EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE CAUCHY PROBLEM FOR FARABOLIC DELAY-DIFFERENTIAL EQUATIONS

S. Nababan and K.L. Teo

Abstract

In this paper, a class of systems governed by second order linear parabolic partial delay-differential equations in "divergence form" with Cauchy conditions is considered. Existence and uniqueness of a weak solution is proved and its a priori estimate is established.

1. Introduction

In the absence of time delayed argument, the existence and uniqueness of solutions for systems governed by parabolic partial differential equations with Cauchy conditions have been studied in [1] to [7] and others.

In this paper, we consider questions on the existence and uniqueness of weak solutions of a class of systems governed by the following parabolic partial delay-differential equations with Cauchy conditions
(1.1) $\left\{\begin{array}{l}L \phi(x, t)=\sum_{k=0}^{N}\left\{\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(F_{k j}\left(x, t-h_{k}\right)\right)+f_{k}\left(x, t-h_{k}\right)\right\}, \\ \quad(x, t) \in R^{n} \times(0, T), \\ \phi(x, t)=\Phi(x, t), \quad(x, t) \in R^{n} \times\left[-h_{N}, 0\right],\end{array}\right.$
where $h_{1}, h_{2}, \ldots, h_{N}$ and T are constants so that
Received 24 April 1979.

$$
0=h_{0}<h_{1}<\ldots<h_{N}<T<\infty, N \text { is finite }
$$

and the operator L is defined by
(1.2) $L \psi(x, t) \Delta \frac{\partial \psi(x, t)}{\partial t}-\sum_{k=0}^{N}\left\{\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left\{\sum_{i=1}^{n} a_{k i, j}\left(x, t-h_{k}\right)\right.\right.$

$$
\begin{aligned}
& \left.+\frac{\partial \psi\left(x, t-h_{k}\right)}{\partial x_{i}}+a_{k j}\left(x, t-h_{k}\right) \cdot \psi\left(x, t-h_{k}\right)\right) \\
& \left.+\sum_{j=1}^{n} b_{k j}\left(x, t-h_{k}\right) \cdot \frac{\partial \psi\left(x, t-h_{k}\right)}{\partial x_{j}}+c_{k}\left(x, t-h_{k}\right) \cdot \psi\left(x, t-h_{k}\right)\right\} .
\end{aligned}
$$

Weak solutions of system (1.1) are defined in the sense of Ladyženskaja, Solonnikov, Ural'ceva [7, p. 171]. The result on the existence and uniqueness of a weak solution is presented in Theorem 4.1 of §4.

2. Notations

Let R^{s} denote the s-dimensional Euclidean space. For any $z \in R^{s}$, Let $|z|=\left(\sum_{i=1}^{s}\left|z_{i}\right|^{2}\right)^{\frac{1}{2}}$. "a.e." means almost everywhere with respect to Lebesgue measure. \bar{B} denotes the closure of the set B.

$$
L^{2}\left(R^{n}\right) \text { is the Banach space consisting of all measurable functions }
$$ $z: R^{n} \rightarrow R^{l}$ that are second power integrable on R^{n}. Its norm is defined by

$$
\left.\|z\|_{2, R^{n}} \Delta \iint_{R^{n}}|z(x)|^{2} d x\right)^{\frac{1}{2}}
$$

$L^{q, r}\left(R^{n} \times I\right) \quad(1 \leq q, r \leq \infty)$, is the Banach space of all measurable functions $z: R^{n} \times I \rightarrow R^{1}$ with finite norm $\|z\| q_{q, r, R^{n} \times I}$, where

$$
\left.\|z\|_{q, r, R^{n} \times I} \triangleq\left\{\int_{I} \iint_{R^{n}}|z(x, t)| q d x\right)^{r / q} d t\right\}^{1 / r} \text { for } 1 \leq q, \quad r<\infty
$$

$$
\|z\|_{\infty, r, R^{n} \times I} \triangleq\left\{\int_{I}\left(\|z(\cdot, t)\|_{\infty, R^{n}}\right)^{r} d t\right\}^{1 / r} \quad \text { for } \quad q=\infty, 1 \leq r<\infty,
$$

and

$$
\|z\|_{\infty, \infty, R^{n} \times I} \triangleq{\operatorname{ess} \sup _{(x, t) \in R^{n} \times I}|z(x, t)| \text { for } q=r=\infty . . . ~ . ~}_{q} \mid
$$

$$
W^{2, r}\left(R^{n} \times I\right) \quad(r \geq 1) \text {, is the Banach space of all functions } a \text { from }
$$ $L^{2, r}\left(R^{n} \times I\right)$ having a generalized derivative z_{x} and a finite norm $\left|\left||z| \|_{r}\right.\right.$, where

$$
\|z\| \|_{r} \triangleq\left\{\int_{I}\left(\|z(\cdot, t)\|_{2, R^{n^{+}}}^{r}\left\|z_{x}(\cdot, t)\right\|_{2, R^{n}}^{r}\right) d t\right\}^{1 / r} \text { for } 1 \leq r<\infty,
$$

and

$$
\|z\|_{\infty} \triangleq \underset{t \in I}{\operatorname{ess} \sup \left(\|z(\cdot, t)\|_{2, R^{n^{+}}}\left\|z z_{x}(\cdot, t)\right\|_{2, R^{n}}\right) \text { for } r=\infty, ~}
$$

while $\left\|z_{x}(\cdot, t)\right\|_{2, R^{n}} \Delta\left(\int_{R^{n}} \sum_{i=1}^{n}\left|z_{x_{i}}(x, t)\right|^{2} d x\right)^{\frac{1}{2}}$ and $\|z(\cdot, t)\|_{2, R^{n}}$ is as defined before.

