PARAMETRIZING ELLIPTIC CURVES BY MODULAR UNITS

FRANÇOIS BRUNAULT

(Received 11 April 2015; accepted 14 April 2015; first published online 19 August 2015)

Communicated by W. Zudilin

Abstract

It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over \mathbf{Q} can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves E of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of E. Finally, we raise several open questions.

2010 Mathematics subject classification: primary 11F03; secondary 11G05, 11G16, 14H52.
Keywords and phrases: elliptic curves, modular parametrization, modular units.

1. Introduction

Since the work of Boyd [3], Deninger [6] and others, it is known that there is a close relationship between Mahler measures of polynomials and special values of L functions. Although this relationship is still largely open, some strategies have been identified in several instances. Specifically, let P be a polynomial in $\mathbf{Q}[x, y]$ whose zero locus defines an elliptic curve E. If the polynomial P is tempered, then the Mahler measure of P can be expressed in terms of a regulator integral

$$
\begin{equation*}
\int_{\gamma} \log |x| d \arg (y)-\log |y| d \arg (x) \tag{1.1}
\end{equation*}
$$

where γ is a (not necessarily closed) path on E (see $[6,12]$). If the curve E happens to have a parametrization by modular units $x(\tau), y(\tau)$, then we may change to the variable τ in (1.1) and try to compute the regulator integral using [12, Theorem 1]. In favourable cases, this leads to an identity between the Mahler measure of P and $L(E, 2)$: see, for example, [12, Section 3] and the references therein. The following natural question, raised by Zudilin, thus arises: which elliptic curves can be parametrized by modular units?

[^0]We show in Section 2 that only finitely many elliptic curves over \mathbf{Q} can be parametrized by modular units. The proof uses a lower bound of Watkins on the modular degree of elliptic curves. Further, we list in Section 3 all elliptic curves E of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of E. It turns out that there are 30 such elliptic curves. Finally, we raise in Section 4 several open questions.

2. A finiteness result

Defintion 2.1. Let E / \mathbf{Q} be an elliptic curve of conductor N. We say that E can be parametrized by modular units if there exist two modular units $u, v \in O\left(Y_{1}(N)\right)^{\times}$such that the function field $\mathbf{Q}(E)$ is isomorphic to $\mathbf{Q}(u, v)$.

Theorem 2.2. Only finitely many elliptic curves over \mathbf{Q} can be parametrized by modular units.

Let E / \mathbf{Q} be an elliptic curve of conductor N. Assume that E can be parametrized by two modular units u, v on $Y_{1}(N)$. Then there exist a finite morphism $\varphi: X_{1}(N) \rightarrow E$ and two rational functions $f, g \in \mathbf{Q}(E)^{\times}$such that $\varphi^{*}(f)=u$ and $\varphi^{*}(g)=v$.

Let E_{1} be the $X_{1}(N)$-optimal elliptic curve in the isogeny class of E, and let $\varphi_{1}: X_{1}(N) \rightarrow E_{1}$ be an optimal parametrization. By [9, Proposition 1.4], there exists an isogeny $\lambda: E_{1} \rightarrow E$ such that $\varphi=\lambda \circ \varphi_{1}$. Consider the functions $f_{1}=\lambda^{*}(f)$ and $g_{1}=\lambda^{*}(g)$. Note that $u=\varphi_{1}^{*}\left(f_{1}\right)$ and $v=\varphi_{1}^{*}\left(g_{1}\right)$. Theorem 2.2 is now a consequence of the following result.

Theorem 2.3. If N is sufficiently large, then $\varphi_{1}^{*}\left(\mathbf{Q}\left(E_{1}\right)\right) \cap O\left(Y_{1}(N)\right)=\mathbf{Q}$.
Proof. Let $C_{1}(N)$ be the set of cusps of $X_{1}(N)$. Let $f \in \mathbf{Q}\left(E_{1}\right) \backslash \mathbf{Q}$ be such that $\varphi_{1}^{*}(f) \in O\left(Y_{1}(N)\right)$. Let P be a pole of f. Then $\varphi_{1}^{-1}(P)$ must be contained in $C_{1}(N)$, and we have

$$
\operatorname{deg} \varphi_{1}=\sum_{Q \in \varphi_{1}^{-1}(P)} e_{\varphi_{1}}(Q) \leq \sum_{Q \in C_{1}(N)} e_{\varphi_{1}}(Q) .
$$

