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Square-free Values of Decomposable Forms

Stanley Yao Xiao

Abstract. In this paper we prove that decomposable forms, or homogeneous polynomials
F(x1 , . . . , xn)with integer coeõcients that split completely into linear factors overC, take on inûn-
itely many square-free values subject to simple necessary conditions, and they have deg f ≤ 2n + 2
for all irreducible factors f of F. _is work generalizes a theorem of Greaves.

1 Introduction

In this paper, we consider the density of integer tuples (x1 , . . . , xn) satisfying ∣x i ∣ ≤ B
and for which F(x1 , . . . , xn) is square-free, where F is an n-ary decomposable form
of degree d > n. A homogeneous polynomial F is said to be a decomposable form if
it splits into linear factors over the algebraic closure of its ûeld of deûnition. If F has
rational coeõcients and is irreducible over Q, we say that F is an incomplete norm
form. Before stating our result, we give a brief summary of work done on square-free
values of polynomials to date.
For a polynomial g(x) with integer coeõcients, deûne the counting function

Ng(B) = #{x ∈ Z ∶ ∣x∣ ≤ B, g(x) is square-free}.

Estermann [6] showed that when g(x) = x2+1, there exists a positive number cg such
that the asymptotic formula

(1.1) Ng(B) = cgB + O(B2/3 logB)
holds. We will say that a polynomial g has no ûxed square divisor if for all primes p
there exists np ∈ Z such that p2∤g(np). Ricci [19] generalized Estermann’s work and
showed that for any irreducible quadratic polynomial with no ûxed square divisor,
there exists a positive number cg such that (1.1) holds. Erdős [5] showed that

lim
B→∞

Ng(B) = ∞

for cubic polynomials with no ûxed square divisor. Hooley [11] reûned the work of
Estermann, Ricci, and Erdős and showed that for all cubic polynomials g with no ûxed
square divisor, there exists a positive number cg such that (1.1) holdswith aworse error
term. Helfgott further reûned Hooley’s work in [10] by showing that an analogous
asymptotic formula to (1.1) holds when we replace integer inputs with prime inputs.
To date, it is not knownwhether (1.1) holds unconditionally for any polynomial g with
no ûxed square divisor with deg g ≥ 4.
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Assuming the abc-conjecture, Granville [7] and Poonen [17] proved that polyno-
mials in a single variable and polynomials inmultiple variables take on inûnitelymany
square-free values. We note that Poonen’s result does not allow one to deduce an as-
ymptotic formula analogous to (1.1). Bhargava, Shankar, and Wang recently showed
the existence of an asymptotic formula for square-free values of discriminant polyno-
mials, which does not use the abc-conjecture in [2].
A natural generalization from the case of single-variable polynomials is to binary

forms. Greaves made a breakthrough in [8] on the problem of square-free values of
binary forms for suitable binary forms F(x , y) with integer coeõcients with no ûxed
square divisor. He showed that the density of integer pairs (x , y) such that F(x , y) is
square-free is exactly as expected provided that d′ ≤ 6, where d′ is the largest degree of
an irreducible factor of F. One observes that the requirement d′ ≤ 6 can be compared
to d ≤ 3 in the single variable case. Hooley, in [12, 13], extended Greaves’s results to
the case when F is a polynomial in two variables that splits into linear factors overC.

Schmidt [21] introduced an invariant that he called the discriminant for (incom-
plete) norm forms, which we deûne below. Write

F(x) =
d

∏
j=1

L j(x),

where the L j ’s are conjugates of the linear form

L1(x) = ω1x1 + ω2x2 + ⋅ ⋅ ⋅ + ωnxn

with algebraic integer coeõcients in a number ûeld K. We then put

(1.2) ∆(F) = ∏
{i1 , . . . , in}⊂{1,. . . ,d}

∣det(L i1 , . . . , L in)∣,

where the determinant of n linear forms in x1 , . . . , xn refers to the determinant of its
coeõcients. It is easy to check that ∆(F) is invariant under any action of the Galois
group Gal(Q/Q), and since each term that appears in the product is an algebraic
integer, it follows that ∆(F) is a rational integer. We say that F has bad reduction at a
prime p if F has a repeated linear factor over Fp . One notes that bad reduction can
only occur if p ∣∆(F). _erefore, if ∆(F) is non-zero, then bad reduction can only
occur at ûnitely many primes.

In this paper, we extend Greaves’s work in [8] and Hooley’s work in [12, 13] by
generalizing Greaves’s geometry of numbers method for n-ary decomposable forms
and adapting Hooley’s sieve arguments.
For an integer k and an integerm, we say thatm is k-free if for all primes p dividing

m, we have pk∤m. For a set S, we write #S for the cardinality of S. Let us write, for an
n-ary form F with integer coeõcients,

(1.3) ρF(m) = #{(a1 , . . . , an) ∈ (Z/mZ)
n
∶ F(a1 , . . . , an) ≡ 0 (mod m)}

and for a positive number B and an integer k ≥ 2,

(1.4) NF ,k(B) = #{(x1 , . . . , xn) ∈ Zn
∶ ∣x i ∣ ≤ B, F(x1 , . . . , xn) is k-free}.
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We will prove the following theorem.

_eorem 1.1 Write x = (x1 , . . . , xn) and let F(x) = L1(x) ⋅ ⋅ ⋅ Lr(x) be a de-
composable form with integer coeõcients and non-zero discriminant ∆(F) as given
in (1.2), where L1 , . . . , Lr are linear forms with algebraic integral coeõcients in some
ûnite extension K/Q. Let d be the maximal degree of a Q-irreducible factor of F.
Let k ≥ 2 be an integer with the property that for all primes p, there exists a vector
x(p) = (x(p)1 , . . . , x(p)n ) ∈ Zn such that pk∤F(x(p)). _en the asymptotic relation

NF ,k(B) ∼ Bn
∏
p
( 1 −

ρF(pk)

pnk )

holds whenever

(1.5) k ≥ d − 2
n

.

In particular, if k = 2, then F takes on inûnitely many square-free values as long
as d ≤ 2n + 2. _is recovers the theorem of Greaves in [8]. We further remark that
Maynard [16] used methods from geometry of numbers related to the methods in
Section 3 to prove an analogous theorem to _eorem 1.1 for primes represented by
incomplete norm forms.

_e outline of our paper is as follows. In Section 2 we will use an elementary sieve
argument to partition the relevant main terms and error terms to be estimated in or-
der to prove_eorem 1.1. In Section 3, we will generalize Greaves’s geometry of num-
bers argument in [8] to the case of decomposable forms over Z. In Sections 4 and 5,
we adapt the Ekedahl sieve as described in [1, 4] and the Selberg sieve, as expressed
by Hooley in [12], to establish an estimate for the remaining error terms relevant to
condition (1.5) of _eorem 1.1.

2 Preliminaries

We will show that NF ,k(B) (recall (1.4)) satisûes an inequality of the form

N1(B) − N2(B) − N3(B) ≤ NF ,k(B) ≤ N1(B).

Our goal will be to demonstrate, for any ε > 0, that

N1(B) = Bn
∏
p≤ξ1

( 1 −
ρF(pk)

pnk ) + OF ,ε(Bn−1+ε
).

Next we will show that for some δn > 0 and some slowly growing function ξ1 = ξ1(B)
tending to inûnity as the parameter B tends to inûnity,

N2(B) = OF(Bn
(ξ−1

1 + (logB)−δn))

and that N3(B) = oF(Bn). Put log1(B) = max{1, logB} and logs B = log1 logs−1 B for
s ≥ 2. We now let

(2.1) ξ1 = ξ1(B)
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be an eventually increasing real-valued function tending to inûnity that we will deûne
later. For now, it suõces to suppose that ξ1(B) = O(log2 B/ log3 B). Next, put

(2.2) ξ2 = Bn
(logB)2/3 .