$$
\begin{aligned}
& W_{2}^{1,0}\left(R^{n} \times I\right) \text { is the Hilbert space with scalar product } \\
& \qquad(z, y)_{W_{2}^{1}, 0}\left(R^{n} \times I\right) \triangleq \iint_{R^{n} \times I}\left\{z \cdot y+\sum_{i=1}^{n} \frac{\partial z}{\partial x_{i}} \cdot \frac{\partial y}{\partial x_{i}}\right\} d x d t
\end{aligned}
$$

and $W_{2}^{1,1}\left(R^{n} \times I\right)$ is the Hilbert space with scalar product

$$
(x, y)_{W_{2}^{1,1}}\left(R^{n} \times I\right) \stackrel{\int}{\int_{R^{n} \times I}}\left\{\begin{array}{c}
\\
\\
\sum_{i=1}^{n}
\end{array} \frac{\partial z}{\partial x_{i}} \cdot \frac{\partial y}{\partial x_{i}}+\frac{\partial z}{\partial t} \cdot \frac{\partial y}{\partial t}\right\} d x d t
$$

$V_{2}\left(R^{n} \times I\right)$ is the Banach space consisting of all functions z from $W_{2}^{1,0}\left(R^{n} \times I\right)$ having a finite norm

$$
|z|_{R^{n} \times I} \triangleq\|z\|_{2, \infty, R^{n} \times I}+\left\|z_{x}\right\|_{2,2, R^{n} \times I},
$$

where

$$
\left\|z_{x}\right\|_{2,2, R^{n} \times I} \triangleq\left(\iint_{R^{n} \times I} \sum_{i=1}^{n}\left|\frac{\partial z(x, t)}{\partial x_{i}}\right|^{2} d x d t\right)^{\frac{3}{2}}
$$

$V_{2}^{1,0}\left(R^{n} \times I\right)$ is the Banach space consisting of all functions
$z \in V_{2}\left(R^{n} \times I\right)$ that are continuous in t in the norm of $L^{2}\left(R^{n}\right)$, with norm

$$
|z|_{R^{n} \times I} \triangleq \max _{t \in \bar{I}}\|z(\cdot, t)\|_{2, R^{n}}+\left\|z_{x}\right\|_{2,2, R^{n} \times I}
$$

The continuity in t of a function z in the norm $L^{2}\left(R^{n}\right)$ means that

$$
\|z(\cdot, t+\Delta t)-z(\cdot, t)\|_{2, R^{n}} \rightarrow 0 \text { as } \Delta t \rightarrow 0
$$

The space $V_{2}^{1,0}\left(R^{n} \times I\right)$ is obtained by completing the set $W_{2}^{1,1}\left(R^{n} \times I\right)$ in the norm of $V_{2}\left(R^{n} \times I\right)$.

$$
V_{2}^{1, \frac{3}{2}}\left(R^{n} \times I\right) \text { is the Banach space of all functions } z \in V_{2}^{1,0}\left(R^{n} \times I\right)
$$ for which

$$
\begin{gathered}
\int_{0}^{T-h} \int_{R^{n}} \frac{1}{\bar{h}}(z(x, t+h)-z(x, t))^{2} d x d t \rightarrow 0 \text { as } h \rightarrow 0 \\
\psi_{t} \triangleq \frac{\partial \psi}{\partial t}, \quad \psi_{x_{i} \triangleq} \frac{\partial \psi}{\partial x_{i}},()_{x_{j}} \triangleq \frac{\partial}{\partial x_{j}}() .
\end{gathered}
$$

3. Definitions and basic assumptions

Let $h_{k}(k=0,1, \ldots, N)$, and T be fixed constants so that $0=h_{0}<h_{1}<\ldots<h_{N}<T<\infty, N$ is finite. Let $Q=R^{n} \times(0, T)$, $Q_{0}=R^{n} \times\left[-h_{N}, 0\right]$ and $Q_{1}=R^{n} \times\left[-h_{N}, T\right]$.