Let g_{N} be the genus of $X_{1}(N)$. By the Riemann-Hurwitz formula for φ_{1}, we have

$$
2 g_{N}-2=\sum_{Q \in X_{1}(N)}\left(e_{\varphi_{1}}(Q)-1\right)
$$

It follows that

$$
\begin{aligned}
\operatorname{deg} \varphi_{1} & \leq \# C_{1}(N)+\sum_{Q \in C_{1}(N)}\left(e_{\varphi_{1}}(Q)-1\right) \\
& \leq \# C_{1}(N)+2 g_{N}-2
\end{aligned}
$$

By the classical genus formula [8, Proposition 1.40], and since $X_{1}(N)$ has no elliptic points for $N \geq 4$, we have

$$
\# C_{1}(N)+2 g_{N}-2=\frac{1}{12}\left[\mathrm{SL}_{2}(\mathbf{Z}): \Gamma_{1}(N)\right]=\frac{\phi(N) v(N)}{12} \quad(N \geq 4)
$$

where $\phi(N)$ denotes Euler's function, and $v(N)$ is defined by

$$
v(N)=N \prod_{i=1}^{k}\left(1+\frac{1}{p_{i}}\right) \quad \text { if } N=\prod_{i=1}^{k} p_{i}^{\alpha_{i}} .
$$

We thus obtain

$$
\begin{equation*}
\operatorname{deg} \varphi_{1} \leq \frac{\phi(N) v(N)}{12} \tag{2.1}
\end{equation*}
$$

We now show that (2.1) contradicts lower bounds of Watkins [11] on the modular degree if N is sufficiently large. Let E_{0} be the strong Weil curve in the isogeny class of E. We have a commutative diagram

We deduce that

$$
\operatorname{deg} \varphi_{1}=\frac{\operatorname{deg} \pi \cdot \operatorname{deg} \varphi_{0}}{\operatorname{deg} \lambda_{0}}
$$

We have $\operatorname{deg} \pi=\phi(N) / 2$. For every $\alpha \in(\mathbf{Z} / N \mathbf{Z})^{\times} / \pm 1$, there exists a unique point $A(\alpha) \in E_{1}(\mathbf{Q})_{\text {tors }}$ such that $\varphi_{1} \circ\langle\alpha\rangle=t_{A(\alpha)} \circ \varphi_{1}$, where (α) denotes the diamond operator and $t_{A(\alpha)}$ denotes translation by $A(\alpha)$. The map $\alpha \mapsto A(\alpha)$ is a morphism of groups and its image is $\operatorname{ker}\left(\lambda_{0}\right)$. It follows that $\operatorname{deg}\left(\lambda_{0}\right) \leq \# E_{1}(\mathbf{Q})_{\text {tors }} \leq 16$. By [11], we have $\operatorname{deg} \varphi_{0} \gg N^{7 / 6-\varepsilon}$ for any $\varepsilon>0$. It follows that $\operatorname{deg} \varphi_{1} \gg \phi(N) N^{7 / 6-\varepsilon}$. Since $v(N) \ll N^{1+\varepsilon}$ for any $\varepsilon>0$, this contradicts (2.1) for N sufficiently large.
Remark 2.4. It would be interesting to determine the complete list of elliptic curves over \mathbf{Q} parametrized by modular units. Unfortunately, the bound on the conductor N provided by Watkins's result, though effective, is too large to permit an exhaustive search. However, we observed numerically in [4] that the ramification index of φ_{0} at a cusp of $X_{0}(N)$ always seems to be a divisor of 24 . If this observation is true, then we can replace (2.1) by the better bound $\operatorname{deg} \varphi_{1} \leq 12 \phi(N) \sum_{d \mid N} \phi((d, N / d))$. Combining this with known linear lower bounds on $\operatorname{deg} \varphi_{0}$ (see [11]), this yields a better (but still large) bound on N. Furthermore, if we restrict to semistable elliptic curves, then φ_{0}, π and φ_{1} are unramified at the cusps; in this case N has at most six prime factors and $N \leq 233310=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 101$.

