
i = 2g + 2 we have s = β2g+2 + 1 = 2i

i−6 (g − 2), and the claim holds with E2g+2 = 0.
Now assume that s ⩾ 3, and the claim holds for s− 1. By (3.4), it suõces to consider

the z = 1 case, andwe can assume that ℓ i > 0. _en s−1 = β i = β i∗ +ℓ i∗ . By induction,

f ′g(β i∗ + ℓ i∗) ⩽
2i∗

i∗ − 6
(g − 2) + (ℓ i∗ − 1)(2i∗ − 3) + E i∗

= 2i∗

i∗ − 6
(g − 2) + ℓ i∗(2i∗ − 3) − (2i∗ − 3) + E i∗ .

Since ℓ j = 0 for j ∈ [i + 1, i∗ − 1],

f ′g(β i∗ + ℓ i∗) ⩽
2i∗

i∗ − 6
(g − 2) + (

i∗

∑
j=i+1

(2 j − 3)ℓ j) − (2i∗ − 3) + E i∗ .

By (3.2) and since 2i − 3 ⩽ 2i∗ − 3,

f ′g(β i∗ + ℓ i∗) + 2i − 3

⩽ 2i∗

i∗ − 6
(g − 2) +

i∗

∑
j=i+1

(2 j − 3)( 12(g − 2)
( j − 7)( j − 6)(2 j − 3) + γ j−1 − γ j) + E i∗

= 2i∗

i∗ − 6
(g − 2) + (

i∗

∑
j=i+1

12(g − 2)
( j − 7)( j − 6)) + (

i∗

∑
j=i+1

(γ j−1 − γ j)(2 j − 3)) + E i∗

= 2i∗

i∗ − 6
(g − 2) + (g − 2)(

i∗

∑
j=i+1

2( j − 1)
( j − 1) − 6

− 2 j
j − 6

)

+ (
i∗

∑
j=i+1

(γ j−1 − γ j)(2 j − 3)) + E i∗

= 2i∗

i∗ − 6
(g − 2) + (g − 2)( 2i

i − 6
− 2i∗

i∗ − 6
) + (

i∗−1

∑
j=i+1

2γ j)

+ (2i − 1)γ i − γ i∗(2i∗ − 3) + E i∗

= 2i
i − 6

(g − 2) + (
i∗−1

∑
j=i+1

2γ j) + (2i − 1)γ i − (2i∗ − 3)γ i∗ + E i∗ .
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Since cs = i and by (3.2),

f ′g(s)

= max{ 2i
i − 6

(g − 2), 2i − 3 + f ′g(β i∗ + ℓ i∗)}

⩽ max{ 2i
i − 6

(g − 2), 2i
i − 6

(g − 2)

+ (
i∗−1

∑
j=i+1

2γ j) + (2i − 1)γ i − (2i∗ − 3)γ i∗ + E i∗}

= 2i
i − 6

(g − 2) +max{0, (
i∗−1

∑
j=i+1

2γ j) + (2i − 1)γ i − (2i∗ − 3)γ i∗ + E i∗}

= 2i
i − 6

(g − 2) + E i .

_is completes the proof of the claim.

We now upper bound the E i .

Claim 2 For i ∈ [7, k] such that ℓ i > 0, there are integers δ i , . . . , δk , such that

E i ⩽
k

∑
j=i
δ jγ j ,

and if ∆ i is themultiset {δ j ⩾ 0 ∶ j ∈ [i , k]} and∑∆ i ∶= ∑ j∈[i ,k] δ j , then∑∆ i ⩽ 2k−3.
Moreover, if E i > 0, then δ i = 2i − 1.

Proof We proceed by induction on i = k, k− 1, . . . , 2. In the base case i = k,we have
Ek = 0 and the claim holds with δk = 0 and Xk = 0. Now assume that i ∈ [7, k − 1]
with ℓ i > 0, and the claim holds for i∗. _us, there are integers δ i∗ , . . . , δk such that
E i∗ ⩽ ∑k

j=i∗ δ jγ j and ∑∆ i∗ ⩽ 2k − 3. Moreover, if E i∗ > 0, then δ i∗ = 2i∗ − 1. By
deûnition,

E i = max{0, (2i − 1)γ i + (
i∗−1

∑
j=i+1

2γ j) − (2i∗ − 3)γ i∗ + E i∗} .

If E i = 0, then the claim holds with δ i , . . . , δk = 0. Now assume that E i > 0.
First suppose that E i∗ = 0. _en

E i = (2i − 1)γ i + (
i∗−1

∑
j=i+1

2γ j) − (2i∗ − 3)γ i∗ ,

and the claim holdswith δ i = 2i−1 and δ i∗ = −(2i∗−3) and δ j = 2 for j ∈ [i+1, i∗−1],
in which case ∆ i = {2i − 1, (i∗ − 1 − i) × 2} and∑∆ i = 2i∗ − 3 ⩽ 2k − 3.
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Now assume that E i∗ > 0. _en δ i∗ = 2i∗ − 1 and

E i ⩽ (2i − 1)γ i + (
i∗−1

∑
j=i+1

2γ j) − (2i∗ − 3)γ i∗ + (
k

∑
j=i∗

δ jγ j)

= (2i − 1)γ i + (
i∗−1

∑
j=i+1

2γ j) + ((2i∗ − 1) − (2i∗ − 3))γ i∗ + (
k

∑
j=i∗+1

δ jγ j)

= (2i − 1)γ i + (
i∗−1

∑
j=i+1

2γ j) + 2γ i∗ + (
k

∑
j=i∗+1

δ jγ j) .

