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1. Introduction

Let (S, M) be a measurable space (that is, a set S in which is defined a o--algebra
M of subsets) and X a locally convex space. A map M from M to the family of all
non-empty subsets of X is called a multimeasure iff for every sequence of disjoint
sets An G M (n = 1,2,...) with U"=i An = A, the series S™=) M(An) converges (in the
sense of (6), p. 3) to M(A).

The concept of multimeasure with values in R" was first introduced by Vind (15, p.
174) in order to solve some problems in economics. In (14, Theoreme 23, p. 292), Valadier
has proved the Radon-Nikodym theorem for multimeasures taking values in R" (or R°°)
using the notion of scalar integrability of set-valued functions. (For further results in this
aspect, see (3) and (11).)

In Section 2 of this paper, we shall define integrability for a special class of
set-valued functions, which we shall call perfectly measurable multifunction. Then
we prove a theorem (Theorem 1) that serves as an example of a multimeasure. In
Section 3 we prove the main result, the Radon-Nikodym theorem for multimeasures
taking values in a locally convex space; this, however, is not a generalisation of
Theoreme 23 of (14), nor a consequence of that.

I should like to express my gratitude to Professor A. P. Robertson for suggesting
this problem and for many helpful discussions.

2. Integrable multifunctions

Henceforth, (S, M) is a measurable space, n is a finite positive measure on A and
X is a Hausdorff locally convex space with (topological) dual X', except where
otherwise specified.

Let F be a map that assigns to each t G S, a non-empty set F(t) C X. Then F is
called a multifunction (or a set-valued function) from S to X. A point-valued function
/ from S to X is called a selector for F iff f(t) G F(t) for every t G 5. For any subset
B of X, we put

= {t e S: F(t) D B * <£}.

The multifunction F is called measurable iff F~\B)E.M for each closed subset B of
X. We say that F is perfectly measurable iff it is measurable and, for every closed
subset B of X, the multifunction FB (called the refinement of F by B), defined on
F'\B) by FB(t) = F(t)r\B, has a measurable selector.

The following Lemma 1 that assures a measurable selector for F is due to Leese
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168 LE VAN TU

(7) (for other results on the existence of measurable selectors for a multifunction, we
refer to (1), (4), (10) and (12)). Because this work does not yet seem to have been
published, a brief proof is included.

Lemma 1. Suppose that X' contains a sequence (JCJ,), n = 1, 2 , . . . , which separates
the points of X. Then every compact-valued measurable multifunction F from S to X
has a measurable selector.

Proof. For each t G S, let F0(t) = F(t) and define Fn(t) (n = 1,2,...) inductively
as follows

Fn(t) = {x<= FH-t(t):(x, x'n) maximal}.

Then it can be shown that each Fn is a compact-valued measurable multifunction from
S to X. Moreover, it is clear that D"=i Fn(t) consists of a single point, f(t) say, and
that for every closed set B in X,

f~\B)= Fl F~l(B).
n = 1

Therefore / is a measurable selector for F.

Lemma 2. Suppose that X' contains a sequence which separates the points of X.
Then every compact-valued measurable multifunction F from S to X is perfectly
measurable.

Proof. Let B be a closed subset of X. Let FB be the refinement of F by B, which
is defined on F'\B) by FB(t) = F(t) (IB. Then for every closed set C in X,

which is measurable. Thus FB is a compact-valued measurable multifunction from
F~l(B) to X. Hence, by Lemma 1, FB has a measurable selector. Therefore F is
perfectly measurable.

Before going on, let us recall that a (point-valued) function / from (S, Ji, ix) to X is
called scalarly integrable iff for every x' G X', the function (x', f) = x' ° f is integrable.
Then, for any A G JI, we denote by JAfdn the linear form on X' defined by

A measurable function / from (5, Ji, n) to X is said to be integrable iff / is scalarly
integrable and JAfdfi&X for every A G Ji (see for example (9)).