Now deûne

N1(B) = #{x ∈ Zn
∶ ∣x i ∣ ≤ B, and if pk

∣ F(x), then p > ξ1} ,

N2(B) = #{x ∈ Zn
∶ ∣x i ∣ ≤ B, and there exists p ∈ (ξ1 , ξ2] such that p2

∣ F(x)

and if pk
∣ F(x), then p > ξ1} ,

and

(2.3) N3(B) = #{x ∈ Zn
∶ ∣x i ∣ ≤ B, and there exists p > ξ2 such that pk

∣ F(x), F(x)

is indivisible by p2 for ξ1 < p ≤ ξ2 and if pk
∣ F(x), then p > ξ1} .

Before we proceed with estimating N1(B), let us establish some facts about the func-
tion ρF as deûned in (1.3). For a positive integer m and a real number α, let us write

σα(m) = ∑
s∣m

sα .

Furthermore, for each prime p, we deûne

τF(p) = # geometrically irreducible components of F deûned over Fp ,

and for square-free integers, we deûne

τF(m) = ∏
p∣m

τF(p).

We remark that in our case, the only geometrically irreducible components are hy-
perplanes that are deûned over Fp .

We will establish the following lemma.

Lemma 2.1 Let ρF be deûned as in (1.3). _en ρF is multiplicative, and for all primes
p, we have

ρF(pk
) = Od ,n(pk(n−1)

+ pn(k−1)
).

If m is a square-free integer, then

ρF(m) = OF(mn−1τF(m)σ−1/4(m)) .

Proof _e fact that ρF is multiplicative follows from the Chinese Remainder _eo-
rem. For the upper bound, let us ûrst suppose that there exists an index, say i = 1, such
that p∤x1. _en there are at most pk many choices for x2 , . . . , xn . Having ûxed these,
there are then at most d choices for x1. Hence, there are at most ndp(n−1)k choices
for (x1 , . . . , xn). Otherwise, suppose that p ∣ x i for i = 1, . . . , n. Write x i = px′i for
i = 1, . . . , n. _en there are at most pk−1 choices for each i = 1, . . . , n, whence there
are pn(k−1) choices altogether. Combining these, we obtain the claimed upper bound.
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For the second part, we use a result of Lang andWeil in [15], which asserts that for
any algebraic variety V deûned over Q and any prime p, we have

#V(Fp) = CV(p)pdim V
+ OV(pdim V−1/2

),

where CV(p) is the number of geometrically irreducible, top-dimensional compo-
nents of V that are deûned over Fp . We then have

ρF(p) = τF(p)pn−1
+ OF(pn−3/2

).

Multiplicativity of ρF then yields

ρF(m) = ∏
p∣m

( τF(p)pn−1
+ OF(pn−3/2

))

= mn−1
∏
p∣m

( τF(p) + OF(p−1/2
))

= OF(mn−1τF(m)σ−1/4(m)) .

We remark that Lemma 2.1 implies that the inûnite product

∏
p

( 1 −
ρF(pk)

pnk )

converges. _is is because

ρF(pk)

pnk = O(
1
pk +

1
pn ) = O(

1
p2 ) ,

since k, n ≥ 2, by assumption.
We give an estimate for N1(B). For a positive integer b, deûne the quantity

N(b, B) = #{x ∈ Zn
∩ [−B, B]n ∶ bk

∣ F(x)} .

_en from the familiar property of the Mobius function µ, we have
N1(B) = ∑

b∈N
p∣b⇒p≤ξ1

µ(b)N(b, B)

= ∑
b∈N

p∣b⇒p≤ξ1

µ(b)ρF(bk
)(
Bn

bnk + O(
Bn−1

b(n−1)k + 1))

= Bn
∏
p≤ξ1

( 1 −
ρF(pk)

pnk ) + O( ∑
b∈N

p∣b⇒p≤ξ1

ρF(bk
)(

Bn−1

b(n−1)k + 1)) .

By a theorem of Rosser and Schoenfeld [20], it follows that for all ε > 0 and some
C′ > 0, we have

∏
p≤ξ1

p ≤ e2ξ1 = O((logB)
C′

log3 B ) = Oε(Bε),

by (2.1). Hence, we obtain via Lemma 2.1 that, for any ε > 0,

N1(B) = Bn
∏
p≤ξ1

( 1 −
ρF(pk)

pnk ) + O( ∑
b≪εBε

Bn−1+ε
+ bn(k−1)+ε

+ bk(n−1)+ε
) .
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We then see that

(2.4) N1(B) = Bn
∏
p≤ξ1

( 1 −
ρF(pk)

pnk ) + Oε(Bn−1+ε
).

As B →∞, the partial product in (2.4) tends to the convergent product in_eorem 1.1;
thus it suõces to show that N2(B),N3(B) are error terms.

In the next section we will see that we can obtain good estimates for N2(B) even
when ξ2 is as large as Bn(logB)2/3. Let

F(x1 , . . . , xn) = F1(x) ⋅ ⋅ ⋅Fr(x),

where each Fi is irreducible over Q for i = 1, . . . , r. Here d = max1≤ j≤r degF j . Let us
write

N( j)
2 (B) = #{x ∈ Zn

∶ ∣x i ∣ ≤ B, and there exists p ∈ (ξ1 , ξ2] such that pk
∣F j(x)

and if pk
∣F j(x), then p > ξ1} ,

and

N( j)
3 (B) = #{x ∈ Zn

∶ ∣x i ∣ ≤ B, and there exists p > ξ2 such that pk
∣F j(x),

p2
∤F j(x) for ξ1 < p ≤ ξ2 , and if pk

∣F j(x), then p > ξ2} .

If x is counted by N2(B) (resp. N3(B)) but not by N( j)
2 (B) (resp. N( j)

3 (B)) for j =
1, . . . , r, then there must exist j1 < j2 and a positive integer k′ < k such that

F j1(x) ≡ 0 (mod pk′
) and F j2(x) ≡ 0 (mod pk−k′

).

However, this can only happen if p ∣∆(F), so this situation can be avoided if B is
chosen suõciently large. Hence, we have

N2(B) ≤
r

∑
j=1

N( j)
2 (B) and N3(B) ≤

r

∑
j=1

N( j)
3 (B).

It therefore suõces to deal with the case when F is irreducible over Q and d = deg F.

3 Geometry of Numbers

In this section, we shall give an estimate for N2(B). To do so, we show that for each
modulus m we can reduce the problem to counting integer points of bounded height
in a ûnite number NF of lattices, the important feature being that NF is dependent
only on F.

Lemma 3.1 Let F ∈ Z[x1 , . . . , xn] be an incomplete norm form of degree d > n. Let
p∤∆(F) be a prime, and let a = (a1 , . . . , an) ∈ Zn be a solution to the congruence

F(x) ≡ 0 (mod p2
).

_en a lies on a ûnite number NF of lattices Λ ⊂ Zn . Moreover, for each such lattice Λ,
we have det Λ ≥ p2.
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Proof By the same argument as that in [13, Section 5], we can factor F into

F(x) = F∗(x)
τF(p)

∏
i=1

Li(x),

whereLi(x) = υ(i)1 x1+υ(i)2 x2+⋅ ⋅ ⋅+υ(i)n xn are deûned overZp , while F∗(x) is a form
deûned over Zp . Suppose that a = (a1 , . . . , an) ∈ Zn is a solution to the congruence

F(a) ≡ 0 (mod p2
).

_en a is of one of the following types:
(a) _ere exists exactly one i , 1 ≤ i ≤ τF(p) such that Li(a) ≡ 0 (mod p2), while

L j(a) /≡ 0 (mod p) for j /= i, and F∗(a) /≡ 0 (mod p).
(b) _ere exist 1 ≤ i1 < i2 ≤ τF(p) such that Li1(a) ≡ Li2(a) ≡ 0 (mod p).
(c) F∗(a) ≡ 0 (mod p).
If a is of type (a), then a lies in the union of at most τF(p) ≤ d lattices of determinant
p2. If a is of type (b), then there are two further sub-cases. First, and more simply,
there exist two indices i1 < i2 and an integer t such that

(3.1) Li1(x) ≡ tLi2(x) (mod p).

