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Abstract
We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly
suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We
first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which
correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical
solutions for the Lévy–Fokker–Planck equation against known analytical solutions. We conclude by numerically
exploring properties of these equations with respect to their stationary states and long-time asymptotics.

1. Introduction

The aim of this work is the design of a finite-volume numerical scheme to approximate the solution of the
non-local diffusion problem given by the fractional heat equation and the related Lévy–Fokker–Planck
equation. The fractional heat equation is defined in R

d as

∂ρ

∂t
= −(−�)

α
2 ρ (1.1)

for 0<α ≤ 2. The so-called fractional Laplacian, (−�)
α
2 ρ, can be formally defined by its Fourier sym-

bol |ξ |αρ̂, although it admits up to ten equivalent definitions (see [28]). There is a suitable self-similar
change of variables that leads to ∂ρ

∂t
= ∇ · (xρ) − (−�)

α
2 ρ, a particular case of Lévy–Fokker–Planck

equation given by

∂ρ

∂t
= ∇ · (βxρ) − (−�)

α
2 ρ (1.2)

for 0<α ≤ 2 and β ≥ 0. Notice that this equation generalises the usual Fokker–Planck equation ∂ρ

∂t
=

∇ · (βxρ) +�ρ by replacing the Laplacian with a fractional operator, see [8, 24].
Fractional diffusion (in particular, the fractional Laplacian) has been shown to be the mean field

limit of Lévy walks under certain scalings [40]. This kind of stochastic process consists in the random
movement of particles in space, subject to a probability that allows long jumps with a polynomial tail.
Such random walks are long range stochastic processes, and they are generally considered more realistic
in the modelling of certain biological phenomena [11, 21, 22, 29, 32].
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The inverse Fourier transform of the symbol |ξ |αρ̂ yields, after some work, the Riesz or singular
integral definition of the fractional Laplacian:

(−�)
α
2 ρ(x) := C(d, α) p.v.

∫
Rd

ρ(x) − ρ(y)

|x − y|d+α dy,

where the integral is understood in the Cauchy principal value sense in order to overcome the singu-
larity. The constant C(d, α), a term which arises in the computation of the inverse transform of |ξ |α, is
given by

C(d, α) = 2α�
(

d+α
2

)
π

d
2 |� (− α

2

)| .

Using the Riesz potential, equation (1.2) can be formally written in divergence form as
∂ρ

∂t
+ ∇ · F = 0, where F = −βxρ + ∇ [

(−�)
α
2 −1ρ

]
. (1.3)

The advantage of this form is that the fractional operator now appears with a negative exponent. In this
case, the inverse Fourier transform of the symbol |ξ |−αρ̂ yields (see [38, Chapter 5])

(−�)− α
2 ρ(x) = C(d, −α)

∫
Rd

ρ(y)

|x − y|d−α dy (1.4)

whenever 0<α < d. This form for the inverse operator bypasses the singularity altogether. Equation 1.3
can therefore be rewritten as

∂ρ

∂t
+ ∇ · F = 0, where F = −βxρ + C(d, α− 2)∇

∫
Rd

ρ(y)

|x − y|d+α−2
dy (1.5)

whenever α > 2 − d. Therefore, in dimension one, this formulation is only valid for 1<α ≤ 2; in higher
dimensions, for 0<α ≤ 2. This new form of the equation has two advantages: the first, that the fractional
operator is no longer singular; and the second, that an equation in divergence form lends itself to be
discretised in the finite-volume fashion. Finite-volume schemes have been used with success to produce
structure preserving schemes for equations in divergence form of gradient flow type and related systems,
see [5, 6, 15, 16]. This is a departure from the numerical methods for fractional diffusions that have
been developed in the past, where the literature has been focused on finite-element and finite-difference
methods [3, 4, 10, 18, 20, 25, 33, 35]. We also highlight several spectral methods [17, 34, 37, 41], which
deal exclusively with problems on unbounded domains.

