CHARACTERIZATIONS OF QUASI-METRIZABLE BITOPOLOGICAL SPACES

T. G. RAGHAVAN and I. L. REILLY

(Received 15 September 1986)

Communicated by J. H. Rubinstein

Abstract

In this paper we prove that a pairwise Hausdorff bitopological space ($X, \mathscr{T}_{1}, \mathscr{T}_{2}$) is quasi-metrizable if and only if for each point $x \in X$ and for $i, j=1,2, i \neq j$, one can assign \mathscr{T}_{i} nbd bases $\{S(n, i ; x) \mid n=1,2, \ldots\}$ such that (i) $y \notin S(n-1, i ; x)$ implies $S(n, i ; x) \cap S(n, j ; y)=\phi$, (ii) $y \in S(n, i ; x)$ implies $S(n, i ; y) \subset S(n-1, i ; x)$. We derive two further results from this.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 E 55.
Keywords and phrases: quasi-metric, quasi-uniformity, bitopological space.

The concept of quasi-metric spaces was first introduced by Wilson [11]. The fact that a quasi-metric gives rise to a conjugate quasi-metric was noticed by Kelly [1], thus leading to the study of bitopological spaces. Since then one of the main problems in this area has been to find necessary and sufficient conditions for quasi-metrization. This problem was considered by Kelly [1] Patty [5], Lane [2], Reilly [6], Salbany [9] and later by Pareek [4] and Romaguera [7, 8].

The related notion of quasi-uniform spaces and their properties have been discussed in great detail in Murdheswar and Naimpally [3] and Stoltenberg [10]. In the proof of Theorem 1 we make use of the quasi-uniform analogue of the metrization theorem of Alexandroff and Urysohn, namely, a pairwise Hausdorff quasi-uniform space $\left(X, \mathscr{V}, \mathscr{V}^{-1}\right)$ is quasi-metrizable if and only if \mathscr{V} has a countable base. From Theorem 1 we derive Theorems 2 and 3 as corollaries. It must be noted that Theorem 2 has been proved by Pareek [4].

We write nbd for neighbourhood. If A is a subset of X and \mathscr{T}_{i} is a topology on X, then $\mathscr{T}_{i} \mathrm{cl} A\left(\mathscr{T}_{i}\right.$ int $\left.A\right)$ is the closure (interior) of A in the space $\left(X, \mathscr{T}_{i}\right)$.

[^0]The letters $m, n, n_{i}, m_{j}, n_{j}$ represent positive integers. The letters i, j always take the values $i, j=1,2 ; i \neq j . S(n, i ; x)$ represents a \mathscr{T}_{i} nbd of x where n is a positive integer.

1. Theorem. A pairwise Hausdorff bitopological space $\left(X, \mathscr{T}_{1}, \mathscr{T}_{2}\right)$ is quasimetrizable if and only if for each point $x \in X$ one can assign \mathscr{T}_{i} neighbourhood bases $\{S(n, i ; x) \mid n=1,2, \ldots\}$ such that
(i) $y \notin S(n-1, i ; x)$ implies $S(n, i ; x) \cap S(n, j ; y)=\varnothing$,
(ii) $y \in S(n, i ; x)$ implies $S(n, i ; y) \subset S(n-1, i ; x)(i, j=1,2 ; i \neq j)$.

Proof. To prove that the conditions are sufficient, we show first that $\left(X, \mathscr{T}_{1}, \mathscr{T}_{2}\right)$ is pairwise regular. If $S(n, i ; x) \cap S(n, j ; y)=\varnothing$, then $S(n, i ; x)$ $\subset X-S(n, j ; y)$ so that $\mathscr{T}_{j} \operatorname{cl} S(n, i ; X) \subset X-\mathscr{T}_{j}$ int $S(n, j ; y)$. Thus if $y \notin S(n-1, i ; x)$, then $y \notin \mathscr{T}_{j} \mathrm{cl} S(n, i ; x)$ so that

$$
x \in S(n, i ; x) \subset \mathscr{T}_{j} \operatorname{cl} S(n, i ; x) \subset S(n-1, i ; x)
$$