Let δ i ∶= 2i − 1 and δ i∗ ∶= 2 and δ j ∶= 2 for j ∈ [i + 1, i∗ − 1], Observe that

∆ i = (∆ i+1 ∖ {2i∗ − 1}) ∪ {2i − 1, 2, (i∗ − 1 − i) × 2} .

_us,∑∆ i+1 = ∑∆ i ,which is atmost 2k−3 by assumption. _us the claim is satisûed.

Claim 2 with i = 7 implies that there are integers δ7 , . . . , δk such that

E7 ⩽
k

∑
j=7
δ jγ j

and∑∆ i ⩽ 2k − 3. Since γ j ∈ [0, 1), E7 ⩽ ∑∆7 ⩽ 2k − 3. Claim 1 and (3.3) then imply
that for s = g + 1 = β7 + ℓ7,

fg(g + 1) ⩽ f ′g(g + 1) ⩽ 14(g − 2) + 11(ℓ7 − 1) + E7

⩽ 14(g − 2) + 11((1 − α7)(g − 2) − γ7 + 3 − 1) + (2k − 3)
⩽ 14(g − 2) + 11((1 − α7)(g − 2) + 2) + (2k − 3)
= (25 − 11α7)(g − 2) + 2k + 19

= (25 − 11( 48332
114345 +

16
33 log 2))(g − 2) + 2k + 19

= λ(g − 2) + 2⌈
√

3
2 (g − 2)⌉ + 33.

_is completes the proof.

Note that (2.1) implies that fg(g + 1) ⩾ 5g − 1. Since λ < 50
3 , this shows that

Lemma 3.2 is within a factor of 10
3 of optimal.

_eorem 3.3 For every surface Σ of Euler genus g, every edge-maximal embedding
of a graph in Σ is at most 84g edges short of a triangulation of Σ.

Proof By Lemma 2.7, it suõces to show that 5 fg(g + 1) − 1 ⩽ 84g. For g ⩽ 299, this
is veriûed by direct calculation of the upper bound on fg(g + 1) in (3.1). For g ⩾ 300,
by Lemma 3.2,

5 fg(g + 1) − 1 ⩽ 5( 16.6534(g − 2) + 2( 1 +
√

3
2 (g − 2)) + 33) − 1 ⩽ 84g .

Note that for each surface Σ of Euler genus g, Proposition 2.1 provides examples
of edge-maximal cellular embeddings of graphs in Σ that are 3g edges short of a tri-
angulation of Σ. _us the 84 in _eorem 3.3 cannot be reduced to less than 3. Also
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note that K3, which is edge-maximal embeddable on any surface Σ, is 3g edges short
of a triangulation of Σ (since every 3-vertex pseudograph triangulation of Σ has 3g+3
edges).

3.1 Orientable Surfaces

Further improvements are possible if we restrict our attention to orientable surfaces.
Let G be an edge-maximal graph embeddable in an orientable surface Σ. Recall
from Lemma 2.4 that among six consecutive vertices on a face of G, there are at
least four distinct vertices, as otherwise a facial walk would contain abcabc, imply-
ing deg(b) = 2. When Σ is orientable, among ûve consecutive vertices on a face of G,
there are at least four distinct vertices, as otherwise a facialwalkwould contain abcab,
repeating ab. _is enables us to addmore edges toG′ in the proof of Lemma 2.7. Con-
sider a face F ofG of length t ⩾ 4. By Lemma 2.4, F contains four distinct consecutive
vertices. Let (v0 , v1 , v2 , . . . , vt−1) be a facial walk of F, where v0 , v1 , v2 , v3 are distinct.
Add the edge v0v i to G′ whenever i ≡ 3 (mod 4) and 3 ⩽ i ⩽ t − 4; this divides
F into ⌊ t+1

4 ⌋ faces in G′ each containing four distinct vertices (since v0 , v1 , v2 , v3 are
distinct, and every other face contains ûve consecutive vertices in F, and thus has at
least four distinct vertices). Deûne the graph G′′ and set B as above. Consider a face
F ofG of length t ⩾ 4. _en B contains exactly ⌊ t+1

4 ⌋ vertices corresponding to F, and
t − 3 ⩽ 4⌊ t+1

4 ⌋ − 1. _us G can be triangulated by adding at most 4∣B∣ − 1 edges. By
the same argument used in the proof of Lemma 2.7, G is at most 4 fg(g + 1) − 1 edges
short of a triangulation. _is leads, by (3.1), to the results shown in Table 2 and the
following theorem.