If (3.1) holds, then it follows that ∆(F) ≡ 0 (mod p), hence p divides the discriminant
∆(F) of F. _us, there are only ûnitely many primes for which this could happen.
Otherwise, a lies on the intersection of two distinct lattices Λ1 , Λ2 of determinant p,
deûned by

Λ1 = {x ∈ Zn
∶ x ⋅ a1 ≡ 0 (mod p)} and Λ2 = {x ∈ Zn

∶ x ⋅ a2 ≡ 0 (mod p)} ,

where a1 , a2 are two non-proportional non-zero vectors modulo p. Now let ϕ1 , ϕ2 be
homomorphisms from Zn to Fp deûned by

ϕ1(x) = a1 ⋅ x (mod p) and ϕ2(x) = a2 ⋅ x (mod p).

_en Λ1 , Λ2 are the kernels of ϕ1 , ϕ2, respectively. Now let ϕ be deûned by ϕ∶Zn →

(Z/pZ)2 , ϕ(x) = (ϕ1(x), ϕ2(x)). _e image of ϕ is the full set (Z/pZ)2 whenever
a1 , a2 are not proportional modulo p. Hence, a lies in a lattice of determinant at least
p2. Further, there are at most τF(p)2 ≤ d2 such lattices.

If a is of type (c), then modulo p there exists a linear factor L j of F∗ that is not
deûned over Fp such that L j(a) ≡ 0 (mod p). Let s be the degree of the ûeld of
deûnition of L j over Fp . By assumption, we have s ≥ 2. _en L j can be written as

L j = α1L j,1 + ⋅ ⋅ ⋅ + αsL j,s ,

whereL j, i are linear forms with coeõcients in Fp and α1 , . . . , αs is a basis of Fps over
Fp . In particular, α1 , . . . , αs are linearly independent over Fp . _erefore, L j(a) ≡ 0
(mod p) implies that L j, i(a) ≡ 0 (mod p) for i = 1, . . . , s. It thus follows that a lies
in the intersection of the lattice inZn given by the linear formsL j,1 ,L j,2; hence, it fol-
lows by the same argument that a lies in a lattice of determinant at least p2. Moreover,
the number of such lattices is at most d2.

Now we generalize [8, Lemma 1] (see also [9]) for norm forms in n ≥ 2 variables.
Indeed, we will prove the following lemma.
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Lemma 3.2 Let Λ ⊂ Zn be a lattice of determinant m. For x ∈ Zn , denote the sup
norm of x by H(x). Put

NΛ(B) = {x ∈ Zn
∶ H(x) ≤ B}

and put MΛ for the sup norm of the shortest vector in Λ. _en

NΛ(B) ≪n
Bn

m
+ O(

Bn−1

Mn−1
Λ

+ 1) .

Proof Let x1 = (x(1)1 , . . . , x(1)n ) be one of the shortest vectors with respect to sup
norm. Without loss of generality, we can assume that ∣x(0)1 ∣ = MΛ . Observe that
MΛ ≤ m1/n . To see this, let l = l(m) denote the smallest positive integer such that
(l + 1)n > m. _en there exist two distinct vectors a1 , a2 such that the coordinates of
both vectors are at most l/2 in absolute value and

a1 ≡ a2 (mod m),

whence their diòerence a1 − a2 lies in L and H(a1 − a2) ≤ m1/n .
By [3, Lemma 4.3], there exist vectors x2 , . . . , xn ∈ L such that

m ≤
n
∏
j=1

H(x j) ≪n m,

and for all vectors x ∈ L, if we write

x =
n

∑
j=1

λ jx j ,

we have

∣λ j ∣ ≪n
H(x)
H(x j)

.

In particular, for a vector x counted by NΛ(B), we have

∣λ j ∣ ≪n
B

H(x j)
.

By observing that H(x j) ≥ MΛ for j = 1, . . . , n, we obtain the bound

NΛ(B) ≪n

n

∏
j=1

( 1 +
B

H(x j)
) ≪n

Bn

m
+
Bn−1

Mn−1
Λ

+ ⋅ ⋅ ⋅ + 1.

Hence we obtain the consequence of the lemma.

For each prime p, we denote by Up the set of lattices containing the solutions to
the congruence F(x) ≡ 0 (mod p2). For each Λ ∈ Up , we say that Λ is of type (a),
(b), or (c) if Λ arises from a solution a to F(x) ≡ 0 (mod p2) of type (a), (b), or (c)
in the proof of Lemma 3.1. _en write FΛ to be equal to:
(a) L i(x), if Λ is of type (a) and Li is the unique linear form associated to Λ;
(b) Li1 ⋅ ⋅ ⋅Lis , whereLi1 , . . . ,Lis are the linear factors of F deûned over Fp that van-

ish on Λ modulo p when Λ is of type (b); and
(c) F∗ if Λ is of type (c).
We now estimate N2(B) via the following lemma.
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Lemma 3.3 _e error term N2(B) satisûes

N2(B) = On(Bn( ξ−1
1 + (logB)−1/3n)) .

Proof Let Up denote the set of at most NF many lattices Λ, each with determinant
at least p2 by Lemma 3.1, which contains all of the solutions to F(x) ≡ 0 (mod p2).
_en

N2(B) ≪n ∑
ξ1<p≤Bn(log B)2/3

∑
Λ∈Up

NΛ(B).

By Lemma 3.2, it follows that

N2(B) ≪n ∑
ξ1<p≤Bn(log B)2/3

∑
Λ∈Up

(
Bn

p2 +
Bn−1

Mn−1
Λ

+ 1) .

We ûrst consider consider the term

∑
ξ1<p≤ξ2

∑
Λ∈Up

Bn

p2 .

_e sum

∑
p>ξ1

∑
1≤ j≤NF

1
p2

converges and is bounded by OF(ξ−1
1 ). Now we look at the sum

∑
ξ1<p≤ξ2

∑
Λ∈Up

Bn−1

Mn−1
Λ

.

We break this sum into three sub-sums S1 , S2 , and S3. S1 will consist of the contribu-
tion from those primes ξ1 < p ≤ B. In this case, we have

S1 = ∑
ξ1<p≤B

∑
Λ∈Up

Bn−1

Mn−1
Λ

≪ Bn−1
∑

1≤ j≤NF

∑
p≤B

1 ≪
Bn

logB
,

where we used the trivial estimate that MΛ ≥ 1.
S2 will be the sub-sum consisting of those MΛ ≥ B(logB)−1/3n . In this case, we

have

S2 ≪d ∑
ξ1<p≤Bn(log B)2/3

∑
Λ∈Up

Bn−1(logB)(n−1)/3n

Bn−1

≪d (logB)
(n−1)
3n
Bn(logB)2/3

logB
≪d Bn

(logB)−1/3n .
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Finally, S3 will denote the sub-sum consisting of those primes p > B and MΛ ≤

B(logB)−1/3n . We then have

S3 ≪ ∑

0<∣x(1)1 ∣, . . . ,∣x(1)n ∣≤B(log B)−1/3n
∑

MΛ∈Up

∑
p2 ∣FΛ(x1)

p>B

Bn−1

Mn−1
Λ

≪ Bn−1
∑

0<∣x(1)1 ∣≤B(log B)−1/3n

1

∣x(1)1 ∣n−1
∑

0≤∣x(1)2 ∣, . . . ,∣x(1)n ∣≤∣x(1)1 ∣

∑
p2 ∣F(x1)

p>B

1

≪ Bn−1B(logB)−1/3n ,

the last inequality following from the fact that, since ∥x1∥ ≤ B, at most ⌊d/2⌋+ 1 many
primes with p > B can satisfy p2 ∣ F(x1).
Finally, the last term needing to be estimated is

∑
ξ1<p≤Bn(log B)2/3

∑
Λ∈Up

1.

