Appendix C Useful relations in the treatment of collective modes

In this appendix we give some simple relations used in the treatment of collective surface vibrations in the harmonic approximation.

C.1 Limit on the multipolarity of collective surface vibrations

Collective surface vibrations can be self-sustained modes provided the ripples they produce on the surface contain many particles, so that the surface can be viewed as a continuous elastic medium. In other words (see Fig. C.1(a))

$$\frac{2\pi R}{2\lambda} \gg d,\tag{C.1}$$

where $R = 1.2A^{1/3}$ fm is the nuclear radius, λ is the multipolarity of the surface mode and

$$d = \left(\frac{\frac{4\pi}{3}R^3}{A}\right)^{1/3} \approx 2\,\mathrm{fm} \tag{C.2}$$

is the mean distance between nucleons. From equations (C.1) and (C.2) one obtains (see Fig. C.1(b))

$$\lambda \ll 2A^{1/3} \approx 10 \tag{C.3}$$

for a nucleus with mass number $A \sim 120$. This result agrees well with the experimental fact that collective states in medium-heavy mass nuclei have multipolarities $\lambda \leq 5$.

C.2 The relation between \hat{F} and $\hat{\alpha}$

The operator \hat{F} defined in equation (8.29) is restricted, in the random phase approximation, to either create or destroy particle-hole excitations, i.e.

$$\hat{F} = \sum_{\nu_k \nu_i} \left\{ \langle \nu_k | F | \tilde{\nu}_i \rangle \Gamma^{\dagger}_{\nu_k \nu_i} + \langle \tilde{\nu}_i | F | \nu_k \rangle \Gamma_{\nu_k \nu_i} \right\}.$$
(C.4)

Figure C.1. (a) Schematic representation of an octupole surface wave. (b) The quantity $(A)^{1/3}$ as a function of A for medium-heavy nuclei.

Making use of equation (8.43) and the corresponding equation for $\Gamma_{\nu_k \nu_i}$ one can write equation (C.4) in terms of the RPA boson operators $\Gamma^{\dagger}_{\alpha}$ and Γ_{α} , according to

$$\hat{F} = \sum_{\substack{\nu_{k}\nu_{i}\\\alpha'}} \left\{ \frac{\Lambda_{\alpha'} |\langle \tilde{\nu}_{i} | F | \nu_{k} \rangle|^{2}}{(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}}) - \hbar\omega_{\alpha'}} \Gamma_{\alpha'}^{\dagger} - \left(-\frac{\Lambda_{\alpha'} |\langle \tilde{\nu}_{i} | F | \nu_{k} \rangle|^{2}}{(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}}) + \hbar\omega_{\alpha'}} \right) \Gamma_{\alpha'} \right. \\ \left. + \frac{\Lambda_{\alpha'} |\langle \tilde{\nu}_{i} | F | \nu_{k} \rangle|^{2}}{(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}}) - \hbar\omega_{\alpha'}} \Gamma_{\alpha'} - \left(-\frac{\Lambda_{\alpha'} |\langle \tilde{\nu}_{i} | F | \nu_{k} \rangle|^{2}}{(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}}) + \hbar\omega_{\alpha'}} \Gamma_{\alpha'}^{\dagger} \right) \right\} \\ = \sum_{\alpha'} \Lambda_{\alpha'} \sum_{\nu_{k}\nu_{i}} \frac{|\langle \tilde{\nu}_{i} | F | \nu_{k} \rangle|^{2} \ 2(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}})}{(\varepsilon_{\nu_{k}} - \varepsilon_{\nu_{i}})^{2} - (\hbar\omega_{\alpha'})^{2}} (\Gamma_{\alpha'}^{\dagger} + \Gamma_{\alpha'}) \\ = \sum_{\alpha'} \frac{\Lambda_{\alpha'}}{\kappa} (\Gamma_{\alpha'}^{\dagger} + \Gamma_{\alpha'}) = \sum_{\alpha'} \sqrt{\frac{\hbar\omega_{\alpha'}}{2C_{\alpha'}}} (\Gamma_{\alpha'}^{\dagger} + \Gamma_{\alpha'}) = \hat{\alpha}, \quad (C.5)$$

where use has been made of equation (8.39).

In other words, \hat{F} and $\hat{\alpha}$ are the single-particle and the collective representations of the same operator.