THE MAMA MACHINE: PROPER MOTIONS FROM DIGITIZATION OF CENTENARY PLATES

Jean Guibert Observatoire de Paris 61 avenue de l'Observatoire 75014 Paris France

ABSTRACT. MAMA was designed to digitize a Schmidt photograph in 2 hours, and a Carte du Ciel plate in 30 minutes, with a positional accuracy of 1 micron. Comparison of recent photographs with Carte du Ciel plates can thus be performed on a large scale to determine proper motions of stars down to visual magnitude 14 over a time interval of about ninety years. The poster presents the main features of the system and illustrates some programmes undertaken in various domains.

1. GENERAL OUTLINE OF THE SYSTEM

MAMA is a high speed, computer controlled microdensitometer designed to digitize and analyze astronomical photographs. It gains its speed by using a linear array of 1024 photodiodes to measure the amount of light transmitted by the plate.

A 6 x 6 inch² plate - such as a "Carte du Ciel " plate-could be digitized, at 10 micron resolution, in a time as short as 15 minutes. The corresponding data flow (300,000 pixels, i.e. 600,000 bytes per second), has guided the design of the computer configuration, composed of two subsets: - the microcomputer system, in charge of the management and control of the microdensitometer (X and Y motions, data acquisition...)

the real time oriented host computer, associated with array processor and an image processing system with colour display.

2. DATA PROCESSING

From the basic 10 micron image element, pixels of any (larger) size can be synthesized in real time.

The array processor can also be used as a very fast tool to extract astrometric and photometric information from

425

S. Débarbat et al. (eds.), Mapping the Sky, 425-426. © 1988 by the IAU.

the plate, in the form of a catalog containing X and Y positions as well as shape and magnitude indicators for all the objects present in the field above a given density threshold. This information can be directly interpreted, or used to rescan the plate around selected positions in view of further image processing.

3. ASTROMETRIC PERFORMANCE

The repeatability is better than 0.5 micron over the whole XY table which accepts 14 x 14 inch² plates. The accuracy can be determined by measuring a standard plate bearing chromium disks with positions and diameters known to 0.2 micron. Classical tests (e.g., scanning the standard plate after rotation of 90°) show that the accuracy of coordinates given by the machine is better than 1 micron over the central 12 x 12 cm² area (see the paper by Bienaymé et al., this symposium).

MAMA is operated by INSU (Institut National des Sciences de l'Univers).