_is is bounded by the number of primes in the interval [ξ1 , Bn(logB)2/3], which
by the prime number theorem is O(Bn(logB)2/3/ logB) = O(Bn(logB)−1/3), and so
constitutes a negligible error term.

4 The Ekedahl Sieve

In this section, we use the following result of Ekedahl [4] to handle certain contribu-
tions to N3(B). _e version below was formulated by Bhargava and Shankar [1].

Proposition 4.1 (Ekedahl sieve) LetB be a compact region in Rn having ûnite mea-
sure, and let Y be any closed subscheme of An

Z of co-dimension s ≥ 2. Let r and M be
positive real numbers. _en we have

#{x ∈ rB ∩Zn
∶ x (mod p) ∈ Y(Fp) for some prime p > M} =

O(
rn

M s−1 logM
+ rn−s+1

) .

We factor F into linear factors over Q, where

(4.1) F(x) =
d
∏
j=1

(ψ( j)
1 x1 + ⋅ ⋅ ⋅ + ψ( j)

n xn) =
d
∏
i=1

L i(x).

Let Yi , j denote the variety deûned by L i(x) = L j(x) = 0, and let Y = ⋃1≤i< j≤n Yi , j .
Since Y is invariant under the action of Gal(Q/Q), it is deûned over Q. Moreover, it
has co-dimension at least two in An

Z. Let p be a prime. Over Zp , we have the factor-
ization (see [12]) of F into

F(x) = F∗(x)
τF(p)
∏
i=1

Li(x),

where F∗ ,Li have Zp-coeõcients and F∗ does not have linear factors over Qp . Let
Sp be those congruence classes x in (Z/pZ)n = Fn

p such that either
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(a) there exist 1 ≤ i < j ≤ τF(p) such that Li(x) ≡ L j(x) ≡ 0 (mod p), or
(b) F∗(x) ≡ 0 (mod p).
Since linear factors of F∗ are not deûned over Fp and hence have a non-trivial con-
jugate, it follows that, whenever a ∈ Sp , a ∈ Y(Fp). We then have the following
consequence of Ekedahl’s sieve.

Lemma 4.2 Let N∗
3 (B) denote the number of elements x ∈ Zn ∩ [−B, B]n for which

x (mod p) ∈ Sp for some p > ξ1. _en

N∗
3 (B) = O(

Bn

ξ1 log ξ1
+ Bn−1

) .

Note that Lemma 4.2 completes the proof of Lemma 3.3.

5 The Selberg Sieve

In this section we use a variant of the Selberg sieve to give an upper bound for N3(B).
Our main goal in this section is to establish the following proposition.

Proposition 5.1 Let N3(B) be as given in (2.3). _en N3(B) = o(Bn).

Proposition 5.1 will follow from Lemmas 5.4, 5.6, 5.7, 5.10, and 5.12 as well as
Lemma 4.2. Consider the set
(5.1)

N†
3(B) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x ∈ Zn
∩ [−B, B]n

RRRRRRRRRRRR

F(x) = uqk , u is indivisible by pk for p ≤ ξ1 and
indivisible by p2 for ξ1 < p ≤ ξ2, q is a prime
exceeding ξ2, and x /∈ Sp for all p ∣u.

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

and put N†
3 (B) = #N†

3(B). Observe that

N3(B) = N†
3 (B) + N∗

3 (B).

We shall establish the following preliminary result.

Lemma 5.2 Let x ∈ N†
3(B) and u, q be as in (5.1). _en we have

u = O(B2
(logB)−2k/3) .

Furthermore, u can be written as u = u1u2, where u1 divides

C(ξ1) = ∏
p≤ξ1

pk−1 ,

and u2 is square-free with each prime divisor p of u2 satisfying ξ1 < p ≤ ξ2.

Proof Observe that from F(x) = uqk and our assumptions on q, we have

u = O(Bd ξ−k
2 ).

By (1.5) and (2.2), there exists an absolute positive constant C1 such that

∣u∣ < C1Bd−kn
(logB)−2k/3

≤ C1Bd−d+2
(logB)−2k/3

= C1B2
(logB)−2k/3 .
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We now factor u into two factors u1 and u2, where u1 consists of only prime factors
less than ξ1. We observe that since we have accounted for small prime powers via
our treatment of N1(B), we have that u1 divides ∏p≤ξ1 p

k−1 . _en the factor u2 will
be composed of prime factors larger than ξ1. Further, it must be square-free. _is is
because, by deûnition, the prime factors of u between ξ1 and ξ2 divide u exactly once,
and u cannot have a prime factor exceeding ξ2, since otherwise

uqk
≫ Bn(k+1) logB≫ Bd logB,

which contradicts x ∈ [−B, B]n for B suõciently large.

For each square-free integer u2 such that each prime divisor p of u2 satisûes ξ1 <
p ≤ ξ2, put

(5.2) D(u2) = ∏
ξ1<p≤ 1

12 log(B2u−1
2 )

p∤u2
p≡1 (mod k)

p.

We then have the following lemma.

Lemma 5.3 Let u2 be a square-free integer such that all of its prime divisors are
between ξ1 and ξ2. Let ω(m) denote the number of distinct prime divisors of m. Let
D(u2) be as in (5.2). If q > ξ2 is a prime, then there exists exactly kω(D) residue classes
{d1 , . . . , dkω(D)} such that dk

j ≡ qk (mod D) for j = 1, . . . , kω(D).

Proof Since all prime divisors ofD are O(logB), it follows that qk is a proper k-th
power residuemoduloD. Now consider the family of all k-th power residues modulo
D. By our choice ofD, we have that k ∣φ(D), so that the family of k-th power residues
is not the set of all residues moduloD. For each p ∣D, qk has k pre-images modulo p,
meaning there exist k distinct elements q1 , . . . , qk in {0, 1, . . . , p−1} such that qk

j ≡ qk

(mod Q). For a positive integer l , let us write ω(l) for the number of distinct prime
divisors of l . _en it follows from the Chinese Remainder _eorem that there exist
kω(D) residue classes {d1 , . . . , dkω(D)} modulo D such that dk

j ≡ qk (mod D).

Let C1 be as in Lemma 5.2, and put ξ3 = C1B2(logB)−2k/3. Lemmas 5.2 and 5.3
have the following consequence, which is crucial for our estimation of N3(B).

Lemma 5.4 Let u1 be a divisor of C(ξ1) and let u2 a square-free integer whose prime
divisors p satisfy ξ1 < p ≤ ξ3. Let Hu1 ,u2(B) be the number of solutions (m1 , . . . ,mn) ∈

Zn ∩ [−B, B]n to the two congruences

F(m1 , . . . ,mn) ≡ 0 (mod u1),(5.3)
F(m1 , . . . ,mn) ≡ 0 (mod u2),(5.4)

and solutions to the congruences

(5.5) F(m1 , . . . ,mn) ≡ u1u2sk (mod D)
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for 0 ≤ s <D, such that (m1 , . . . ,mn) (mod p) /∈ Sp for p ∣u1u2. _en we have

(5.6) N3(B) ≤ ∑
u1 ∣C(ξ1)
u2≤ξ3

Hu1 ,u2(B)
kω(D)

+ N∗
3 (B).

Proof Equation (5.6) follows from the fact that the solutions to (5.5) can be parti-
tioned into sets of cardinality kω(D) by Lemma 5.3.

In view of Lemma 4.2, we shall be primarily concerned with the term

N†
3 (B) = ∑

u1 ∣C(ξ1)
u2≤ξ3

Hu1 ,u2(B)
kω(D)

.

