CHARACTERIZATIONS OF QUASI-METRIZABLE BITOPOLOGICAL SPACES

T. G. RAGHAVAN and I. L. REILLY

(Received 15 September 1986)

Communicated by J. H. Rubinstein

Abstract

In this paper we prove that a pairwise Hausdorff bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is quasi-metrizable if and only if for each point $x \in X$ and for $i, j = 1, 2, i \neq j$, one can assign \mathcal{T}_i nbd bases $\{S(n, i; x) | n = 1, 2, ...\}$ such that (i) $y \notin S(n - 1, i; x)$ implies $S(n, i; x) \cap S(n, j; y) = \phi$, (ii) $y \in S(n, i; x)$ implies $S(n, i; y) \subset S(n - 1, i; x)$. We derive two further results from this.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 E 55. Keywords and phrases: quasi-metric, quasi-uniformity, bitopological space.

The concept of quasi-metric spaces was first introduced by Wilson [11]. The fact that a quasi-metric gives rise to a conjugate quasi-metric was noticed by Kelly [1], thus leading to the study of bitopological spaces. Since then one of the main problems in this area has been to find necessary and sufficient conditions for quasi-metrization. This problem was considered by Kelly [1] Patty [5], Lane [2], Reilly [6], Salbany [9] and later by Pareek [4] and Romaguera [7, 8].

The related notion of quasi-uniform spaces and their properties have been discussed in great detail in Murdheswar and Naimpally [3] and Stoltenberg [10]. In the proof of Theorem 1 we make use of the quasi-uniform analogue of the metrization theorem of Alexandroff and Urysohn, namely, a pairwise Hausdorff quasi-uniform space $(X, \mathscr{V}, \mathscr{V}^{-1})$ is quasi-metrizable if and only if \mathscr{V} has a countable base. From Theorem 1 we derive Theorems 2 and 3 as corollaries. It must be noted that Theorem 2 has been proved by Pareek [4].

We write nbd for neighbourhood. If A is a subset of X and \mathcal{T}_i is a topology on X, then $\mathcal{T}_i \operatorname{cl} A(\mathcal{T}_i \text{ int } A)$ is the closure (interior) of A in the space (X, \mathcal{T}_i) .

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

.

272

1. THEOREM. A pairwise Hausdorff bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is quasimetrizable if and only if for each point $x \in X$ one can assign \mathcal{T}_i neighbourhood bases $\{S(n, i; x) | n = 1, 2, ...\}$ such that

(i) $y \notin S(n-1,i; x)$ implies $S(n,i; x) \cap S(n,j; y) = \emptyset$,

(ii) $y \in S(n, i; x)$ implies $S(n, i; y) \subset S(n - 1, i; x)$ $(i, j = 1, 2; i \neq j)$.

PROOF. To prove that the conditions are sufficient, we show first that $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise regular. If $S(n, i; x) \cap S(n, j; y) = \emptyset$, then $S(n, i; x) \subset X - S(n, j; y)$ so that $\mathcal{T}_j \operatorname{cl} S(n, i; X) \subset X - \mathcal{T}_j$ int S(n, j; y). Thus if $y \notin S(n-1, i; x)$, then $y \notin \mathcal{T}_j \operatorname{cl} S(n, i; x)$ so that

$$x \in S(n, i; x) \subset \mathcal{F}_i \operatorname{cl} S(n, i; x) \subset S(n-1, i; x).$$