For the sake of computation, we would like to pose equation (1.2) on an open bounded domain

⊂R

d. There are several nonequivalent definitions of fractional-type Laplacians on bounded domains
that can be obtained as suitable restrictions of the definitions inRd (see [1, Section 1.2] and the references
therein). In this work, we construct a new fractional Laplacian by restricting equation (1.5) to the domain

, prescribing zero-flux conditions for the divergence, and extending the density as ρ ≡ 0 on R

d \
 in
order to ensure that the non-local operator is well-defined. Thus, our interpretation of the Lévy–Fokker–
Planck equation on a bounded domain is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∇ · F = 0,

F = −βxρ + C(d, α)∇
∫



ρ(y)

|x − y|d+α−2
dy,

F · n∂
 = 0.

(1.6)

In the absence of a drift term (when β = 0), we also obtain an interpretation of the fractional heat
equation on a bounded domain. Notice, however, that the steady states of this problem will satisfy∫




ρ∞(y)

|x − y|d+α−2
dy = C,
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which causes ρ∞ to be singular on the boundary. However, for β > 0, our numerical results on suitably
scaled quadrangular domains show that the numerical steady state is very similar to the self-similar
profile of the Rd case (see subsections 4.1.3 and 4.2.1).

The rest of this work is organised as follows: in section 2, we study the well-posedness of equation
(1.6), distinguishing the cases β = 0 and β > 0; in section 3, we introduce a finite-volume numerical
scheme for equation (1.6) in one dimension, and then generalise it to higher dimensions via dimensional
splitting; we conclude in section 4 by validating our schemes against known analytical results.

2. A new fractional Laplacian in bounded domains

The aim of this section is to establish a well-posedness theory for the new fractional operator on a
bounded domain introduced above. We first define the Riesz kernel and the extension operator

Iγ [u](x) = C(d, −γ )
∫
Rd

u(y)

|x − y|d−γ dy, E[u](x) =
{

u(x) if x ∈
,

0 otherwise,

where we assume that 0< γ < d for the operator to be well defined. The operator Iγ : Lp(Rd) → Lq(Rd)
has been widely studied. Note that the flux in equation (1.6) reduces, whenever β = 0, to

F = ∇
(
I2(1− α

2 )Eu
)

.

Thus, besides α ∈ (0, 2), we require 0< 2
(
1 − α

2

)
< d for well-posedness, i.e. α > 2 − d. This is only

restrictive in dimension d = 1.
Let B = I2(1− α

2 )E . If 
=R
d, then B = (−�)−(1− α

2 ), an inverse fractional Laplacian. Our new diffu-
sion operator is therefore A= −�Bu, and we denote its domain by D(A). Equation 1.6 can be now
written in the β = 0 case as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂t
=�Bu in (0, ∞) ×
,

∂(Bu)

∂n
= 0 on (0, ∞) ×
.

(2.1)

Theorem 2.1. There exists a unique semigroup S(t) : L2(
) → L2(
) of solutions of (2.1). In fact, if
Bu0 ∈ H2(
) then Bu(t) ∈ H2(
) for all times and the equation is satisfied in the operator sense.

Proof. We will first justify the well-posedness of this problem using the Hille–Yosida theorem applied
to the operator A with the Neumann condition in L2(
) (see [12, Theorem 7.4]).

Let us construct D(A). We begin by remarking that B : L2(
) → L2(
) is self-adjoint, since∫



v(x)Bu(x)dx =
∫



∫



u(y)v(x)

|x − y|d−2(1− α
2 )

dxdy =
∫



u(y)Bv(y)dy.

Since Iα is a compact operator on L2
c(Rd), so is B in L2(
). Thus, by the spectral theorem, there exists

a basis of L2(
) of orthonormal eigenfunctions ϕi of B with eigenvalues λi → 0, and, defining ui =∫



uϕidx, it holds

u(x) =
∞∑

i=1

uiϕi(x), and Bu(x) =
∞∑

i=1

λiuiϕi(x).