5.1 Selberg Sieve Weights

We now introduce the relevant Selberg sieve weights. Selberg devised an ingenious
method to establish an upper bound for counting integer points in a box. To state this
precisely, suppose that we wanted to count the set of points inside the box [−B, B]n
satisfying a set of congruence conditions Rl modulo a positive integer l . Selberg in-
troduced smooth functions γ that satisfy the inequality

(5.7) ∑
(m1 , . . . ,mn)∈Zn∩[−B ,B]n

(m1 , . . . ,mn)∈Rl

1 ≤ ∑
(m1 , . . . ,mn)∈Zn

(m1 , . . . ,mn)∈Rl

γ(m1) ⋅ ⋅ ⋅ γ(mn),

where γ is an upper bound for the characteristic function χB(z)of the interval [−B, B],
tends to zero rapidly outside of this interval, and is suõciently smooth to be con-
ducive to Fourier analysis and the Poisson summation formula. _is reduces various
counting problems into a question about exponential sums, fromwhich one can draw
results from a vast literature, including the seminal works of Weil and Deligne.

Our choice of γ is identical to that of Hooley’s in [12]. Namely, we start with the
following function, ûrst given by Beurling and later utilized by Selberg to establish the
optimal general bound for the large sieve inequality:

Beu(z) = (
sin πz

π
)

2
( ∑

n=0

1
(z − n)2 −

−1

∑
n=−∞

1
(z − n)2 +

1
2z

) .

For the interval [−U ,U] we construct the function

gU(z) = 1
2
( Beu(U − z) + Beu(U + z))

which has the property that it is non-negative and majorizes the characteristic func-
tion of [−U ,U] (see [22]). Further, it satisûes the important property that its Fourier
transform ĝU(t) satisûes

ĝU(t) =
⎧⎪⎪
⎨
⎪⎪⎩

2U + 1 if t = 0,
0 if ∣t∣ > U ,

∣ĝU(t)∣ ≤ 2U + 1.
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We now deûne the function γ as

(5.8) γ(z) = g1(
z
B
) ,

whence it follows that γ̂(t) = Bĝ1(Bt). It is clear that γ(z) ≥ χB(z) for all real numbers
z. Because of the smoothness of γ, we can evaluate the sum

∑
(m1 , . . . ,mn)∈Zn

(m1 , . . . ,mn)∈Rl

γ(m1) ⋅ ⋅ ⋅ γ(mn)

via Poisson summation. We have the following lemma, which is standard.

Lemma 5.5 Let l be a positive integer, and let Rl be a subset of (Z/lZ)n . Let γ be as
in (5.8), and put

MRl (B) = ∑
(m1 , . . . ,mn)∈Zn

(m1 , . . . ,mn)∈Rl

γ(m1) ⋅ ⋅ ⋅ γ(mn).

Let

(5.9) ERl (t1 , . . . , tn ; l) = ∑
(a1 , . . . ,an)∈Rl

e−2πi(a1 t1+⋅⋅⋅+an tn)/l .

_en

MRl (B) =
1
l n ∑

(t1 , . . . ,tn)∈Zn
γ̂( t1

l
) ⋅ ⋅ ⋅ γ̂( tn

l
)ERl (t1 , . . . , tn ; l).

Proof See [13].

We decompose MRl (B) into two terms, given by

(5.10) MRl (B) = M+
Rl

(B) + O(M++
Rl

(B)) ,

where

M+
Rl

(B) = 1
l n

( γ̂(0)) nERl (0, . . . , 0; l) =
(3B)n#Rl

l n
,

M++
Rl

(B) = B
n

l n ∑
′

∣t i ∣≤l/B
∣ERl (t1 , . . . , tn ; l)∣,

where the symbol∑′ denotes that the tuple (0, . . . , 0) was omitted. We then have the
following lemma.

Lemma 5.6 Let l = u1u2D, where u1 , u2 ,D are as in Lemma 5.4. Put l = u1u2D,
and letRl = Ru1u2D denote the set of congruence classes modulo l satisfying (5.3), (5.4),
and (5.5). _en

N†
3(B) ≤ ∑

u1 ∣C(ξ1)
u2≤ξ3

M+
Rl

(B)
kω(D)

+ O( ∑
u1 ∣C(ξ1)
u2≤ξ3

M++
Rl

(B)
kω(D)

) .

Proof _is follows from (5.6), (5.7), and (5.10).
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We put

(5.11) N4(B) = ∑
u1 ∣C(ξ1)
u2≤ξ3

M+
Rl

(B)
kω(D)

.

Our next lemma gives us an estimate for N4(B).

Lemma 5.7 Let u1 , u2 ,D, l ,Rl be as in Lemma 5.6 and N4(B) as in (5.11). _en
there exists a positive number C4 such that

N4(B) = O(
Bn exp(2(n + 1)(k − 1)ξ1)

(logB)C4/ log3 B
) .

Proof Let Ru1 ,Ru2 ,RD denote the congruence classes corresponding to (5.3),
(5.4), and (5.5), respectively. By the Chinese Remainder _eorem, it follows that
#Rl = #Ru1#Ru2#RD. Since u1 ∣C(ξ1), it follows that u1 ≤ C(ξ1). From its deûni-
tion and the result of Rosser and Schoenfeld [20], we see that

C(ξ1) ≤ exp(2(k − 1)ξ1).
For Ru1 , we use the trivial bound #Ru1 = O(un

1 ) = O(exp(2n(k − 1)ξ1)). We have
#Ru2 = O(un−1

2 τF(u2)σ−1/4(u2)) by Lemma 2.1, since u2 is square-free. Observe that
gcd(u1u2 ,D) = 1. By a theorem of Lang and Weil [15], which states that for a prime
p ∣D, the number of points over Fp , on the variety deûned by the congruence

F(x1 , . . . , xn) − u1u2qk
≡ 0 (mod p),

is pn + O(pn−1/2). _en

(5.12) #RD = ∏
p∣D

( pn
+ O(pn−1/2

)) ,

whence
#RD =Dn

∏
p∣D

( 1 + O(p−1/2
)) = O(Dnσ−1/4(D)) .

_us, by (5.10), (5.12), and Lemma 2.1, we see that

N4(B) = O(exp(2n(k − 1)ξ1) ∑
u1 ∣C(ξ1)
u2≤ξ3

(3B)nun−1
2 τF(u2)σ−1/4(u2)D

nσ−1/4(D)

(u2D)nkω(D)
)

= O(exp(2n(k − 1)ξ1) ∑
u1 ∣C(ξ1)
u2≤ξ3

Bnσ−1/4(u2)τF(u2)σ−1/4(D)

u2kω(D) ) .

Observe that

σ−1/4(D) = ∏
p∣D

(1 + p−1/4
) = O((

2k
3
)

ω(D)

) .

It follows that

N4(B) = O((exp(2n(k − 1)ξ1) ∑
u1 ∣C(ξ1)
u2≤ξ3

BnτF(u2)σ−1/4(u2)

u2(3/2)ω(D) ) .
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Let us write

ξ4 = ξ4(u2) =
1
12

log(B2u−1
2 ) and D′

=D′
(u2) = ∏

p≤ξ4
p.

Observe that as B2ξ−1
3 →∞ as B tends to inûnity and u−1

2 ≫ ξ−1
3 , we have

logD′
= ∑

p≤ξ4

log p < 12
11
ξ4

for B suõciently large, say by Rosser and Schoenfeld [20]. From (5.2), we see that

D ≤D′
< exp(12ξ4/11) = (

B2

u2
)

1/11
.

Next, we have

ω(D′
) = π(ξ4; k, 1) ∼

ξ4
φ(k) log ξ4

,

where π(B; q, a) is the counting function of primes p satisfying p ≡ a (mod q) up to
B, and the above asymptotic follows fromDirichlet’s theorem on primes in arithmetic
progressions. _erefore, we can ûnd a constant C2 such that

ω(D′
) >

C2ξ4
log ξ4

for all B suõciently large. Observe that for a square-free number l , we have

σ0(l) =∏
p∣l

(1 + 1) = 2ω(l) .