3. Preimages of torsion points under modular parametrizations

In order to find elliptic curves parametrized by modular units, we consider the following related problem. Let E be an elliptic curve over \mathbf{Q} of conductor N, and let $\varphi: X_{1}(N) \rightarrow E$ be a modular parametrization sending the 0 -cusp to 0 . By the ManinDrinfeld theorem, the image by φ of a cusp of $X_{1}(N)$ is a torsion point of E. Conversely,
given a point $P \in E_{\text {tors }}$, when does the preimage of P under φ consist only of cusps? The link between this question and parametrizations by modular units is given by the following easy lemma.

Lemma 3.1. Suppose that there exists a subset S of $E(\mathbf{Q})_{\text {tors }}$ satisfying the following two conditions:
(1) we have $\varphi^{-1}(S) \subset C_{1}(N)$;
(2) there exist two functions f, g on E supported in S such that $\mathbf{Q}(E)=\mathbf{Q}(f, g)$.

Then E can be parametrized by modular units.
Proof. By condition (1), the functions $u=\varphi^{*}(f)$ and $v=\varphi^{*}(g)$ are modular units of level N, and by condition (2), we have $\mathbf{Q}(E) \cong \mathbf{Q}(u, v)$.

We are therefore led to search for elliptic curves E / \mathbf{Q} admitting sufficiently many torsion points P such that $\varphi^{-1}(P) \subset C_{1}(N)$.

We first give an equivalent form of condition (2) in Lemma 3.1.
Proposition 3.2. Let S be a subset of $E(\mathbf{Q})_{\text {tors. }}$. Let \mathcal{F}_{S} be the set of nonzero functions f on E which are supported in S. The following conditions are equivalent:
(a) there exist two functions $f, g \in \mathcal{F}_{S}$ such that $\mathbf{Q}(E)=\mathbf{Q}(f, g)$;
(b) the field $\mathbf{Q}(E)$ is generated by \mathcal{F}_{S};
(c) we have $\# S \geq 3$, and there exist two points $P, Q \in S$ such that $P-Q$ has order at least 3 .

In order to prove Proposition 3.2, we show the following lemma.
Lemma 3.3. Let $P \in E(\mathbf{Q})_{\text {tors }}$ be a point of order $n \geq 2$. Let f_{P} be a function on E such that $\operatorname{div}\left(f_{P}\right)=n(P)-n(0)$. Then the extension $\mathbf{Q}(E) / \mathbf{Q}\left(f_{P}\right)$ has no intermediate subfields. Moreover, if $P, P^{\prime} \in E(\mathbf{Q})_{\text {tors }}$ are points of order $n \geq 4$ such that $\mathbf{Q}\left(f_{P}\right)=$ $\mathbf{Q}\left(f_{P^{\prime}}\right)$, then $P=P^{\prime}$.

Proof. Let K be a field such that $\mathbf{Q}\left(f_{P}\right) \subset K \subset \mathbf{Q}(E)$. If K has genus 1 , then K is the function field of an elliptic curve E^{\prime} / \mathbf{Q} and f_{P} factors through an isogeny $\lambda: E \rightarrow E^{\prime}$. Then $\operatorname{div}\left(f_{P}\right)$ must be invariant under translation by $\operatorname{ker}(\lambda)$. This obviously implies $\operatorname{ker}(\lambda)=0$, hence $K=\mathbf{Q}(E)$. If K has genus 0 , then we have $K=\mathbf{Q}(h)$ for some function h on E, and we may factor f_{P} as $g \circ h$ with $g: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$. We may assume $h(P)=0$ and $h(0)=\infty$. Then $g^{-1}(0)=\{0\}$ and $g^{-1}(\infty)=\{\infty\}$, which implies $g(t)=a t^{m}$ for some $a \in \mathbf{Q}^{\times}$and $m \geq 1$. Thus $\operatorname{div}(f)=m \operatorname{div}(h)$. Since $\operatorname{div}(h)$ must be a principal divisor, it follows that $m=1$ and $K=\mathbf{Q}\left(f_{P}\right)$.

