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Abstract

Within the scope of Eringen's linearised micropolar theory, this note
outlines a solution for the stress concentration around an elliptic hole in an
infinite plate under axial tension.

1. Introduction

In classical linear elasticity theory, the solutions for the stress concentra-
tion around circular and elliptic holes are well known [2]. For elastic materials
with microstructure, the fundamental system of field equations includes a
couple-stress tensor, in addition to the force-stress tensor. Eringen [1] has
formulated the tensor equations for elastic materials with microstructure.
Using an approach based on stress functions, the problem of stress concentra-
tion around a circular hole has been solved [4]. Here, instead of using stress
functions we use a method based on the Helmholtz representation of the
displacement vector u, and the micro-rotation vector <£, as sums of two fields,
one with a scalar and the other a vector potential.

2. Outline of method

Following Eringen [1], the basic equations for a micro-polar elastic solid
in the absence of inertia forces are

(A + 2fi + K

(a + (3 + y)VV.<£ + yVx Vx <£ + KVX U-2K4> = 0 . (2.1)

The constants A, /x, K, a, /3 and y denote the material constants of the
micro-polar elastic solid. Using

u = Vuo+ VU,

<£ = V4>o + Vx<j>, (2.2)

289

https://doi.org/10.1017/S0334270000001168 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001168


290

subject to conditions

V

I2

the equations (2.1) reduce

A. Basn

.0 = o,
0 = 0,

K(K+2H]

to

V4«0 = 0 ,

V . * = 0 ,

* = <*„

0 = 0,

' l / = 0.

[2]

(2.3)

(2.4)

We consider now an infinite plate in a state of uniform tension S (along
the x -direction) disturbed by an elliptical hole of semiaxes a and b parallel to
the x- and y-axes, which is free from stress. As the boundary of the hole is an
ellipse, it is advantageous to use elliptic coordinates (£, TJ) given by x =
c cosh £ cos TJ, y = c sinh £ cos TJ.

As the hole is stress free, and the plate is subjected to uniform tension S
at infinity, we have as boundary conditions

f|= f* = 0 on the hole £ = £0, m i = 0 on f = f0,

/ | = | ( 1 + COS2TJ), t\,= - |sin2Tj at £ = <», (2.5)

where m(
z is the couple-stress and t\ is the stress-tensor.

In elliptic coordinates (£, TJ) the general solutions of the equations (2.4)
are given by

i*o=

Gek2n (£ -

l / = 2 [<Ksin2nT? + C2n Gek2n(£ - ql)se2n(71, -<?,)], (2.6)
n = 1

where se2n(rj, — q,) is the periodic Mathieu function of order In and
Gek2t,(f, - qt) is a modified Mathieu function involving /C-Bessel functions
[5]. Further, q, = c2/4l2 and A2n, B2n, and C2n are constants which are
determined from the boundary conditions. Also
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<f>o= aoe'2e + Cog,

fa = a2n.2e-<2-2H + a2 ne- ( 2 n + 2« + a2ne'2n( (n g 1),

fa* = fc2n-2e-(2-2« + t2ne.-(2"+2){ + b2ne-2n( ( n i l ) .

The unknown coefficients a2n, b2m a'2n, b'2n, b0, c0, etc. are determined from the
boundary condition (2.5), by solving an infinite set of linear equations.* The
stress components in elliptic coordinates are given by

^ (cosh 2£ - cos 2T, )2f! = A (cosh 2£ - COS2T, )

u » x a ( A x • -> (du° ^u\^

— - — j j ,

y . (2.7)

Let T' denote the solution (2.6) with the boundary conditions:
(i) uniformly pressurised hole on £ = £0,

(ii) t\ = t%= mi=0 at £ = °°.
Let T denote the solution (2.6) with the undisturbed uniform field of

uni-axial tension (i.e. as if there is no hole) t" = S.

* Further details are available on request to the author.
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If T denotes the required solution of the problem defined by (2.4) and
(2.5) then we have

T= T'+f.

The solution T is given by

« S .
t%= - x2

1+COS2T;

cosh 2^ -COS2T; '

1 ? / . sin2T?
2"'" ccosh2^-cos2rj '

bcosh 2^ -COS2T;

m*z=0. (2.8)

We are only interested in the stress concentration factor f*li-"« on the
hole £ = £o, and this reduces to

t:
c ..2^ l - cos2 i7

= S cosh £ —— Lr—
cosh2^ - C O S 2 T J

= S. (2.9)

Similarly, using the solution T", the stress concentration factor reduces to

(2.10)

where

r, =

2(2fi + K) 2A + 2fi + K

and the prime in Gek2n denotes differentiation.
Using the complete solution T, the stress concentration factor is given by
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Transition to circular case

As the ellipse of semi-axes r, and r2 tends to a circle with radius 'a\
go—*°°,.c—>0 such that rt,r2—>a we get from (2.11)

_ 3 + M Q 5

7|=T7/2 A I iVlO
r,,r2-o

which becomes 3S in the classical case where Mo = 0.

Conclusion

It is evident that the stress concentration factor proves to be smaller than
in the classical theory (as Mo > 0), depending on the elastic constants of the
microstructure of the media. These results are important for solids composed
of dumbell macro-molecules, such as fibrous and coarse grain structure
materials.
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