Now let F be a multifunction from (S, Ji, /x) to X and let 5^(F) denote the set of
all measurable selectors of F. The multifunction F is called integrable iff F is
perfectly measurable and every / G Sf(F) is integrable. We denote, for any A&Jt,

which is a subset of X. Note that we require F to be perfectly measurable so that
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every refinement of F (by any closed subset B of X) contributes to the integral (of
course provided that A C\F~\B) has a non-zero measure). Otherwise, it may happen
that F(t) = G(t) L){x} for each t E S, where G(t) is contained in a fixed closed subset
B of X, G has no measurable selector, and x G X\B. In such a case, the integral of F
does not reflect the full range of values taken by F at all (For the basic properties of
integrable multifunctions, see (13)).

Theorem 1. Let F be an integrable multifunction from S to X. Then the set-valued
map M from M to X, defined by

M(A) = f
JA
f (A E M),

JA

is a multimeasure.

Proof. Let (An), n = l , 2 , . . . , be a sequence of disjoint sets in M and let
A = lX=i An. We prove that

For each n, let xn G M(An). Then there exist /„ G Sf(F) such that xn = JAn fn
n = 1,2,.... Let us define a function / by

, f/nonAn, n = l , 2 , . . .
7 I/, on S\A.

Certainly / 6 Sf(F), hence / is integrable and xn = fAn f dfi. Now, for every x' G X' and
every positive integer N,

\ n = l / n = l JAn

which converges, as N -»«, to

This means that the series 2™=ijcn converges weakly to x = fAfdfjL, and a similar
property holds for every subseries of 2"=i xn. Hence, by the Orlicz-Pettis Theorem
(see for example (6), p. 4), the series S"=i xn converges (unconditionally) to x, which
belongs to M(A). Thus we have proved that the series 2"=i M(An) is (unconditionally)
convergent and is contained in M(A).

To prove the reverse inclusion let x G M(A); then x = fAfd\n for some / E S^(F).
Then, as before, the series S"=1 fAnfdfi converges to x. This shows that xG
2™=i M(An), and completes the proof.

3. The Radon-Nikodym theorem

Let K be a convex closed subset of X and let x' G X'. We write <p(x', K) =
sup{(x',x):xGK}. Following Meyer (8, p. 32), we denote by y°(S,M) (resp.
S£\S,M, n)) the vector space of all measurable bounded (resp. integrable) real-valued

https://doi.org/10.1017/S0013091500016138 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016138


170 LE VAN TU

functions on S and by L°°(5, M, n) (resp. L\S, M, /A)) the associated quotient space
under the relation of equality /i-almost everywhere.

We first prove the following lemma.

Lemma 3. Suppose that X is semireflexive. Let p be a real-valued function, defined
on X', satisfying:

(i) p(x' + y') *£ p(x') + p(y') and p(Ax') = Ap(x') for A 5* 0,
(ii) for every e > 0, p"1^-0 0 , e)) is a neighbourhood of 0 in X'.

Then p is a(X', X)-lower semicontinuous.

Proof. Let a G R; we prove that the set

is <r(X', X)-closed. Since X is semireflexive and A is convex, it is sufficient to prove
that A is strongly closed. Let y ' 6 A and let e > 0. By (ii), there exists a balanced
neighbourhood U of 0 in X' such that z' E. U implies p(z') < e. Then there is
x'€y'+ U such that p(x') =s a. It follows that

P(y') *= P(y' - x') + p(x') < e + a.

Therefore y' G A, which completes the proof.

Theorem 2. Lef (S, M, /i) fee a probability space (i.e. pi(5)= 1) and X a locally
convex space that is semireflexive. Assume that X' contains a sequence which
separates the points of X. Also let M be a convex compact-valued multimeasure from
M to X. Suppose that there exist a convex compact metrizable subset K of X and a
positive measure v<£ ft such that for every ASM,

M(A) C v(A)K.