From the deûnition ofD andD′, it follows that

(3/2)ω(D′)
< (3/2)ω(D′)C(ξ1)(3/2)gcd(D′ ,u2) < (3/2)ω(D)C(ξ1)σ0(gcd(D′ , u2)).

Hence, there exists a positive number C3 such that

1
(3/2)ω(D)

<
C3

(3/2)ω(D′) σ0( gcd(D′ , u2)) exp (2(k − 1)ξ1) .

From here we obtain the estimate
(5.13)

N4(B) = O( exp(2(n + 1)(k − 1)ξ1) ∑
u2≤ξ3

BnτF(u2)σ−1/4(u2)σ0(gcd(D′ , u2))

(3/2)ω(D′)u2
) .

We now estimate the sum

S(t) = ∑
u2≤t

τF(u2)σ−1/4(u2)σ0( gcd(D, u2)) .
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We proceed, as with Hooley, by invoking his [12, Lemma 6.2]. We then have

S(t) ≤ ∑
h∣D

µ2
(h)σ0(h) ∑

u2≤t
u2≡0 (mod h)

τF(u2)σ−1/4(u2)

= ∑
h∣D

µ2
(h)σ0(h) ∑

u′2h≤t
gcd(u′2 ,h)=1

τF(hu′2)σ−1/4(hu′2)

≤ ∑
h∣D

µ2
(h)σ0(h)τF(h)σ−1/4(h) ∑

u′2≤t/h
τF(u′2)σ−1/4(u′2)

= O( t ∑
h∣D

µ2(h)σ0(h)τF(h)σ−1/4(h)
h

)

= O( t ∏
w≤ξ4

( 1 +
2d + 1
w

))

= O( t(log ξ4)2d+1) = O( t(log logB)2d+1) .

By following Hooley’s treatment of the term N(6)(X) in [12, Section 8] and cutting
the range of the summation in (5.13) into dyadic parts, we see that, for some positive
number C4, we have

N4(B) = O(
Bn exp(2(n + 1)(k − 1)ξ1)

(logB)C4/ log3 B
) .

We now put

ξ1(B) = max{ 1,
C4 log logB

4(n + 1)(k − 1) log3 B
} ,

so that
exp(2(n + 1)(k − 1)g(B))
exp(C4 log2 B/ log3 B)

= exp (
−C4 log2 B
2 log3 B

) ,

whence

N4(B) = O(Bn exp (
−C4 log2 B
2 log3 B

)) = o(Bn
).

Next we turn our attention to the much more diõcult component

(5.14) N5(B) = ∑
u1 ∣C(ξ1)
u2≤ξ3

M++
Rl

(B)
kω(D)

.

Recall from (5.9) that

ERl (t1 , . . . , tn ; l) = ERu1
ERu2

ERD
.

_e term ERu1
(t1 , . . . , tn ;u1) can be trivially estimated by un

1 , which is of size

O(exp(
C4 log2 B

4(k − 1) log3 B
)).
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We now consider the term ERu2
. For each prime p dividing u2, we write

F(x) = F∗(x)
τ(p)
∏
j=1

Li(x),

where F∗ and Li have coeõcients in Zp . We then write ERu2
as

ERu2
(t1 , . . . , tn ;u2) = ∏

p∣u2

( ∑
1≤i≤τF(p)

∑
(a1 , . . . ,an)∈Fn

p
Li(a1 , . . . ,an)≡0 (mod p)

e2πi(a1 t1+⋅⋅⋅+an tn)/p)

= ∏
p∣u2

S(t1 , . . . , tn ; p).

We will obtain the following estimate for S(t1 , . . . , tn ; p).

Lemma 5.8 Let p be a prime, and put

S(t1 , . . . , tn ; p) = ∑
1≤i≤τF(p)

∑
(a1 , . . . ,an)∈Fn

p
Li(a1 , . . . ,an)≡0 (mod p)

e2πi(a1 t1+⋅⋅⋅+an tn)/p .

_en we have

S(t1 , . . . , tn ; p)
⎧⎪⎪
⎨
⎪⎪⎩

≤ τF(p)pn−1 if t1x1 + ⋅ ⋅ ⋅ + tnxn divides F(x) over Fp ,
= 0 otherwise.

Proof We consider two scenarios. Suppose that

Ls(x1 , . . . , xn) = υ(s)1 x1 + ⋅ ⋅ ⋅ + υ(s)n xn , υ(s)j ∈ Zp for 1 ≤ j ≤ n.

If (t1 , . . . , tn) ≡ λ(υ(s)1 , υ(s)2 , . . . , υ(s)n ) (mod p) for some λ ∈ F∗p , then

∑
(a1 , . . . ,an)∈Fn

p
Ls(a1 , . . . ,an)≡0 (mod p)

e2πi(a1 t1+⋅⋅⋅+an tn)/p = pn−1 .

Observe that since p∤∆(F), there does not exist 1 ≤ s ≤ τF(p) such that p ∣ υ(s)j for

all j = 1, . . . , n. We can suppose, without loss of generality, that υ(s)1 /≡ 0 (mod p).
Suppose that a ∈ Fn

p is such that Ls(a) ≡ 0 (mod p). It then follows that

a1 ≡ −(υ(s)1 )
−1
(υ(s)2 a2 + ⋅ ⋅ ⋅ + υ(s)n an).

_is implies

(5.15) ∑
(a1 , . . . ,an)∈Fn

p
Ls(a1 , . . . ,an)≡0 (mod p)

e2πi(a1 t1+⋅⋅⋅+an tn)/p =

∑
(a2 , . . . ,an)∈Fn

p

e2πi(a2(t2−t1(υ
(s)
1 )−1υ(s)2 )+⋅⋅⋅+an(tn−t1(υ

(s)
1 )−1υ(s)n ))/p .
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_e right-hand side can be written as
n

∏
j=2

∑
a j∈Fp

e2πia j(υ
(s)
1 t j−t1υ

(s)
j )/p .

For each j, the sum

∑
a j∈Fp

e2πia j(υ
(s)
1 t j−t1υ

(s)
j )/p

is zero unless the exponent is identically zero. _is shows that (5.15) is non-zero if and
only if υ(s)1 t j ≡ t1υ(s)j (mod p) for j = 2, . . . , n. _is implies that

(t1 , . . . , tn) ≡ t1(υ(s)1 )
−1
(υ(s)1 , υ(s)1 t2 t−1

1 , . . . , υ
(s)
1 tn t−1

1 ) (mod p)

≡ t1(υ(s)1 )
−1
(υ(s)1 , υ(s)2 , . . . , υ( j)

n ) (mod p),

hence the ûrst situation is the only case where the sum

∑
(a1 , . . . ,an)∈Fn

p
Ls(a1 , . . . ,an)≡0 (mod p)

e2πi(a1 t1+⋅⋅⋅+an tn)/p

is non-zero. In other words, we have

S(t1 , . . . , tn ; p)
⎧⎪⎪
⎨
⎪⎪⎩

≤ τF(p)pn−1 if t1x1 + ⋅ ⋅ ⋅ + tnxn divides F(x) over Fp ,
= 0 otherwise,

as desired.

For square-free l , let us write

S(t1 , . . . , tn ; l) = ∏
p∣l

S(t1 , . . . , tn ; p).

We have the following lemma.

Lemma 5.9 Let u1 , u2 ,D be as in Lemma 5.6. _en

(5.16) ∑
u1 ∣C(ξ1)
u2≤ξ3

M++
l (B)

kω(D)
=

O( exp(2(n + 1)(k − 1)ξ1) ∑
u2≤ξ3

Bn

un
2

∑
′

∣t1 ∣, . . . ,∣tn ∣≤l/B
S(t1 , . . . , tn ;u2)) .

Proof Recall that

M++
l (B) = Bn

un
1 un

2D
n ∑

′

∣t i ∣≤l/B
∣ERl (t1 , . . . , tn ; l)∣.