Furthermore the space is pairwise normal. Indeed, if A and B are \mathscr{T}_{1} closed and \mathscr{T}_{2} closed subsets (of X) respectively such that $A \cap B=\varnothing$ and $y \in B$, then there exists a positive integer $n(y)$ such that $A \cap \mathscr{T}_{2} \mathrm{cl} S(n(y), 1 ; y)=\varnothing$. Since $x \notin S(n(y), 1 ; y)$ for each $x \in A, S(n(y)+1,1 ; y) \cap S(n(y)+1,2$; $x)=\varnothing$ for all $x \in A$. If $Q_{n(y)}=\cup\left\{\mathscr{T}_{2}\right.$ int $\left.S(n(y)+1,2 ; x) \mid x \in A\right\}$, then $Q_{n(y)} \supset A$ and $Q_{n(y)} \cap \mathscr{T}_{2} \operatorname{cl} S(n(y)+1,1 ; y)=\varnothing$. If we write $\cup\left\{\mathscr{T}_{1}\right.$ int $\left.S(n(y)+1,1 ; y) \mid n(y)=k\right\}=W(k, 1)$, then $Q_{k} \cap \mathscr{T}_{2} \mathrm{cl} W(k, 1)=$ \varnothing so that we get a \mathscr{T}_{1} open covering $\{W(k, 1) \mid k=1,2, \ldots\}$ of B such that $A \cap \mathscr{T}_{2} \mathrm{cl} W(k, 1)=\varnothing$ for each k. Similarly we can form a \mathscr{T}_{2} open covering $\{W(k, 2) \mid k=1,2 \ldots\}$ of A such that $B \cap \mathscr{T}_{1} \mathrm{cl} W(k, 2)=\varnothing$ for each k. Then a standard argument produces disjoint sets $W_{1} \in \mathscr{T}_{1}$ and $W_{2} \in \mathscr{T}_{2}$ such that $W_{1} \supset B$ and $W_{2} \supset A$.

Let $\mathscr{K}(m, i)=\left\{\mathscr{T}_{i}\right.$ int $\left.S(m, i ; y) \mid y \in X\right\}$. Let $\quad S(x, \mathscr{K}(m, i))=$ $\cup\left\{\mathscr{T}_{i}\right.$ int $S(m, i ; y) \mid x \in \mathscr{T}_{j}$ int $\left.S(m, j ; y)\right\}$. Let $\mathscr{B}(i ; x)=\{S(x, \mathscr{K}(m, i)) \mid m$ $=1,2 \ldots\}$. We claim $\mathscr{B}(i ; x)$ is a \mathscr{T}_{i} local base at x. If x is fixed initially and $U(i ; x)$ are arbitrary \mathscr{T}_{i} nbds of x then there exists n_{i} such that $x \in S\left(n_{i}-1, i\right.$; $x) \subset U(i ; x)$. Consider $m=\max \left(n_{1}+1, n_{2}+1\right)$. Then clearly $S(m, i ; x) \subset$ $S\left(n_{i}, i ; x\right)$. In order to avoid confusion, let us now prove specifically $\mathscr{B}(2 ; x)$ is a \mathscr{T}_{2} local base at x. Let y be such that $x \in \mathscr{T}_{1}$ int $S(m, 1 ; y)$. Then $S(m, 1$; $y) \cap S(m, 2 ; x) \neq \varnothing$ so that $y \in S(m-1,2 ; x) \subset S\left(n_{2}, 2 ; x\right)$. Hence $S\left(n_{2}, 2 ;\right.$ $y) \subset S\left(n_{2}-1,2 ; x\right)$. Since $m=\max \left(n_{1}+1, n_{2}+1\right), \mathscr{T}_{2}$ int $S(m, 2 ; y) \subset$ $S\left(n_{2}, 2 ; y\right) \subset S\left(n_{2}-1,2 ; x\right) \subset U(2 ; x)$. Thus $\mathscr{B}(2 ; x)$ is a \mathscr{T}_{2} local base at x.

If $x \in \mathscr{T}_{1}$ int $S(n+2,1 ; y)$, then $S(n+2,1 ; y) \cap S(n+2,2 ; x) \neq \varnothing$ so that by (i) $y \in S(n+1,2 ; x)$. Hence by (ii) $S(n+1,2 ; y) \subset S(n, 2 ; x)$ so that $\cup\left\{\mathscr{T}_{2}\right.$ int $S(n+2,2 ; y) \mid x \in \mathscr{T}_{1}$ int $\left.S(n+1,1 ; y)\right\} \subset \mathscr{T}_{2}$ int $S(n, 2 ; x)$. If we define $\mathscr{L}(m, i)=\{S(x, \mathscr{K}(m, i)) \mid x \in X\}$, then $\mathscr{L}(n+2, i)<\mathscr{K}(n, i)$ for all
$n=1,2,3 \ldots$ If we write $V(m, i)=\bigcup\left\{\mathscr{T}_{j}\right.$ int $S(m, j ; y) \times \mathscr{T}_{i}$ int $S(m, i ; y) \mid y$ $\in X\}$, then $(x, y) \in V(m+2, i) \circ V(m+2, i)$ implies, for some $z \in X$ that $(x, z) \in V(m+2, i)$ and $(z, y) \in V(m+2, i)$.

Indeed $x \in V(m+2, j)[z] \subset \mathscr{T}_{j}$ int $S(m, j ; z)$ and $y \in V(m+2, i)[z] \subset$ \mathscr{T}_{i} int $S(m, i ; z)$ so that $(x, y) \in V(m, i)$. Also notice that $(V(m, i))^{-1}=V(m, j)$. Thus the conditions are sufficient.