Then there is a convex compact-valued integrable multifunction F from S to X such
that .

M(A)= Fdn,
JA

for every AG.M.

Proof. We may suppose that K is balanced without loss of generality. For every
x' G X', we define for each AE.M,

Then each ^ is a real-valued bounded measure and these measures satisfy the
following properties:

(i) Hs+ytS: Hx+ fJiy;
(ii) MAX' = A/v for A 3= 0.

Moreover, for each x' G X', we have jix. < fi; hence there is e/v G L\S, M, n) such that
for every AE.M,

I t\ix. dfi.
JA
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Certainly the functions i/v satisfy the conditions similar to (i) and (ii).
Now we want to find, for each x' E X', a function f*• in the class tltx- such that for

every t E S, the map x'-*^At) satisfies the conditions of Lemma 3. Let 6 be the
density function of v with respect to /A. For every x' G X' and every A EM, since
M(A) C v{A)K, we have

', M(A))«<p(x', v(A)K) = v{A)q>(x', K).

Hence, putting fcx. = \<p(x', K)\, we have |^ |(A) =S v(A)kx-, for every A EM. Therefore,
for every x' E X',

Let us choose a non-negative member & in the class 6 and put, for n = 0 ,1,2, . . . ,

Sn = {t G S: n =£ @(t) < n + 1}.

Thus each SnEM and the Sn form a partition for S. For each n = 0, 1, 2 , . . . ,let t^x,n
be the restriction of fa on Sn and define Mn, fj.n analogously. Then </v,n G
L°°(Sn, Mn, tin). Therefore, by the Lifting Theorem (8, Theoreme 12, p. 195), each 0-,..n
can be lifted to a function Wx,n GiP"(Sn, Mn) (note that the lifting map is linear,
positive and isometric). We obtain the function Vx< by gluing the functions ^x,n
together. It is clear that tfV G <£\S, M, ft) and

(in) ¥,+,*¥,.+Vy,
(iv) Vxx= AtfV for A 3=0.

Now, let t be chosen and fixed in S; then t G Sn for some « = 0, 1,2,.... For every
x' E X', since Hi/vJU'S kx(n + 1), we have ||tfV.n|| =s fcx.(n + 1) and hence

According to Hormander (5, Theoreme 7), the function *'-»/cx. is (strongly) continu-
ous. Hence the function x'-*¥At) is continuous at 0. This fact, combined with (iii)
and (iv), implies that the function x' -* VAt) is <r(X', X)-lower semicontinuous
(Lemma 3). Therefore (by Thdoreme 5 of (5)), there is a convex closed subset F(t) of
X such that

for every x' G X'. Moreover if x' E K", the polar set of K, then kx^\. It follows that

Hence F(t) is compact for each t E S.
Next, we prove that the multifunction F is integrable. Note first that for every

x'EX', the function t-*(p(x',F{t)) is measurable and that F(t) is contained in the
convex compact metrizable set (n + \)K whenever t G Sn. Thus (by Proposition 8 of
(14)), the restriction of F on each Sn (n = 0, 1,2,...) is measurable. Therefore F is
measurable. Then, by Lemma 2, F is perfectly measurable. Now let f E Sf(F); then
for every x' G X',

This shows that / is scalarly integrable. Furthermore, for each n = 0,1,2,..., f(Sn) C
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(n + l)K which is convex compact and balanced. Therefore (by Theoreme 1 of (2)), /
is integrable (that is, JAfdfiG.X for every A EM). This means that F is integrable.

Finally, since X is semireflexive and because every scalarly measurable selector of
F is measurable, we obtain from (2, Theoreme 2)

<p (x1. p(x', F(-)) dp.,

for every AE.M and every x' G X'. Yet the right-hand side is the same as

= cp(x',\
JAJA J A

Therefore, by Theoreme 1 of (5),

M(A) = I
JA

for every A G M. This completes the proof.
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