Note that
∣ERl (t1 , . . . , tn ;D)∣ = O(Dnσ−1/4(D)) ,

and the multiplicativity of ERl implies that

∣ERl (t1 , . . . , tn ; l)∣ = O(un
1 D

nσ−1/4(D)S(t1 , . . . , tn ;u2)) .
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Next note that σ−1/4(D) = O(kω(D)), since k ≥ 2. _is then implies (5.16), since the
number of divisors of C(ξ1) does not exceed C(ξ1).

We now assess S(t1 , . . . , tn ;u2) for an n-tuple (t1 , . . . , tn) ∈ Zn . By Lemma 5.8,
this is zero unless for each prime p ∣u2 there exists λp ∈ Fp and 1 ≤ sp ≤ τF(p) such
that (t1 , . . . , tn) ≡ λp(υ

(sp)
1 , υ(sp)2 , . . . , υ(sp)n ) (mod p). One checks at once that for a

ûxed vector υ = (υ1 , . . . , υn), the set

{(x1 , . . . , xn) ∈ Zn
∶ (x1 , . . . , xn) ≡ λ(υ1 , . . . , υn) (mod p) for some λ ∈ Fp}

is a lattice. For each prime p dividing u2, there are τF(p) ≤ d such lattices to consider.
If (t1 , . . . , tn) ∈ Zn is such that S(t1 , . . . , tn ;u2) is non-zero, then it must lie on one
such lattice for each prime divisor of u2. _erefore, (t1 , . . . , tn) lies on one of at most
dω(u2) lattices, each with determinant un−1

2 . Let L(u2) denote the set of lattices to
which the n-tuples (t1 , . . . , tn) such that S(t1 , . . . , tn ;u2) /= 0 are restricted.

We now replace the bound l/B for the variables t i in Lemma 5.16 by something
that is easier to work with. Observe that

u1D = O( exp(2(k − 1)ξ1)(
B2

u2
)

1/11
) .

_erefore, it follows that

l
B
=

u1u2D

B
= O( exp(2(k − 1)ξ1)

B2/11

u1/11
2

u2

B
) = O( exp(2(k − 1)ξ1)(

u10/11
2

B9/11 )) .

Moreover, we have

exp(2(k − 1)ξ1)
u10/11

2

B9/11 = O(
u9/10

2

B4/5 ) ,

since
u9/10

2

B4/5 ⋅
B9/11

u10/11
2

= (
B2

u2
)

1/55
≫ (logB)

2k
165 ≫ (logB)

C4
2(n+1) log3 B .

Put

(5.17) Q(B) = ∑
u2≤ξ3

1
un

2
∑

′

∣t1 ∣, . . . ,∣tn ∣≤u
9/10
2 /B4/5

S(t1 , . . . , tn ;u2).

_en it is clear that

(5.18) ∑
u1 ∣C(ξ1)
u2≤ξ3

M++
l (B)

kω(D)
= O(Bn g(B)k−1Q(B)) .

We will assess Q(B) by restricting the range of u2 to a dyadic interval of the form
(U/2,U], with U ≤ ξ3. Denote this contribution to Q(B) by QU(B). We have the
following lemma.

Lemma 5.10 Let Q(B) be as in (5.17). _en there exists a positive number C5 such
that for all U > 1, we have

QU(B) = O(
U9/10(logB)C5

B8/5
) .
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Proof Let us write Fs(x1 , xs) for the product

Fs(x1 , xs) =
d
∏
j=1

(ψ( j)
1 x1 + ψ( j)

s xs),

where ψ( j)
s are as in (4.1). Note that each Fs has integer coeõcients. Moreover, since

F is irreducible overQ it follows that each Fs is a perfect power of a binary form with
integer coeõcients. Further, Fs is not identically zero for s = 2, . . . , n. If we ûx a
vector (t1 , . . . , tn) ∈ Zn , then there are at most σ0(F2(t2 ,−t1)) many u2 such that
(t1 , . . . , tn) ∈ Λ for some Λ ∈ L(u2). To see this, if (t1 , . . . , tn) ∈ Λ for Λ ∈ L(u2),
then for each prime p ∣u2, we have (t1 , . . . , tn) ≡ λp(1, υ(s)2 , . . . , υ(s)n ) (mod p) for
some λp ∈ Fp and 1 ≤ s ≤ τF(p). _en it follows that t2 ≡ t1υ(s)2 (mod p), hence it
follows that

F2(t2 ,−t1) ≡ 0 (mod p).
_is implies that u2 ∣ F2(t2 ,−t1), as claimed. Further, by the same argument, we get
that u2 ∣ Fs(ts ,−t1) for all 2 ≤ s ≤ n.

Now we can estimate QU(B) when U is suitably small as follows:

QU(B) ≤ 2n

Un ∑
U/2<u2≤U

∑
′

∣t1 ∣, . . . ,∣tn ∣≤U9/10/B4/5
S(t1 , . . . , tn ;u2)

≤
2n

U ∑
U/2<u2≤U

dω(u2) ∑
′

∣t1 ∣, . . . ,∣tn ∣≤U9/10/B4/5

u2 ∣ gcd(F2(t2 ,−t1), . . . ,Fn(tn ,−t1))

1.

Observe that for ûxed t1 , t2, the condition u2 ∣ F j(t j ,−t1) constrains each t j , j =

3, . . . , n, to at most dω(u2) congruence classes modulo u2, and for each congruence
class, at most (2U9/10B−4/5)/u2 + 1 choices in the range [−U9/10/B4/5 ,U9/10/B4/5].
Since U/2 < u2 ≤ U , there is at most one choice when B is suõciently large. By the
binomial theorem, for a number A and a square-free positive integer m, we have

∑
r∣m
Aω(r)

= (A+ 1)ω(m) .

By permuting the variables if necessary, we can assume that t1 /= 0, at the cost of a
factor of n. Hence,

QU(B) ≤ n2n

U ∑

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t1 /=0

∑
u2 ∣F2(t2 ,−t1)

d(n−1)ω(u2)(5.19)

=
n2n

U ∑
′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t1 /=0

(dn−1
+ 1)ω(F2(t2 ,−t1)) ,

so by [12, Lemma 10.1], there exists a positive number C5 such that

QU(B) = O(
U9/10(logB)C5

B8/5
) .

If U is relatively small, say U < B5/3, then this is a satisfactory bound. Otherwise,
we use [12, Lemma 10.2], which we state as follows.

https://doi.org/10.4153/CJM-2017-060-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-060-4


Square-free Values of Decomposable Forms 1411

Lemma 5.11 (Hooley, 2009) Set Ξ(B) = B
1

6(log log B)2 . Fix u2 ≤ ξ3. Let ω†(m) denote
the number of distinct prime factors of m that exceed Ξ and let

l∗ = ∏
p≤Ξ
p∣u2

p and l† = ∏
p>Ξ
p∣u2

p.

Suppose that l∗ ≤ B1/6. _en, for any positive constant C6 and for B1/2 < Y < B, there
exists a positive number C7, depending only on C6, such that

∑
′

(u1 ,u2)≡(t1 ,t2) (mod l∗)
∣u1 ∣,∣u2 ∣≤Y

Cω†(F(u1 ,u2))
6 = O(

Y 2(log logB)C7

(l∗)2 ) .

When U > B5/3 we employ the divisors l∗ , l† of u2 as in Lemma 5.11. Suppose ûrst
that l∗ > B1/6. _is means that B1/6 < Ξω(l∗) ≤ Ξω(u2) , which shows that ω(u2) >

(log2 B)
2 . Hence, either ω(u2) > (log2 B)

2 or l∗ ≤ B1/6. Put

Q(1)
U (B) = ∑

U/2<u2≤U
ω(u2)>(log2 B)

2

1
un

2
∑

′

∣t1 ∣, . . . ,∣tn ∣≤u
9/10
2 /B4/5

S(t1 , . . . , tn ;u2),(5.20)

Q(2)
U (B) = ∑

U/2<u2≤U
l∗≤B1/6

1
un

2
∑

′

∣t1 ∣, . . . ,∣tn ∣≤u
9/10
2 /B4/5

S(t1 , . . . , tn ;u2).(5.21)

We have the following estimates for Q(1)
U (B) and Q(2)

U (B).