The necessity is proved as follows. Let p_{1} be the quasi-metric that induces \mathscr{T}_{1} and \mathscr{T}_{2} be induced by its conjugate p_{2}. Let us write $S(n, i ; x)=\left\{y \mid p_{i}(x, y)<\right.$ $\left.\left(\frac{1}{2}\right)^{n}\right\}$. If $x \notin S(n-1, i ; x)$ and $S(n, i ; x) \cap S(n, j ; z) \neq \varnothing$, then there exists $y \in X$ such that $p_{i}(x, y)<\left(\frac{1}{2}\right)^{n}$ and $p_{j}(z, y)<\left(\frac{1}{2}\right)^{n}$. Hence $p_{i}(x, z) \leqslant p_{i}(x, y)$ $+p_{i}(y, z)<\left(\frac{1}{2}\right)^{n-1}$, a contradiction. Also, if $y \in S(n, i ; x)$ and $z \in S(n, i ; y)$, then $p_{i}(x, y)<\left(\frac{1}{2}\right)^{n}$ and $p_{i}(y, z)<\left(\frac{1}{2}\right)^{n}$ so that $p_{i}(x, z)<\left(\frac{1}{2}\right)^{n-1}$ and hence $z \in S(n-1, i ; x)$.
2. Theorem. A pairwise Hausdorff space $\left(X, \mathscr{T}_{1}, \mathscr{T}_{2}\right)$ is quasi-metrizable if and only if for each $x \in X$ one can assign \mathscr{T}_{i} nbd bases $\{S(n, i ; x) \mid n=1,2, \ldots\}$ such that
(i) $y \notin S(n-1, i ; x)$ implies $S(n, i ; x) \cap S(n, j ; y)=\varnothing$,
(ii) $y \in S(n, i ; x)$ implies $x \in S(n, j ; y)(i, j=1,2 ; i \neq j)$.

Proof. We have to verify only condition (ii) of Theorem 1. Now

$$
y \notin S(n-1, i ; x)
$$

implies $S(n, i ; x) \cap S(n, j ; y)=\varnothing$ so that if $z \in S(n, i ; x)$, then $z \notin S(n, j ; y)$. Thus $y \notin S(n, i ; z)$. The necessity is obvious.
3. Theorem. A pairwise Hausdorff space $\left(X, \mathscr{T}_{1}, \mathscr{T}_{2}\right)$ is quasi-metrizable if and only if for each $x \in X$ one can assign $\mathscr{T}_{i} n b d$ bases $\{S(n, i ; x) \mid n=1,2, \ldots\}$ such that
(i) $y \in S(n, i ; x)$ implies $S(n, i ; y) \subset S(n-1, i ; x)$,
(ii) $y \in S(n, i ; x)$ implies $x \in S(n, j ; y)(i, j=1,2 ; i \neq j)$.

Proof. We only have to verify condition (i) of Theorem 1. If

$$
S(n, i ; x) \cap S(n, j ; y) \neq \varnothing
$$

then there is a point $z \in S(n, i ; x)$ and $z \in S(n, j ; y)$ so that $S(n, i ; z) \subset$ $S(n-1, i ; x)$ and $y \in S(n, i ; z)$. Thus $y \in S(n-1, i ; x)$.

The necessity is obvious.

References

[1] J. C. Kelly, 'Bitopological spaces', Proc. London Math. Soc. 13 (1963), 71-89.
[2] E. P. Lane, 'Bitopological spaces and quasi-uniform spaces', Proc. London Math. Soc. 17 (1967), 241-256.
[3] M. C. Murdeshwar and S. A. Naimpally, Quasi-uniform topological spaces (Noordhoff, Groningen, 1966).
[4] C. M. Pareek, 'Bitopological and quasi-metric spaces', J. Univ. Kuwait Sci. 6 (1980), 1-7.
[5] C. W. Patty, 'Bitopological spaces', Duke Math. J. 34 (1967), 387-392.
[6] I. L. Reilly, 'Quasi-guage spaces', J. London Math. Soc. 6 (1973), 481-487.
[7] S. Romoguera, 'Two characterizations of quasi-pseudo-metrizable bitopological spaces', J. A ustral. Math. Soc. 35 (1983), 327-333.
[8] S. Romoguera, 'On bitopological quasi-pseudometrization', J. Austral. Math. Soc. 36 (1984), 126-129.
[9] S. Salbany, 'Quasi-metrization of bitopological spaces', Arch. Math. 23 (1972), 299-316.
[10] R. Stoltenberg, 'Some properties of quasi-uniform spaces', Proc. London Math. Soc. 17 (1967), 342-354.
[11] W. A. Wilson, 'On quasi-metric spaces', Amer. J. Math. 53 (1931), 675-684.

Department of Mathematics
University of Auckland
Private Bag, Auckland
New Zealand

[^0]: (C) 1988 Australian Mathematical Society 0263-6115/88\$A2.00 +0.00