Let $P, P^{\prime} \in E(\mathbf{Q})$ be points of order $n \geq 4$ such that $\mathbf{Q}\left(f_{P}\right)=\mathbf{Q}\left(f_{P^{\prime}}\right)$ and $P \neq P^{\prime}$. Then $f_{P^{\prime}}=\left(a f_{P}+b\right) /\left(c f_{P}+d\right)$ for some $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Q})$. Considering the divisors of f_{P} and $f_{P^{\prime}}$, we must have $f_{P^{\prime}}=a f_{P}+b$ for some $a, b \in \mathbf{Q}^{\times}$. Then the ramification indices of $f_{P}: E \rightarrow \mathbf{P}^{1}$ at $P, P^{\prime}, 0$ are equal to n, which contradicts the Riemann-Hurwitz formula for f_{P}.

Proof of Proposition 3.2. It is clear that (a) implies (b). Let us show that (b) implies (c). If $\# S \leq 2$, then $\mathcal{F}_{S} / \mathbf{Q}^{\times}$has rank at most 1 and cannot generate $\mathbf{Q}(E)$. Assume that for all points $P, Q \in S$, we have $P-Q \in E[2]$. Translating S if necessary, we may assume that $0 \in S$. It follows that $S \subset E[2]$ and $\mathcal{F}_{S} \subset \mathbf{Q}(x) \subsetneq \mathbf{Q}(E)$.

Finally, let us assume (c). Translating S if necessary, we may assume that $0 \in S$. Let us first assume that S contains a point P of order 2. Then $\mathbf{Q}\left(f_{P}\right)=\mathbf{Q}(x)$ has index 2 in $\mathbf{Q}(E)$ and is the fixed field with respect to the involution $\sigma: p \mapsto-p$ on E. By assumption, there exist two points $Q, R \in S$ such that $Q-R$ has order $n \geq 3$. Let g be a function on E such that $\operatorname{div}(g)=n(Q)-n(R)$. Then it is easy to see that $\operatorname{div}(g)$ is not invariant under σ. It follows that $g \notin \mathbf{Q}\left(f_{P}\right)$ and $\mathbf{Q}\left(f_{P}, g\right)=\mathbf{Q}(E)$. Let us now assume that $S \cap E[2]=\{0\}$. By assumption, S contains two distinct points P, Q having order at least 3. If P or Q has order at least 4, then Lemma 3.3 implies that $\mathbf{Q}\left(f_{P}, f_{Q}\right)=\mathbf{Q}(E)$. If P and Q have order 3, then we must have $Q=-P$ because $\mathbf{Q}(E[3])$ contains $\mathbf{Q}\left(\zeta_{3}\right)$. It follows that the function g on E defined by $\operatorname{div}(g)=(P)+(-P)-2(0)$ has degree 2, so we have $g \notin \mathbf{Q}\left(f_{P}\right)$ and $\mathbf{Q}\left(f_{P}, g\right)=\mathbf{Q}(E)$.

Let E / \mathbf{Q} be an elliptic curve of conductor N. Fix a Néron differential ω_{E} on E, and let f_{E} be the newform of weight 2 and level N associated to E. We define $\omega_{f_{E}}=2 \pi i f_{E}(z) d z$. Let $\varphi_{E}: X_{1}(N) \rightarrow E$ be a modular parametrization of minimal degree. We have $\varphi_{E}^{*} \omega_{E}=c_{E} \omega_{f_{E}}$ for some integer $c_{E} \in \mathbf{Z}-\{0\}$ [9, Theorem 1.6], and we normalize φ_{E} so that $c_{E}>0$. Conjecturally, we have $c_{E}=1$ [9, Conjecture I].

We now describe an algorithm to compute the set S_{E} of points $P \in E(\mathbf{Q})_{\text {tors }}$ such that $\varphi_{E}^{-1}(P) \subset C_{1}(N)$. Let $P \in E(\mathbf{Q})_{\text {tors }}$. We define an integer e_{P} by

$$
e_{P}=\sum_{\substack{x \in C_{1}(N) \\ \varphi_{E}(x)=P}} e_{\varphi_{E}}(x) .
$$

It is clear that $\varphi_{E}^{-1}(P) \subset C_{1}(N)$ if and only if $e_{P}=\operatorname{deg} \varphi_{E}$. Let d be a divisor of N, and let C_{d} be the set of cusps of $X_{1}(N)$ of denominator d (that is, the set of cusps a / b satisfying $(b, N)=d)$. Every cusp $x \in C_{d}$ can be written (nonuniquely) as $x=\langle\alpha\rangle \sigma(1 / d)$ with $\alpha \in(\mathbf{Z} / N \mathbf{Z})^{\times} / \pm 1$ and $\sigma \in \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{d}\right) / \mathbf{Q}\right)$. Since $e_{\varphi_{E}}(x)=e_{\varphi_{1}}(x)=e_{\varphi_{1}}(1 / d)$, we obtain

$$
e_{P}=\sum_{d \mid N} e_{\varphi_{1}}(1 / d) \cdot \#\left\{x \in C_{d}: \varphi_{E}(x)=P\right\}
$$