For brevity, we introduce the following notations
(3.1)

$$
\begin{aligned}
& (L \Psi, Z\rangle_{Q} \\
& \stackrel{\Delta}{\Delta} \int_{Q} \int\left[-\psi(x, t) \cdot z_{t}(x, t)+\sum_{k=0}^{N}\left\{\sum _ { j = 1 } ^ { n } \left\{\sum_{i=1}^{n} a_{k i j}\left(x, t-h_{k}\right)\right.\right.\right. \\
& \left.\cdot \Psi_{x_{i}}\left(x, t-h_{k}\right)+a_{k j}\left(x, t-h_{k}\right) \cdot \Psi\left(x, t-h_{k}\right)\right) \cdot z_{x_{j}}(x, t)-\sum_{j=1}^{n} b_{k_{j}}\left(x, t-h_{k}\right) \\
& \left.\left.\cdot \Psi_{x_{j}}\left(x, t-h_{k}\right) \cdot Z(x, t)-c_{k}\left(x, t-h_{k}\right) \cdot \Psi\left(x, t-h_{k}\right) \cdot z(x, t)\right\}\right] d x d t,
\end{aligned}
$$

for any functions $\psi \in W^{2,2}\left(Q_{1}\right)$ and $Z \in W_{2}^{1,1}(Q)$, where L is as defined in (1.2).

$$
\begin{align*}
&\langle F, z\rangle_{Q} \triangleq \int_{Q} \int\left[\sum _ { k = 0 } ^ { N } \left\{\sum_{j=1}^{n} F_{k j}\left(x, t-h_{k}\right) \cdot z_{x_{j}}(x, t)\right.\right. \tag{3.2}\\
&\left.\left.-f_{k}\left(x, t-h_{k}\right) \cdot Z(x, t)\right\}\right] d x d t
\end{align*}
$$

for any function $z \in W_{2}^{l, l}(Q)$, where F is defined by

$$
\begin{equation*}
F(x, t)=\sum_{k=0}^{N}\left\{\sum_{j=1}^{n}\left(F_{k j}\left(x, t-h_{k}\right)\right)_{x_{j}}+f_{k}\left(x, t-h_{k}\right)\right\} . \tag{3.3}
\end{equation*}
$$

Corresponding to system (1.1) we need
DEFINITION 3.1. A function $\phi: Q_{1} \rightarrow R^{1}$ is said to be a weak solution from $V_{2}^{\frac{1}{2}, \frac{3}{2}}(Q)$ in the sense of Ladyženskaja, Solonnikov Ural'ceva [7, p. 171] if
(i) $\left.\phi\right|_{Q} \in V_{2}^{\lambda, \frac{1}{2}}(Q)$,
(ii) $\phi(x, t)=\Phi(x, t)$ on Q_{0}, and
(iii) $\langle L \phi+F, \eta\rangle_{Q}=\int_{R^{n}} \Phi(x, 0) \cdot n(x, 0) d x$ for any $\eta \in W_{2}^{1,1}(Q)$ that is equal to zero at $t=T$, where $\left.\phi\right|_{Q}$ denotes the restriction of ϕ on Q.

The following assumptions will be referred to as assumptions (A):
(i) for each $k \in\{0,1, \ldots, N\}$ and $i, j \in\{1, \ldots, n\}$,
the functions $a_{k i j}, a_{k j}, b_{k j}, c_{k}, F_{k j}$ and f_{k} are measurable on $R^{n} \times\left[-h_{k}, T-h_{k}\right]$ with values in R^{l};
(ii) there exist constants $\nu, \mu>0$ such that

$$
\begin{aligned}
& \qquad \nu|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{0 i j}(x, t) \cdot \xi_{i} \cdot \xi_{j} \leq \mu|\xi|^{2} \\
& \text { a.e. in } R^{n} \times[0, T] \text { for all } \xi \in R^{n} ; \\
& \text { (iii) there exist constants } \mu_{1}, \mu_{2}>0 \text { such that }
\end{aligned}
$$

$$
\left\|\sum_{j=1}^{n} a_{0 j}^{2}, \sum_{j=1}^{n} b_{0 j}^{2}, c_{0}\right\|_{q, r, Q} \leq \mu_{1}
$$

in which q and r are arbitrary numbers satisfying the conditions

$$
\begin{cases}\frac{1}{r}+\frac{n}{2 q}=1, \\ q \in\left[\frac{n}{2}, \infty\right), & r \in[1, \infty) \text { for } n \geq 2 \\ q \in[1, \infty], & r \in[1,2] \text { for } n=1\end{cases}
$$

and $\left|a_{k i j}, a_{k j}, b_{k j}, c_{k}\right| \leq \mu_{2}(i, j=1, \ldots, n)$, a.e.
on $R^{n} \times\left[-h_{k}, T-h_{k}\right]$ for each $k=1, \ldots, n$;
(iv) for each $k \in\{0,1, \ldots, N\}$,

$$
F_{k j} \in L^{2,2}\left(R^{n} \times\left(-h_{k}, T-h_{k}\right)\right)(j=1, \ldots, n)
$$

and $f_{k} \in L^{2, s}\left(R^{n} \times\left(-h_{k}, T-h_{k}\right)\right)$ where $s \in[1,2]$; and
(v) $\Phi \in W^{2,2}\left(Q_{0}\right)$ and $\Phi(\cdot, 0) \in L^{2}\left(R^{n}\right)$.

4. Existence of weak solutions

In this section we shall show the existence and uniqueness of a weak solution of system (1.1). Further, an a priori estimate of the weak solution will be also established.