Furthermore the space is pairwise normal. Indeed, if A and B are \mathscr{T}_1 closed and \mathscr{T}_2 closed subsets (of X) respectively such that $A \cap B = \emptyset$ and $y \in B$, then there exists a positive integer n(y) such that $A \cap \mathscr{T}_2$ cl $S(n(y), 1; y) = \emptyset$. Since $x \notin S(n(y), 1; y)$ for each $x \in A$, $S(n(y) + 1, 1; y) \cap S(n(y) + 1, 2;$ $x) = \emptyset$ for all $x \in A$. If $Q_{n(y)} = \bigcup \{\mathscr{T}_2 \text{ int } S(n(y) + 1, 2; x) | x \in A\}$, then $Q_{n(y)} \supset A$ and $Q_{n(y)} \cap \mathscr{T}_2$ cl $S(n(y) + 1, 1; y) = \emptyset$. If we write $\bigcup \{\mathscr{T}_1 \text{ int } S(n(y) + 1, 1; y) | n(y) = k\} = W(k, 1)$, then $Q_k \cap \mathscr{T}_2$ cl $W(k, 1) = \emptyset$ so that we get a \mathscr{T}_1 open covering $\{W(k, 1) | k = 1, 2, ...\}$ of B such that $A \cap \mathscr{T}_2$ cl $W(k, 1) = \emptyset$ for each k. Similarly we can form a \mathscr{T}_2 open covering $\{W(k, 2) | k = 1, 2...\}$ of A such that $B \cap \mathscr{T}_1$ cl $W(k, 2) = \emptyset$ for each k. Then a standard argument produces disjoint sets $W_1 \in \mathscr{T}_1$ and $W_2 \in \mathscr{T}_2$ such that $W_1 \supset B$ and $W_2 \supset A$.

Let $\mathscr{K}(m, i) = \{\mathscr{T}_i \text{ int } S(m, i; y) \mid y \in X\}$. Let $S(x, \mathscr{K}(m, i)) = \bigcup\{\mathscr{T}_i \text{ int } S(m, i; y) \mid x \in \mathscr{T}_j \text{ int } S(m, j; y)\}$. Let $\mathscr{B}(i; x) = \{S(x, \mathscr{K}(m, i)) \mid m = 1, 2...\}$. We claim $\mathscr{B}(i; x)$ is a \mathscr{T}_i local base at x. If x is fixed initially and U(i; x) are arbitrary \mathscr{T}_i nbds of x then there exists n_i such that $x \in S(n_i - 1, i; x) \subset U(i; x)$. Consider $m = \max(n_1 + 1, n_2 + 1)$. Then clearly $S(m, i; x) \subset S(n_i, i; x)$. In order to avoid confusion, let us now prove specifically $\mathscr{B}(2; x)$ is a \mathscr{T}_2 local base at x. Let y be such that $x \in \mathscr{T}_1$ int S(m, 1; y). Then $S(m, 1; y) \cap S(m, 2; x) \neq \emptyset$ so that $y \in S(m - 1, 2; x) \subset S(n_2, 2; x)$. Hence $S(n_2, 2; y) \subset S(n_2 - 1, 2; x)$. Since $m = \max(n_1 + 1, n_2 + 1)$, \mathscr{T}_2 int $S(m, 2; y) \subset S(n_2, 2; q) \subset S(n_2 - 1, 2; x) \subset U(2; x)$. Thus $\mathscr{B}(2; x)$ is a \mathscr{T}_2 local base at x. If $x \in \mathscr{T}_1$ int S(n + 2, 1; y), then $S(n + 2, 1; y) \cap S(n + 2, 2; x) \neq \emptyset$ so that

that by (i) $y \in S(n + 1, 2; x)$. Hence by (ii) $S(n + 1, 2; y) \subset S(n, 2; x)$ so that $\bigcup \{\mathscr{T}_2 \text{ int } S(n + 2, 2; y) | x \in \mathscr{T}_1 \text{ int } S(n + 1, 1; y)\} \subset \mathscr{T}_2 \text{ int } S(n, 2; x)$. If we define $\mathscr{L}(m, i) = \{S(x, \mathscr{K}(m, i)) | x \in X\}$, then $\mathscr{L}(n + 2, i) < \mathscr{K}(n, i)$ for all

n = 1, 2, 3... If we write $V(m, i) = \bigcup \{\mathcal{T}_j \text{ int } S(m, j; y) \times \mathcal{T}_i \text{ int } S(m, i; y) \mid y \in X \}$, then $(x, y) \in V(m + 2, i) \circ V(m + 2, i)$ implies, for some $z \in X$ that $(x, z) \in V(m + 2, i)$ and $(z, y) \in V(m + 2, i)$.

Indeed $x \in V(m+2, j)[z] \subset \mathscr{T}_j$ int S(m, j; z) and $y \in V(m+2, i)[z] \subset \mathscr{T}_i$ int S(m, i; z) so that $(x, y) \in V(m, i)$. Also notice that $(V(m, i))^{-1} = V(m, j)$. Thus the conditions are sufficient.