Recall that for each $\alpha \in(\mathbf{Z} / N \mathbf{Z})^{\times}$, there exists a unique point $A(\alpha) \in E(\mathbf{Q})_{\text {tors }}$ such that $\varphi_{E} \circ\langle\alpha\rangle=t_{A(\alpha)} \circ \varphi_{E}$, where $t_{A(\alpha)}$ denotes translation by $A(\alpha)$. We let $A_{E} \subset E(\mathbf{Q})_{\text {tors }}$ be the image of the map $\alpha \mapsto A(\alpha)$. Note that the set $\left\{x \in C_{d}: \varphi_{E}(x)=P\right\}$ is empty unless $\varphi_{E}(1 / d) \in P+A_{E}$, in which case we have $\varphi_{E}\left(C_{d}\right)=P+A_{E}$ and the number of cusps $x \in C_{d}$ such that $\varphi_{E}(x)=P$ is given by $\# C_{d} / \# A_{E}$. Thus we obtain

$$
e_{P}=\frac{1}{\# A_{E}} \sum_{\substack{d \mid N \\ \varphi_{E}(1 / d) \in P+A_{E}}} e_{\varphi_{1}}(1 / d) \cdot \# C_{d} .
$$

Furthermore, let $\pi: X_{1}(N) \rightarrow X_{0}(N)$ and $\varphi_{0}: X_{0}(N) \rightarrow E_{0}$ be the maps as in (2.2). The ramification index of π at $1 / d$ is equal to $(d, N / d)$. Thus $e_{\varphi_{1}}(1 / d)=(d, N / d) \cdot e_{\varphi_{0}}(1 / d)$. The quantity $e_{\varphi_{0}}(1 / d)$ is equal to the order of vanishing of $\omega_{f_{E}}$ at the cusp $1 / d$, and may be computed numerically (see [4, Section 7]). Moreover, the number of cusps of $X_{0}(N)$ of denominator d is given by $\phi((d, N / d))$. It follows that $\# C_{d}=$ $\phi((d, N / d)) \cdot \phi(N) /(2(d, N / d))$ and we obtain

$$
\begin{equation*}
e_{P}=\frac{\phi(N)}{2 \# A_{E}} \sum_{\substack{d / N \\ \varphi_{E}(1 / d) \in P+A_{E}}} e_{\varphi_{0}}(1 / d) \cdot \phi((d, N / d)) . \tag{3.1}
\end{equation*}
$$

Finally, using notation from Section 2, the modular degree of E may be computed as

$$
\begin{equation*}
\operatorname{deg} \varphi_{E}=\frac{\phi(N)}{2} \cdot \frac{\operatorname{covol}\left(\Lambda_{E_{0}}\right)}{\operatorname{covol}\left(\Lambda_{E}\right)} \cdot \operatorname{deg} \varphi_{0} \tag{3.2}
\end{equation*}
$$