THEOREM 4.1. Consider system (1.1). Let the assumptions (A) be satisfied. Then system (1.1) admits a wique weak solution ϕ from $V_{2}^{1, \frac{3}{2}}(Q)$. Further, ϕ satisfies the following a priori estimate (4.1) $\quad|\phi|_{Q} \leq M\left(\|\Phi(\cdot, 0)\|_{2, R^{n}}+\|\Phi\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+\left\|\Phi_{x}\right\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}\right.$

$$
\left.+\sum_{k=0}^{N}\left(\sum_{j=1}^{n}\left\|F_{k j}\right\|_{2,2, R^{n} \times\left(-h_{k}, T-h_{k}\right)}+\left\|f_{k}\right\|_{2, s, R^{n} \times\left(-h_{k}, T-h_{k}\right)}\right)\right)
$$

where $|\cdot|_{Q}$ is the norm in $V_{2}^{\frac{1}{2}, \frac{3}{2}}(Q)$ and the positive constant M depends only on $\nu, \mu, \mu_{1}, \mu_{2}, n, N, q, s, h_{1}$ and T.

Proof. Let K be an integer such that $K h_{1}<T \leq(K+1) h_{1}$. Let us consider system (1.1) on $R^{n} \times\left[(2-1) h_{1}, \tau h_{1}\right)$ successively in the order of $\tau=1,2, \ldots, K$ and on $R^{n} \times\left[K h_{1}, T\right)$. Then it is clear that system (1.1) reduces to systems without time delayed argument given by
(4.2) $\begin{cases}L_{0} \phi(x, t)=\sum_{j=1}^{n}\left(F_{j}^{Z}(x, t)\right)_{x_{j}}+f^{\mathcal{L}}(x, t) \\ \phi\left(x,(2-1) h_{1}\right)=\phi^{2-1}\left(x,(2-1) h_{1}\right), & x \in R^{n},\end{cases}$
for $l=1,2, \ldots, K$, and
(4.3) $\begin{cases}L_{0} \phi(x, t)=\sum_{j=1}^{n}\left(F_{j}^{K+1}(x, t)\right)_{x_{j}}+f^{K+1}(x, t) \\ \\ \phi\left(x, K h_{1}\right)=\phi^{K}\left(x, K h_{1}\right), & x \in R^{n},\end{cases}$
where
(i) L_{0} is defined by
(4.4) $L_{0} \psi(x, t)$

$$
\begin{aligned}
\triangleq \psi_{t}(x, t)-\sum_{j=1}^{n} & {\left[\sum_{i=1}^{n} a_{0 i j}(x, t) \cdot \psi_{x_{i}}(x, t)+a_{0 j}(x, t) \cdot \psi(x, t)\right)_{x_{j}} } \\
& -\sum_{j=1}^{n} b_{0 j}(x, t) \cdot \psi_{x_{j}}(x, t)-c_{0}(x, t) \cdot \psi(x, t) ;
\end{aligned}
$$

(ii) for each $\mathcal{L}=1,2, \ldots, K+1$,
(4.5)

$$
\begin{array}{r}
F_{j}^{Z}(x, t)=\sum_{k=1}^{N}\left\{\sum_{i=1}^{n} a_{k i j}\left(x, t-h_{k}\right) \cdot \tilde{\phi}_{x_{i}}^{z-1}\left(x, t-h_{k}\right)+a_{k j}\left(x, t-h_{k}\right)\right. \\
\left.\cdot \tilde{\phi}^{z-1}\left(x, t-h_{k}\right)+F_{k j}\left(x, t-h_{k}\right)\right)+F_{0 j}(x, t)
\end{array}
$$

$$
\begin{align*}
f^{l}(x, t)=\sum_{k=1}^{N} & \left(\sum_{j=1}^{n} b_{k j}\left(x, t-h_{k}\right) \cdot \tilde{\phi}_{x_{j}}^{l-1}\left(x, t-h_{k}\right)\right. \tag{4.6}\\
& \left.+c_{k}\left(x, t-h_{k}\right) \cdot \tilde{\phi}^{z-1}\left(x, t-h_{k}\right)+f_{k}\left(x, t-h_{k}\right)\right)+f_{0}(x, t)
\end{align*}
$$

(iii) $\phi^{l}(\imath=1, \ldots, K)$, are weak solutions from $V_{2}^{\frac{1}{2}, \frac{2}{2}}\left(Q^{2}\right)$ of system (4.2) on $R^{n} \times\left[(2-1) h_{1}, L h_{1}\right) \quad(2=1, \ldots, K)$, respectively;
(iv) $\phi^{0}=\tilde{\phi}^{0}=\Phi$; and
(v) for each $Z=1, \ldots, k$,
$\tilde{\phi}^{\imath}(x, t)= \begin{cases}\Phi(x, t), & (x, t) \in Q_{0}, \\ \phi^{\iota}(x, t), & (x, t) \in R^{n} \times\left[(\imath-1) h_{1}, \iota h_{1}\right), \iota=1,2, \ldots, \imath .\end{cases}$
Note that it can be easily verified that

$$
\begin{equation*}
\left(\int_{Q} \int \sum_{i=1}^{n} \Gamma_{i}^{2}(x, t) d x d t\right)^{\frac{1}{2}} \leq n^{\frac{2}{2}} \sum_{i=1}^{n}\left\|\Gamma_{i}\right\|_{2,2, Q} \tag{4.7}
\end{equation*}
$$