The necessity is proved as follows. Let p_1 be the quasi-metric that induces \mathcal{T}_1 and \mathcal{T}_2 be induced by its conjugate p_2 . Let us write $S(n, i; x) = \{y \mid p_i(x, y) < (\frac{1}{2})^n\}$. If $x \notin S(n-1, i; x)$ and $S(n, i; x) \cap S(n, j; z) \neq \emptyset$, then there exists $y \in X$ such that $p_i(x, y) < (\frac{1}{2})^n$ and $p_j(z, y) < (\frac{1}{2})^n$. Hence $p_i(x, z) \leq p_i(x, y) + p_i(y, z) < (\frac{1}{2})^{n-1}$, a contradiction. Also, if $y \in S(n, i; x)$ and $z \in S(n, i; y)$, then $p_i(x, y) < (\frac{1}{2})^n$ and $p_i(y, z) < (\frac{1}{2})^n$ so that $p_i(x, z) < (\frac{1}{2})^{n-1}$ and hence $z \in S(n-1, i; x)$.

2. THEOREM. A pairwise Hausdorff space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is quasi-metrizable if and only if for each $x \in X$ one can assign \mathcal{T}_i nbd bases $\{S(n, i; x) | n = 1, 2, ...\}$ such that

- (i) $y \notin S(n-1,i; x)$ implies $S(n,i; x) \cap S(n,j; y) = \emptyset$,
- (ii) $y \in S(n, i; x)$ implies $x \in S(n, j; y)$ $(i, j = 1, 2; i \neq j)$.

PROOF. We have to verify only condition (ii) of Theorem 1. Now

$$y \notin S(n-1,i;x)$$

implies $S(n, i; x) \cap S(n, j; y) = \emptyset$ so that if $z \in S(n, i; x)$, then $z \notin S(n, j; y)$. Thus $y \notin S(n, i; z)$. The necessity is obvious.

3. THEOREM. A pairwise Hausdorff space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is quasi-metrizable if and only if for each $x \in X$ one can assign \mathcal{T}_i nod bases $\{S(n, i; x) | n = 1, 2, ...\}$ such that

- (i) $y \in S(n, i; x)$ implies $S(n, i; y) \subset S(n 1, i; x)$,
- (ii) $y \in S(n, i; x)$ implies $x \in S(n, j; y)$ $(i, j = 1, 2; i \neq j)$.

PROOF. We only have to verify condition (i) of Theorem 1. If

$$S(n,i; x) \cap S(n,j; y) \neq \emptyset$$
,

then there is a point $z \in S(n, i; x)$ and $z \in S(n, j; y)$ so that $S(n, i; z) \subset S(n-1, i; x)$ and $y \in S(n, i; z)$. Thus $y \in S(n-1, i; x)$.

The necessity is obvious.

References

- [1] J. C. Kelly, 'Bitopological spaces', Proc. London Math. Soc. 13 (1963), 71-89.
- [2] E. P. Lane, 'Bitopological spaces and quasi-uniform spaces', Proc. London Math. Soc. 17 (1967), 241-256.

- [4]
- [3] M. C. Murdeshwar and S. A. Naimpally, *Quasi-uniform topological spaces* (Noordhoff, Groningen, 1966).
- [4] C. M. Pareek, 'Bitopological and quasi-metric spaces', J. Univ. Kuwait Sci. 6 (1980), 1-7.
- [5] C. W. Patty, 'Bitopological spaces', Duke Math. J. 34 (1967), 387-392.
- [6] I. L. Reilly, 'Quasi-guage spaces', J. London Math. Soc. 6 (1973), 481-487.
- [7] S. Romoguera, 'Two characterizations of quasi-pseudo-metrizable bitopological spaces', J. Austral. Math. Soc. 35 (1983), 327-333.
- [8] S. Romoguera, 'On bitopological quasi-pseudometrization', J. Austral. Math. Soc. 36 (1984), 126-129.
- [9] S. Salbany, 'Quasi-metrization of bitopological spaces', Arch. Math. 23 (1972), 299-316.
- [10] R. Stoltenberg, 'Some properties of quasi-uniform spaces', Proc. London Math. Soc. 17 (1967), 342-354.
- [11] W. A. Wilson, 'On quasi-metric spaces', Amer. J. Math. 53 (1931), 675-684.

Department of Mathematics University of Auckland Private Bag, Auckland New Zealand