where $\Lambda_{E_{0}}$ and Λ_{E} denote the Néron lattices of E_{0} and E. We read off the modular degree $\operatorname{deg} \varphi_{0}$ from Cremona's tables [5, Table 5]. Formulas (3.1) and (3.2) lead to the following algorithm.
(1) Compute generators $\alpha_{1}, \ldots, \alpha_{r}$ of $(\mathbf{Z} / N \mathbf{Z})^{\times}$.
(2) For each j, compute numerically $\int_{z_{0}}^{\left\langle\alpha_{j}\right\rangle z_{0}} \omega_{f_{E}}$ for $z_{0}=\left(-\alpha_{j}+i\right) / N$.
(3) Deduce $A_{j}=A\left(\alpha_{j}\right) \in E(\mathbf{Q})_{\text {tors }}$.
(4) Compute the subgroup A_{E} generated by A_{1}, \ldots, A_{r}.
(5) Compute the list $\left(P_{1}, \ldots, P_{n}\right)$ of all rational torsion points on E.
(6) Initialize a list $\left(e_{P_{1}}, \ldots, e_{P_{n}}\right)=(0, \ldots, 0)$.
(7) For each d dividing N, do the following:
(a) Compute numerically $z_{d}=\int_{0}^{1 / d} \omega_{f_{E}}$.
(b) Check whether the point $Q_{d}=\varphi_{E}(1 / d)$ is rational or not.
(c) If Q_{d} is rational, then do the following:
(i) Compute numerically $e_{\varphi_{0}}(1 / d)$.
(ii) For each $B \in A_{E}$, do $e_{Q_{d}+B} \leftarrow e_{Q_{d}+B}+e_{\varphi_{0}}(1 / d) \phi((d, N / d))$.
(8) Output $S_{E}=\left\{P \in E(\mathbf{Q})_{\text {tors }}: e_{P}=\# A_{E} \cdot\left(\operatorname{covol}\left(\Lambda_{E_{0}}\right) / \operatorname{covol}\left(\Lambda_{E}\right)\right) \cdot \operatorname{deg} \varphi_{0}\right\}$.

Table 1 gives all elliptic curves E of conductor up to 1000 such that S_{E} satisfies condition (c) of Proposition 3.2. Computations were done using Pari/GP [10] and the Modular Symbols package of Magma [2].

Remarks 3.4.

(1) In order to compute the points A_{j} in step (3) and Q_{d} in step (7)(b), we implicitly make use of Stevens's conjecture that $c_{E}=1$. This conjecture is known for all elliptic curves of conductor up to 200 [9].
(2) Of course, steps (2), (7)(a) and (7)(c)(i) are done only once for each isogeny class.

Table 1. Some elliptic curves parametrized by modular units.

E	$E(\mathbf{Q})_{\text {tors }}$	S_{E}	E	$E(\mathbf{Q})_{\text {tors }}$	S_{E}
1143	Z/5Z	$E(\mathbf{Q})_{\text {tors }}$	$26 a 3$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$14 a 1$	Z/6Z	$\{0,(9,23),(1,-1),(2,-5)\}$	$27 a 3$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$14 a 4$	Z/6Z	$E(\mathbf{Q})_{\text {tors }}$	$27 a 4$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$14 a 6$	Z/6Z	$\{0,(2,-2),(2,-1)\}$	$30 a 1$	Z/6Z	$\{0,(3,4),(-1,0),(0,-2)\}$
$15 a 1$	$\mathbf{Z} / 4 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$	$\{0,(-2,3),(-1,0),(8,18)\}$	$32 a 1$	$\mathbf{Z} / 4 \mathbf{Z}$	$E(\mathbf{Q})_{\text {tors }}$
$15 a 3$	$\mathbf{Z} / 4 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$	$\{0,(0,1),(1,-1),(0,-2)\}$	$32 a 4$	Z/4Z	$E(\mathbf{Q})_{\text {tors }}$
$15 a 8$	Z/4Z	$E(\mathbf{Q})_{\text {tors }}$	$35 a 3$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$17 a 4$	Z/4Z	$E(\mathbf{Q})_{\text {tors }}$	$36 a 1$	Z/6Z	$E(\mathbf{Q})_{\text {tors }}$
$19 a 3$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$	$36 a 2$	Z/6Z	$E(\mathbf{Q})_{\text {tors }}$
$20 a 1$	Z/6Z	$E(\mathbf{Q})_{\text {tors }}$	$40 a 3$	$\mathbf{Z} / 4 \mathbf{Z}$	$E(\mathbf{Q})_{\text {tors }}$
$20 a 2$	Z/6Z	$E(\mathbf{Q})_{\text {tors }}$	$44 a 1$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$21 a 1$	$\mathbf{Z} / 4 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$	$\{0,(-1,-1),(-2,1),(5,8)\}$	$54 a 3$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$24 a 1$	$\mathbf{Z} / 4 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$	$E(\mathbf{Q})_{\text {tors }}$	$56 a 1$	$\mathbf{Z} / 4 \mathbf{Z}$	$E(\mathbf{Q})_{\text {tors }}$
$24 a 3$	Z/4Z	$E(\mathbf{Q})_{\text {tors }}$	$92 a 1$	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$
$24 a 4$	Z/4Z	$E(\mathbf{Q})_{\text {tors }}$	108a1	Z/3Z	$E(\mathbf{Q})_{\text {tors }}$

(3) If x is a cusp of $X_{1}(N)$, then the order of $\varphi_{E}(x)$ is bounded by the exponent of the cuspidal subgroup of $J_{1}(N)$. Hence we may ascertain that $\varphi_{E}(x)$ is rational or not by a finite computation.
(4) We compute $e_{\varphi_{0}}(1 / d)$ by a numerical method. It would be better to use an exact method.