By virtue of the definitions of $\tilde{\phi}^{l}(\mathcal{Z}=0,1, \ldots, K)$, and the assumptions A (iii), A (iv) and A (v), it can be easily shown by using inequality (4.7), Minkowski's inequality and Cauchy's inequality that, for
each $l=1,2, \ldots, K, K+1$,
(4.8) $\left.\iint_{Q} \tau \sum_{j=1}^{n}\left\{F_{j}^{2}(x, t)\right)^{2} d x d t\right)^{\frac{3}{2}}$
$\leq n^{\frac{3}{2}} \sum_{j=1}^{n}\left\{\left\|F_{0 j}(\cdot, \cdot)\right\|_{2,2, q^{2}}\right.$
$+\sum_{k=1}^{N}\left\{\left\|\sum_{i=1}^{n} a_{k i j}\left(\cdot, \cdot-h_{k}\right) \cdot \tilde{\phi}_{x_{i}}^{z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}\right.$
$\left.+\left\|a_{k j}\left(\cdot, \cdot-h_{k}\right) \cdot \tilde{\phi}^{2-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}{ }^{2}+\left\|F_{k j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}\right)$
$\leq n^{\frac{1}{2}} \sum_{j=1}^{n}\left\{\left\|F_{0 j}(\cdot, \cdot)\right\|_{2,2, Q^{2}}+\sum_{k=1}^{N}\left\{n^{\frac{3}{2}} \mu_{2}\left\|\tilde{\phi}_{x}^{z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}\right.\right.$
$\left.\left.+\mu_{2}\left\|\tilde{\phi}^{\tau-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}+\left\|F_{k j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}{ }^{2}\right\}\right)$
$\Delta n^{\frac{2}{2}} \cdot\left\{\sum_{k=0}^{N} \sum_{j=1}^{n}\left\|F_{k j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}\right.$
$\left.+\sum_{k=1}^{N}\left\{n^{3 / 2} \mu_{2}\left\|\tilde{\phi}_{x}^{l-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{z}}+n \mu_{2}\left\|\tilde{\phi}^{z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}\right)\right\}$.
Next, by using the definitions of $\tilde{\phi}^{Z} \quad(\mathcal{L}=0,1, \ldots, K)$, and the assumptions $A(i i i), A(i v)$ and $A(v)$, we can deduce from Minkowski's inequality and Hölder's inequality that, for each $l=1, \ldots, K, K+1$,

$$
\begin{aligned}
& \text { (4.9) }\left\|f^{2}\right\|_{2, s, Q^{2}} \\
& \leq\left\{\left\|f_{0}\right\|_{2, s, Q^{2}}+\sum_{k=1}^{N}\left(\left\|f_{k}\left(\cdot, \cdot-h_{k}\right)\right\|_{2, s, Q^{2}}\right.\right. \\
& +\sum_{j=1}^{n}\left\|\dot{b}_{k_{j} j}\left(\cdot, \cdot-h_{k}\right) \cdot \tilde{\phi}_{x_{j}}^{Z-1}\left(\cdot, \cdot-h_{k}\right)\right\| \\
& \left.\left.+\left\|c_{k}\left(\cdot, \cdot-h_{k}\right) \cdot \dot{\phi}^{2-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2, s, Q}\right)\right\}
\end{aligned}
$$

Further, since $\phi^{0}=\Phi$ and since $\phi^{l} \quad(Z=1, \ldots, K)$, are weak solutions from $V_{2}^{2, \frac{1}{2}}\left(Q^{2}\right)$ of system (4.2) on $Q^{2}(2=1, \ldots, K)$, respectively, it follows readily that $\phi^{0}(\cdot, 0) \in L^{2}\left(R^{n}\right)$ and, for $Z=1, \ldots, K$,

$$
\begin{equation*}
\left\|\phi^{Z}(\cdot, z h)\right\|_{2, R^{n}} \leq\left|\phi^{2}\right|_{Q} \tau \tag{4.10}
\end{equation*}
$$