Lemma 5.12 Let Q(1)
U (B),Q(2)

U (B) be as in (5.20) and (5.21), respectively. _en there
exists a positive number C6 depending only on d , n such that

Q(1)
U (B) = Od(

U4/5(logB)C6

B8/5(logB)log2 B
) and Q(2)

U (B) = Od(
U4/5 logB(log2 B)

C7

B8/5
) .

Proof To estimate Q(1)
U (B), by (5.19) we have

Q(1)
U (B) ≤ n2n

U ∑
u2≤U

ω(u2)>(log log B)2

∑
′

∣t1 ∣,∣t2 ∣≤u
9/10
2 /B4/5

d(n−1)ω(F(t2 ,−t1))

≪n
1
U ∑

′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5
∑

u2 ∣F2(t2 ,−t1)
ω(u2)>(log2 B)

2

d(n−1)ω(u2) .

Observe that since u2 ∣ F2(t2 ,−t1), we have

d(n−1)ω(u2) =
d(n−1)ω(u2)e(log2 B)

2

(logB)log2 B
<

(3dn−1)ω(u2)

(logB)log2 B
.
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By the binomial theorem and the fact that u2 is square-free, it follows that

∑
u2 ∣F2(t2 ,−t1)

ω(u2)>(log2 B)
2

d(n−1)ω(u2) ≤ ∑
u2 ∣F2(t2 ,−t1)

ω(u2)>(log2 B)
2

(3dn−1)ω(u2)

(logB)log2 B
=

(3dn−1 + 1)ω(F2(t2 ,−t1))

(logB)log2 B
.

Hence, we see that for some positive C6,

Q(1)
U (B) ≪n

1
U(logB)log2 B

∑
′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5
(3dn−1

+ 1)ω(F2(t2 ,−t1))

= O(
U4/5(logB)C6

B8/5(logB)log2 B
)

by [12, Lemma 10.1]. _is completes the estimation of Q(1)
U (B).

Observe that

U4/5

B8/5
= O(ξ4/53 B−8/5) = O((logB)−8k/15),

and thus the desired conclusion for Q(1)
U (B) holds.

_e sum Q(2)
U (B) is more diõcult. _e key tool will be Lemma 5.11. Recall that

Q(2)
U (B) consists of the contribution from those tuples for which l∗ ≤ B1/6 and U >

B5/3. By the multiplicativity of S(t1 , . . . , tn , ⋅), it follows that

Q(2)
U (B) ≤ 2n

Un ∑
′

∣t1 ∣, . . . ,∣tn ∣≤U9/10/B4/5
∑

l∗ l†≤U
l∗≤B1/6

S(t1 , . . . , tn ; l∗)S(t1 , . . . , tn ; l†).

We rearrange the summation to obtain

2n

Un ∑
l∗ l†≤U
l∗≤B1/6

∑
b1 , . . . ,bn (mod l∗)

S(b1 , . . . , bn ; l∗) ∑
′

∣t1 ∣, . . . ,∣tn ∣≤U9/10/B4/5

t i≡b i (mod l∗)

S(t1 , . . . , tn ; l†).

We estimate S(t1 , . . . , tn ; l†) by dω(l†)(l†)n−1 when it is non-zero. Next we observe
that from the proof of Lemma 5.10, S(t1 , . . . , tn ; l†) is non-zero only if l† divides
Fs(ts ,−t1) for s = 2, . . . , n. Since U > B5/3 and l∗ ≤ B1/6, it follows that l† > B3/2.
_erefore, (U9/10B−4/5)/l† ≪ B−1/2(logB)−2k/3. In other words, for suõciently large
B and for ûxed t1 , t2, the congruence condition imposed by l† leads to at most dω(l†)
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choices for t3 , . . . , tn as before. It then follows that

Q(2)
U (B)

≤
n2n

Un ∑

l∗≤B1/6
b1 , . . . ,bn (mod l∗)

S(b1 , . . . , bn ; l∗) ∑
′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t i≡b i (mod l∗)

∑
l† ∣F2(t2 ,−t1)

dω(l†)
(l†)n−1

≤
n2n

U ∑

l∗≤B1/6
b1 , . . . ,bn (mod l∗)

S(t1 , . . . , tn ; l∗)
(l∗)n−1 ∑

′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t i≡b i (mod l∗)

∑
l† ∣F2(t2 ,−t1)

dω(l†)

≪
n2n

U ∑

l∗≤B1/6
b1 , . . . ,bn (mod l∗)

S(b1 , . . . , bn ; l∗)
(l∗)n−1 ∑

′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t i≡b i (mod l∗)

(dn−1
+ 1)ω†(F2(t2 ,−t1))

≪
n2n

U ∑

l∗≤B1/6
b1 , . . . ,bn (mod l∗)

S(b1 , . . . , bn ; l∗)
(l∗)n−1 ∑

′

∣t1 ∣,∣t2 ∣≤U9/10/B4/5

t1≡b1 (mod l∗)
t2≡b2 (mod l∗)

(dn−1
+ 1)ω†(F(t2 ,−t1)) .

Note that U < ξ3 = C1B2(logB)−2k/3, whence U9/10/B4/5 < B. Further, our assump-
tion ofU > B5/3 shows thatU9/10/B4/5 > B7/10. Hence, the innermost sum is treatable
by Lemma 5.11. We then have

Q(2)
U (B) = Od(

U4/5(log2 B)
C7

B8/5 ∑
l∗≤B1/6

1
(l∗)n+1 ∑

b1 , . . . ,bn (mod l∗)
S(b1 , . . . , bn ; l∗)) .

By the proof of Lemma 5.8, we see that for each prime p, we have

∑
b1 , . . . ,bn (mod p)

S(b1 , . . . , bn ; p) = p ⋅ τF(p)pn−1
= τF(p)pn .

It thus follows from multiplicativity that for any squarefree l , we have

∑
b1 , . . . ,bn (mod l)

S(b1 , . . . , bn ; l) = τF(l)l n .

We then deduce that

∑
l∗≤B1/6

1
(l∗)n+1 ∑

b1 , . . . ,bn (mod l∗)
S(b1 , . . . , bn ; l∗) ≤

τF(l∗)
l∗

.

By [12, Lemma 6.1], we then see that

Q(2)
U (B) = Od(

U4/5(log2 B)
C7

B8/5 ∑
l∗≤B1/6

τF(l∗)
l∗

)

= Od(
U4/5(log2 B)

C7

B8/5 ∏
p≤B1/6

( 1 +
τF(p)

p
))

= Od(
U4/5 logB(log2 B)

C7

B8/5
) ,

as desired.
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By summing QU(B),Q(1)
U (B),Q(2)

U (B) over dyadic ranges of U up to ξ2, we then
see that

∑
1≤k≪log B

Od(
(B5/3/2k)9/10(logB)C5

B8/5
) = O(

(logB)C5

B1/10 ) ,

∑
1≤k≪log B

Od(
(ξ3/2k)4/5(logB)C6

B8/5(logB)log2 B
) = O((logB)C6−8k/15−log2 B) ,

∑
1≤k≪log B

Od(
(ξ3/2k)4/5 logB(log2 B)

C7

B8/5
) = Od(

(log2 B)
C7

(logB)(2k−3)/3 ) .

_is shows that

Q(B) = OF(
(log2 B)

C7

(logB)(2k−3)/3 ) = o(1),

and by (5.18), (5.14), and Lemmas 4.2 and 5.6 we see that N3(B) = o(Bn), and this
completes the proof of _eorem 1.1.
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