4. Further questions

Note that in Lemma 3.1 we considered functions on E which are supported in $E(\mathbf{Q})_{\text {tors }}$. In general, the image by φ_{E} of a cusp of $X_{1}(N)$ is only rational over $\mathbf{Q}\left(\zeta_{N}\right)$, and we may use functions on E supported at these nonrational points. In fact, let S_{E}^{\prime} denote the set of points $P \in E\left(\mathbf{Q}\left(\zeta_{N}\right)\right)_{\text {tors }}$ such that $\varphi_{E}^{-1}(P) \subset C_{1}(N)$. The set S_{E}^{\prime} is stable under the action of $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{N}\right) / \mathbf{Q}\right)$. Then E can be parametrized by modular units if and only if there exist two functions $f, g \in \mathbf{Q}(E)^{\times}$supported in S_{E}^{\prime} such that $\mathbf{Q}(E)=\mathbf{Q}(f, g)$. As the next example shows, this yields new elliptic curves parametrized by modular units.
Example 4.1. Consider the elliptic curve $E=X_{0}(49)=49 a 1: y^{2}+x y=x^{3}-x^{2}$ $-2 x-1$. The group $E(\mathbf{Q})_{\text {tors }}$ has order 2 and is generated by the point $Q=(2,-1)$, which is none other than the cusp ∞ (recall that the cusp 0 is the origin of E). The set S_{E}^{\prime} consists of all cusps of $X_{0}(49)$. Let P be the cusp 1/7. It is defined over $\mathbf{Q}\left(\zeta_{7}\right)$ and its Galois conjugates are given by $\left\{P^{\sigma}\right\}_{\sigma}=\{P, 3 P+Q,-5 P,-P+Q,-3 P, 5 P+Q\}$. There exists a function $v \in \mathbf{Q}(E)$ of degree 7 such that $\operatorname{div}(v)=\sum\left(P^{\sigma}\right)+(Q)-7(0)$. Since $x-2$ and v have coprime degrees, the curve E can be parametrized by the modular units $u=x-2$ and v.

Example 4.2. Consider the elliptic curve $E=64 a 1: y^{2}=x^{3}-4 x$. Its rational torsion subgroup is given by $E(\mathbf{Q})_{\text {tors }} \cong \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. There is a morphism $\varphi_{0}: X_{0}(64) \rightarrow E$
of degree 2, and we have $S_{E}=E(\mathbf{Q})_{\text {tors }}$. However, the image of the cusp $1 / 8$ is given by $P=\varphi_{0}(1 / 8)=(2 i,-2 \sqrt{2}+2 i \sqrt{2})$. This point is defined over $\mathbf{Q}\left(\zeta_{8}\right)$ and we have $S_{E}^{\prime}=S_{E} \cup\left\{P^{\sigma}\right\}_{\sigma}$. We can check that $\mathcal{F}_{S_{E}^{\prime}} / \mathbf{Q}^{\times}$is generated by $x, x \pm 2$ and $x^{2}+4$, hence it cannot generate $\mathbf{Q}(E)$. However, if we base change to the field $\mathbf{Q}(\sqrt{2})$, then we find that the function $v=y-\sqrt{2} x+2 \sqrt{2}$ is supported in S_{E}^{\prime} and has degree 3 . Hence $E / \mathbf{Q}(\sqrt{2})$ can be parametrized by the modular units $u=x$ and v.

Example 4.2 suggests the following question: which elliptic curves E / \mathbf{Q} of conductor N can be parametrized by modular units defined over $\mathbf{Q}\left(\zeta_{N}\right)$? The argument in Section 2, which is of geometrical nature, shows that S_{E}^{\prime} is empty if N is sufficiently large; however, it crucially uses the fact that the modular parametrization $X_{1}(N) \rightarrow E$ is defined over \mathbf{Q}.