Thus, by applications of Theorem 5.2 of [7, p. 171] to system (4.2) ($Z=1, \ldots, K$), and system (4.3) successively, we obtain that, for each $Z=1, \ldots, K$, system (4.2) admits a unique weak solution ϕ^{Z} from $V_{2}^{1, \frac{1}{2}}\left(Q^{2}\right)$ and system (4.3) also admits a unique weak solution ϕ^{K+1} from $V_{2}^{1, \frac{1}{2}}\left(Q^{K+1}\right)$. Since the constant in the estimate (2.2) of Lemma 2.1 of [7, p. 139] does not depend on Ω, we examine easily that the proof of Lemma 2.1 remains valid when Ω is replaced by R^{n}. Thus Theorem 2.1 of [7, p. 143] remains valid when Ω is replaced by R^{n}. Therefore, by virtue of this modified version of Theorem 2.1 of [7, p. 143], ϕ^{2} satisfies the estimate
(4.11) $\left|\phi^{Z}\right|_{Q} \mathcal{L} \leq M_{Z}\left\{\left\|\phi^{Z-1}\left(\cdot,(2-1) h_{1}\right)\right\|_{2, R^{n}}\right.$

$$
\left.\left.+\iint_{Q} \int \sum_{j=1}^{n}\left\{F_{j}^{2}(x, t)\right)^{2} d x d t\right\}^{\frac{2}{2}}+\left\|f^{z}\right\|_{2, s, Q}\right\}
$$

where the constant $M_{\imath}>0$ depends only on n, v, μ, μ_{1}, and q from the assumptions A (ii) - A (iii).

Let ϕ be defined on Q_{1} by
(4.12) $\phi(x, t)= \begin{cases}\Phi(x, t), & (x, t) \in Q_{0}, \\ \phi^{2}(x, t), & (x, t) \in R^{n} \times\left[(\tau-1) h_{1}, \tau h_{1}\right), \\ \quad \imath=1, \ldots, K, \\ \phi^{K+1}(x, t), & (x, t) \in R^{n} \times\left[K h_{1}, T\right) .\end{cases}$

We shall show that ϕ is a unique weak solution from $V_{2}^{1, \frac{1}{2}}(Q)$ of system (1.1). Clearly, ϕ satisfies the conditions (i) and (ii) of Definition 3.1. Let $\eta \in W_{2}^{1,1}(Q)$ be arbitrary and equal to zero at $t=T$. Let η^{Z} $(Z=1, \ldots, K+l)$, denote, respectively, the restrictions of n on $R^{n} \times\left[(Z-1) h_{1}, \tau h_{1}\right] \quad(\tau=1, \ldots, K)$ and on $R^{n} \times\left[K h_{1}, T\right)$. Since ϕ^{Z} is the weak solution from $V_{2}^{1, \frac{1}{2}}\left(Q^{2}\right)$ of system (4.2) on Q^{2} $(2=1, \ldots, K)$, and ϕ^{K+1} is the weak solution from $V_{2}^{1, \frac{\pi}{2}}\left(Q^{K+1}\right)$ of system (4.3) on Q^{K+1}, it follows that (4.13) $\int_{R^{n}} \phi^{2}\left(x, 2 h_{1}\right) \cdot \eta^{2}\left(x, 2 h_{1}\right) d x+\left\langle L_{0} \phi^{2}+F^{2}, \eta^{2}\right\rangle_{Q^{2}}$

$$
=\int_{R^{n}} \phi^{2-1}\left(x,(2-1) h_{1}\right) \cdot n^{2}\left(x,(2-1) h_{1}\right) d x
$$

for $l=1, \ldots, K$ and

$$
\begin{equation*}
\left\langle L_{0} \phi^{K+1}+F^{K+1}, \eta^{K+1}\right\rangle_{Q^{K+1}}=\int_{R^{n}} \phi^{K}\left(x, K h_{1}\right) \cdot \eta^{K+1}\left(x, K h_{1}\right) d x \tag{4.14}
\end{equation*}
$$

where $F^{Z}(Z=1, \ldots, K+1)$ is defined by

$$
\begin{equation*}
F^{2}(x, t)=\sum_{j=1}^{n}\left\{F_{j}^{2}(x, t)\right)_{x_{j}}+f^{2}(x, t) \tag{4.15}
\end{equation*}
$$

while F_{j}^{Z} and f^{Z} are as defined in (4.5) and (4.6), respectively.
By virtue of the definitions of n^{2} and $\phi^{0},(4.4),(4.12),(4.13)$, (4.14) and (4.15), we obtain that

$$
\langle L \phi+F, n\rangle_{Q}=\int_{R^{n}} \Phi(x, 0) \cdot \eta(x, 0) d x
$$

Thus ϕ is a weak solution from $V_{2}^{\frac{1}{2}, \frac{2}{2}}(Q)$ of system (1.1). Uniqueness of ϕ follows from uniqueness of $\phi^{Z} \quad(\tau=1, \ldots, K+1)$.