_eorem 3.4 For every orientable surface Σ of Euler genus g, every edge-maximal
embedding of a graph in Σ is at most 67g edges short of a triangulation of Σ.

Proof By the above discussion it suõces to show that 4 fg(g + 1) − 1 ⩽ 67g. For
g ⩽ 670, this is veriûed by direct calculation of the upper bound on fg(g + 1) in (3.1).
For g ⩾ 671, by Lemma 3.2,

4 fg(g + 1) − 1 ⩽ 4( 16.6534(g − 2) + 2( 1 +
√

3
2 (g − 2)) + 33) − 1 ⩽ 67g .

4 Multigraph Triangulations

In this sectionwe give the resultmentioned as an aside in Section 2 about not needing
to introduce loops.

Proposition 4.1 For every simple graph G with at least three vertices, embedded in a
surface Σ, we can add non-loop edges to extend this embedding to a multigraph trian-
gulation.

Proof Suppose that H is a multigraph containing G, and embedded in Σ such that
each face has at least three distinct vertices in each boundary component. We claim
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Table 2: Number of edges in an edge-maximal graph embeddable in an orientable
surface.

g surface impurity ⩽ ∣E(G)∣ ⩾
2 S1 67 3n − 67
4 S2 179 3n − 173
6 S3 307 3n − 295
8 S4 427 3n − 409
10 S5 559 3n − 535
12 S6 691 3n − 661
14 S7 819 3n − 783
16 S8 951 3n − 909
18 S9 1087 3n − 1039
20 S10 1215 3n − 1161
22 S11 1339 3n − 1279
24 S12 1483 3n − 1417
26 S13 1607 3n − 1535
28 S14 1743 3n − 1665
30 S15 1875 3n − 1791
32 S16 2007 3n − 1917
34 S17 2139 3n − 2043
36 S18 2275 3n − 2173
38 S19 2411 3n − 2303
40 S20 2539 3n − 2425

that the embedding extends to amultigraph triangulation. Suppose that this is false,
and suppose that H is a counterexample with as many edges as possible.

Since H is not a triangulation, there is a face F for which either (a) there is a single
facial walk f of length at least 4, or (b) there are at least two boundary components B
and B′ of F, or (c) the boundary of F is a single triangle but the face is not plane.

(a) It suõces to show that there are distinct vertices a and b in thewalk f such that
both the segment of f from a to b and the return segment of f from b to a contain
a vertex not in {a, b}; for then we can add the edge ab in the face. _is replaces F
by either (i) a single new face with the same vertices in the boundary, or (ii) two new
faces both with a single boundary component containing at least 3 distinct vertices,
yielding a contradiction.

If some vertex a occurs exactly once in f , thenwe can take b to be any vertex other
than the predecessor or successor of a. So assume that no vertex occurs exactly once
in f . Consider three consecutive vertices uvw in the walk f (where v /∈ {u,w}, since
there are no loops). If u = w, we can let a = v and let b be any vertex in f not in
{v ,w}: for then a /= b, w /∈ {a, b}, and w occurs in both relevant segments of f . If
u /= w, we may let a = u and b = w: for then a /= b, v /∈ {a, b}, and v occurs in both
relevant segments.
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(b) Pick a vertex x in B and a (distinct) vertex y in B′, and add the edge xy across
the face. _is replaces F by a single new face F′, replaces B and B′ by their union
as a boundary component, and leaves any other boundary component untouched,
yielding a contradiction.

(c) _e face F is either Sg or Ng for some g > 1, with a triangular disk cut out.
To handle the orientable case, take a 3-vertex multigraph triangulation of Sg , and
glue a face onto F. Similarly, in the non-orientable case, take a 3-vertex multigraph
triangulation of Ng , and glue a face onto F. In both cases we obtain a contradiction.

5 Open Problems

We conclude the paper with a few open problems.
● Let c1 be the inûmum of all numbers c such that every edge-maximal graph em-

beddable in a surface Σ of Euler genus g is at most cg edges short of a triangulation
of Σ. Let c2 be the inûmum of all numbers c such that every edge-maximal embed-
ding in a surface Σ of Euler genus g is at most cg edges short of a triangulation of Σ.
Trivially, c1 ⩽ c2. We have proved that 3 ⩽ c1 ⩽ c2 < 84. Can these inequalities be
improved?

● Are projective planar graphs pure? Are there examples, other than K8 − E(C5),
showing that the class of graphs embeddable in a given surface is impure? Note that
[2] conjectured that apart from the sphere, no orientable surface yields a pure class of
graphs. _is conjecture remains wide open.

● For a surface Σ of Euler genus g, what is the least number k such that for every
edge-maximal graphG embeddable in Σ, there is a (simple) triangulationG′ of Σwith
the same vertex set as G such that E(G) and E(G′) have symmetric diòerence of size
at most k? Is k in O(g)?
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