Finally, here are several questions to which I do not know the answer.
Question 4.3. Let E / \mathbf{Q} be an elliptic curve of conductor N. Assume that E can be parametrized by modular units of some level N^{\prime} (not necessarily equal to N). Then we have a nonconstant morphism $X_{1}\left(N^{\prime}\right) \rightarrow E$ and N must divide N^{\prime}. Does it necessarily follow that E admits a parametrization by modular units of level N ? In other words, does it make a difference if we allow modular units of arbitrary level in Definition 2.1? Similarly, does it make a difference if we replace $Y_{1}(N)$ by $Y(N)$ or $Y\left(N^{\prime}\right)$ in Definition 2.1?

Question 4.4. Does it make a difference if we allow the function field of E to be generated by more than two modular units in Definition 2.1?

Question 4.5. What about elliptic curves over \mathbf{C} ? It is not hard to show that if E / \mathbf{C} can be parametrized by modular functions, then E must be defined over $\overline{\mathbf{Q}}$. In fact, by the proof of Serre's conjecture due to Khare and Wintenberger, it is known that the elliptic curves over $\overline{\mathbf{Q}}$ which can be parametrized by modular functions are precisely the \mathbf{Q}-curves [7]. Which \mathbf{Q}-curves can be parametrized by modular units?

Question 4.6. It is conjectured in [1] that only finitely many smooth projective curves over \mathbf{Q} of given genus $g \geq 2$ can be parametrized by modular functions. Is it possible to prove, at least, that only finitely many smooth projective curves over \mathbf{Q} of given genus $g \geq 2$ can be parametrized by modular units?

Question 4.7. According to [1], there are exactly 213 curves of genus 2 over \mathbf{Q} which are new and modular, and they can be explicitly listed. Which of them can be parametrized by modular units?

Question 4.8. Let u and v be two multiplicatively independent modular units on $Y_{1}(N)$. Assume that u and v do not come from modular units of lower level. Can we find a lower bound for the genus of the function field generated by u and v ?

References

[1] M. H. Baker, E. González-Jiménez, J. González and B. Poonen, 'Finiteness results for modular curves of genus at least 2', Amer. J. Math. 6(127) (2005), 1325-1387.
[2] W. Bosma, J. Cannon and C. Playoust, 'The Magma algebra system. I. The user language', J. Symbolic Comput. 24(3-4) (1997), 235-265.
[3] D. W. Boyd, 'Mahler's measure and special values of L-functions', Experiment. Math. 1(7) (1998), 37-82.
[4] F. Brunault, 'On the ramification of modular parametrizations at the cusps', Preprint, 2012 http://arxiv.org/abs/1206.2621.
[5] J. E. Cremona, Algorithms for Modular Elliptic Curves, 2nd edn (Cambridge University Press, Cambridge, 1997).
[6] C. Deninger, 'Deligne periods of mixed motives, K-theory and the entropy of certain \mathbf{Z}^{n}-actions', J. Amer. Math. Soc. 2(10) (1997), 259-281.
[7] K. A. Ribet, 'Abelian varieties over \mathbf{Q} and modular forms', in: Modular Curves and Abelian Varieties, Progress in Mathematics, 224 (Birkhäuser, Basel, 2004), 241-261.
[8] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Kano Memorial Lectures, 1; Publications of the Mathematical Society of Japan, 11 (Princeton University Press, Princeton, NJ, 1994).
[9] G. Stevens, 'Stickelberger elements and modular parametrizations of elliptic curves', Invent. Math. 1(98) (1989), 75-106.
[10] The PARI Group, Bordeaux, PARI/GP version 2.7.3, available from http://pari.math.u-bordeaux.fr/.
[11] M. Watkins, 'Explicit lower bounds on the modular degree of an elliptic curve', Preprint, 2004 http://arxiv.org/abs/math/0408126.
[12] W. Zudilin, 'Regulator of modular units and Mahler measures', Math. Proc. Cambridge Philos. Soc. 2(156) (2014), 313-326.

FRANÇOIS BRUNAULT, ÉNS Lyon, UMPA, 46 allée d'Italie, 69007 Lyon, France
e-mail: francois.brunault@ens-lyon.fr

[^0]: (C) 2015 Australian Mathematical Publishing Association Inc. 1446-7887/2015 \$16.00