Next we shall show that ϕ satisfies estimate (4.1). Substituting (4.8) and (4.9) into (4.11), we obtain
(4.16) $\left|\phi^{2}\right|_{Q^{2}}$

$$
\begin{aligned}
\leq & M_{z^{n}} n^{\frac{z}{2}}\left\{\left\|\phi^{z-1}\left(\cdot,(z-1) h_{1}\right)\right\|_{2, R^{n}}+\sum_{k=1}^{N}\left(\left\{n^{3 / 2} \mu_{2}+n \mu_{2} h_{1}^{(2-s) / 2 s}\right)\right.\right. \\
& \left.\cdot\left\|\tilde{\phi}_{x}^{z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{z}}+\left(n \mu_{2}+\mu_{2} h_{1}^{(2-s) / 2 s}\right) \cdot\left\|\tilde{\phi}^{z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}\right\}
\end{aligned}
$$

$$
\left.+\sum_{k=0}^{N}\left\{\sum_{j=1}^{n}\left\|F_{k j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q} \imath^{++\| f_{k}}\left(\cdot, \cdot-h_{k}\right) \|_{2, s, Q^{2}}\right)\right\}
$$

$$
\leq M_{0}\left\{\left\|\phi^{z-1}\left(\cdot,(2-1) \hbar_{1}\right)\right\|_{2, R^{n}}+\sum_{k=1}^{N}\left\{\left\|\phi_{x}^{2-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}\right.\right.
$$

$$
\left.+\left\|\tilde{\phi}^{\tau-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q}\right)
$$

$$
\left.+\sum_{k=0}^{N}\left\{\sum_{j=1}^{n}\left\|F_{k_{j} j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q} \imath^{+\left\|f_{k}\left(\cdot, \cdot-h_{k}\right)\right\|_{2, s, Q}}{ }^{\imath}\right)\right\},
$$

where the constant M_{0} is defined by

$$
\begin{equation*}
M_{0}=\max _{l \in\{1, \ldots, K+1\}} M_{l^{n}} n^{\frac{3}{2}}\left(\max \left\{1, n \mu_{2}\left(n^{\frac{3}{2}+h_{1}^{(2-s) / 2 s}+1}\right\}\right)\right\} \tag{4.17}
\end{equation*}
$$

Note that, for each $\mathcal{Z}=1, \ldots, K$,
(4.18) $\left\|\phi_{2,2, Q}^{2}\right\|_{2}=\left\{\int_{(Z-1) h_{1}}^{Z h_{1}} \int_{R^{n}}\left|\phi^{2}(x, t)\right|^{2} d x d t\right)^{\frac{1}{2}}$

Similarly

$$
\begin{equation*}
\left\|\phi^{K+1}\right\|_{2,2, Q^{K+1}} \leq h_{1}^{\frac{1}{2}} \cdot \max _{t \in\left[K h_{1}, T\right]}\left\|\phi^{K+1}(\cdot, t)\right\|_{2, R^{n}} \tag{4.19}
\end{equation*}
$$

Further, it can be easily deduced from the definitions of $\tilde{\phi}^{Z}$ and estimate (4.7) that
(4.20) $\left\|\tilde{\phi}^{2-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{2}}$

$$
\left.\leq\left\|\tilde{\phi}^{z-1}\right\|_{2,2, R^{n} \times\left(-h_{N}\right.},(z-I) h_{1}\right)
$$

$$
\triangleq\left(\int_{-h_{N}}^{0} \int_{R^{n}}|\Phi(x, t)|^{2} d x d t+\sum_{\iota=1}^{l-1} \int_{(\iota-1) h_{1}}^{\iota h_{1}} \int_{R^{n}}\left|\phi^{\iota}(x, t)\right|^{2} d x d t\right)^{\frac{1}{2}}
$$

$$
\leq i^{\frac{3}{2}}\left(\|\Phi\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+\sum_{i=1}^{i-1} \| \phi_{2,2, Q^{c} \|_{2}}\right)
$$

for all $k=1, \ldots, N$ and $Z=2, \ldots, K+1$. Similarly as above, we have (4.21) $\left\|\tilde{\phi}_{x}^{Z-1}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{\ell}} \leq i^{\frac{1}{2}}\left(\left\|\Phi_{x}\right\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+\sum_{\iota=1}^{Z-1}\left\|\phi_{x}^{\iota}\right\|_{2,2, Q^{l}}\right)$ for all $k=1, \ldots, N$ and $Z=2, \ldots, K+1$.

Let

$$
\begin{aligned}
& \left.\leq\left\{\int_{(z-1) h_{1}}^{z h_{1}}\left\{\max _{t \in\left[(z-1) h_{1}, z h_{1}\right]} \iint_{R^{n}}\left|\phi^{z}(x, t)\right|^{2} d x\right)^{\frac{2}{2}}\right\}^{2} d t\right)^{\frac{3}{2}} \\
& \Delta h_{1}^{\frac{3}{2}} \cdot \max _{t \in\left[(2-1) h_{1}, L h_{1}\right]}\left\|\phi^{2}(\cdot, t)\right\|_{2, R^{n}} \cdot
\end{aligned}
$$

(4.22) $\quad c \triangleq\left\{\|\Phi(\cdot, 0)\|_{2, R^{n}}+\|\Phi\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+\left\|\Phi_{x}\right\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}\right.$

$$
\left.+\sum_{k=0}^{N}\left\{\sum_{j=1}^{n}\left\|F_{k j}\right\|_{2,2, R^{n} \times\left(-h_{k}, T-h_{k}\right)}+\left\|f_{k}\right\|_{2, s, R^{n} \times\left(-h_{k}, T-h_{k}\right)}\right)\right\}
$$

Then, by letting $Z=1$ in estimate (4.16), it follows from the fact that $\phi^{0}=\tilde{\phi}^{0}=\Phi$, and inequalities (4.20) and (4.21) that

$$
\begin{equation*}
\left|\phi^{\perp}\right|_{Q^{1}} \leq M_{0} N C \triangleq d C, \tag{4.23}
\end{equation*}
$$

where M_{0} and C are as defined in (4.17) and (4.18), respectively.
Now, by letting $\tau=2$ in estimate (4.16), we deduce from (4.10), (4.20), (4.21), (4.18) and (4.23) that
(4.24) $\left|\phi^{2}\right|_{Q^{2}} \leq d\left(d C+2^{\frac{3}{2}}\left(\left\|\Phi_{x}\right\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+\left\|\phi_{x}^{1}\right\|_{2,2, Q^{1}}\right)\right.$
$+2^{\frac{3}{2}}\left\{\|\Phi\|_{2,2, R^{n} \times\left(-h_{N}, 0\right)}+h_{1}^{\frac{3}{2}} \max _{t \in\left[0, h_{1}\right]}\left\|\phi^{1}(\cdot, t)\right\|_{2, R^{n}}\right\}$
$\left.+\sum_{k=0}^{N}\left(\sum_{j=1}^{n}\left\|F_{k j}\left(\cdot, \cdot-h_{k}\right)\right\|_{2,2, Q^{1}}+\left\|f_{k}\left(\cdot, \cdot-h_{k}\right)\right\|_{2, s, Q}\right)\right)$
$\leq 2^{\frac{3}{2}} d\left(d C+C+h^{\frac{3}{2}} d C\right)$
$\leq 2^{\frac{3}{2}} d(1+h d) C$,
where $h=1+h_{1}^{\frac{1}{2}}$ and C is as defined in (4.22).

By the same token, we can show successively in the order of $\tau=3,4, \ldots, K+1$ that

$$
\begin{equation*}
\left|\phi^{z}\right|_{Q} \leq(2!)^{\frac{1}{2}} d C(1+h d)^{z-1} \tag{4.25}
\end{equation*}
$$

where C and the constants d and h are as defined before.
On the other hand, we deduce from inequality (4.7) that
(4.26)

$$
\begin{aligned}
& |\phi|_{Q}=\max _{t \in[0, T]}\|\phi(\cdot, t)\|_{2, R^{n}}+\left\|\phi_{x}\right\|_{2,2, Q} \\
& \leq(K+1)^{\frac{2}{2}} \cdot\left\{\sum_{l=1}^{K} \int_{t \in\left[(\tau-1) h_{1}, \tau h_{1}\right]}\left\|\phi^{l}(\cdot, t)\right\|_{2, R^{n^{2}}}\left\|\phi_{x}^{2}\right\|_{2,2, Q}\right\} \\
& \left.+\max _{t \in\left[K h_{1}, T\right]}\left\|\phi^{K+1}(\cdot, t)\right\|_{2, R^{n^{+}}}\left\|\phi_{x}^{K+1}\right\|_{2,2, Q^{K+1}}\right\} \\
& \Delta(K+1)^{\frac{7}{2}} \sum_{Z=1}^{K+1}\left|\phi^{Z}\right|_{Q^{z}} .
\end{aligned}
$$

Thus by substituting inequalities (4.23), (4.24) and (4.25) into the right hand side of (4.26) we obtain estimate (4.1) with

$$
M \triangleq(K+1)^{\frac{7}{2}}\left\{d+2^{\frac{3}{2}} d(1+h d)+(3!)^{\frac{1}{2}} d(1+h d)^{2}+\ldots+((K+1)!)^{\frac{3}{2}} d(1+h d)^{K}\right\} .
$$

This completes the proof.

References

[1] N.U. Ahmed and K.L. Teo, "Necessary conditions for optimality of Cauchy problems for parabolic partial differential systems", SIAM J. Control 13 (1975), 981-993.
[2] D.G. Aronson, "Non-negative solutions of linear parabolic equations", Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3) 22 (1968), 607-694 (1969).
[3] D.G. Aronson and Piotr Besala, "Uniqueness of solutions of the Cauchy problem for parabolic equations", J. Math. Anal. AppZ. 13 (1966), 516-526.
[4] D.G. Aronson and Piotr Besala, "Correction to 'Uniqueness of solutions of the Cauchy problem for parabolic equations'", J. Math. Anat. Appl. 17 (1967), 194-196.
[5] Avner Friedman, Partial differential equations of parabolic type (Prentice-Hall, Englewood Cliffs, New Jersey, 1964).
[6] A.M. Il'in, A.S. Kalashnikov, O.A. Oleinik, "Linear equations of the second order of parabolic type", Russian Math. Surveys 17 (1962), no. 3, 1-143.
[7] O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and quasilinear equations of parabolic type (Translations of Mathematical Monographs, 23. American Mathematical Society, Providence, Rhode Island, 1968).

Department of Mathematics,
Bandung Institute of Technology,
Bandung,
Indonesia;
School of Mathematics, University of New South Wales, Kensington,
New South Wales 2033, Australia.