Furthermore, with this construction ‖u‖L2 = ∑
i |ui|2.

Let us show that λi ≥ 0. Defining U := Bu, notice that (−�)1− α
2 U = E(u) in R

d. Therefore, for u ∈
C∞

c (
), we have∫



uBu =
∫



U(−�)1− α
2 U =

∫
Rd

U(−�)1− α
2 U =

∫
Rd

∣∣∣∣(−�)
1− α

2
2 U

∣∣∣∣
2

≥ 0.

Hence, λi ≥ 0.
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We now show that λi > 0 for all i. Suppose, to the contrary, that λi = 0 for some i. We therefore have
that U := Bϕi = 0. But then, a.e. in 
 we have that ϕi = E(ϕi) = (−�)1− α

2 U = 0, a contradiction.
Therefore, we can formally define the operator B−1 through the series B−1u(x) = ∑

i λ
−1
i uiϕi(x). We

define

D(A) =
{

u =B−1v : v ∈ H2(
), ∇v · n = 0 on ∂
, and
∑

i

λ−2
i |vi|2 <∞

}
.

Notice, by construction, that D(A) = L2(
) ∩B−1(H2(
)). Since λi > 0, this set is not empty. Then
A : D(A) ⊂ L2(
) → L2(
).

Now we check that A is monotone. Take u ∈ D(A). Due the spectral decomposition of B it admits
a square root and inverse square root B± 1

2 ; take w =B 1
2 u. Then, due to the Neumann boundary

condition ∫



u(Au) =
∫



∇u · ∇Au =
∫



|∇B 1
2 w|2 ≥ 0.

Lastly, we check that A is maximal monotone. Take f ∈ L2(
); we want to show there exists u ∈ D(A)
such that u +Au = f . Consider the weak formulation∫




uϕ +
∫



∇Bu · ∇ϕ =
∫



fϕ, ∀ϕ ∈ H1(
).

Letting again w =B 1
2 u and ψ =B− 1

2 ϕ, we obtain∫



wψ +
∫



∇B 1
2 w · ∇B 1

2ψ =
∫



B− 1
2 wB 1

2ψ +
∫



∇B 1
2 w · ∇B 1

2ψ =
∫



fB 1
2ψ .

This is a problem of the form a(w,ψ) = L(ψ) where w,ψ ∈ V =B− 1
2 (H1(
)) ∩ L2(
), where the bilin-

ear form a is symmetric and continuous in V . Hence, it can be solved using the Lax–Milgram theorem.
A posteriori, it is trivial to verify that u ∈ D(A).

We now satisfy all the hypotheses of the Hille–Yosida theorem. Thus, if u0 ∈ D(A), then S(t)u0

is a solution in the strong sense, i.e. u ∈ C([0, ∞), D(A)) ∩ C1([0, ∞), L2(
)), and the equation is
satisfied.

The problem (1.6) is not purely diffusive when β > 0, hence the existence does not follow directly
from the Hille–Yosida (or Lumer–Phillips) theorems. Unlike in R

d, it cannot be deduced from the dif-
fusive problem by a change of variables that would lead to a domain 
t that evolves in time. Thus, the
theory of well-posedness for (1.6) when β > 0 is an open problem. A sensible approach would be to
prove the convergence of our numerical scheme below.

3. Numerical schemes

The thrust of this work is the discretisation of the fractional Laplacian term in equation (1.6). First, we
introduce the scheme in one spatial dimension, in order to highlight the technique used to approximate
the fractional term, and then we generalise it to higher dimensions. Our discretisation of the advection
term follows previous finite-volume works for generalised Fokker–Planck equations.

3.1. One dimension

In one dimension, we construct a scheme for equation (1.6) in the range 1<α < 2. We consider, without
loss of generality, a domain 
= (−R, R) and divide it into N cells Ci =

[
xi− 1

2
, xi+ 1

2

]
, for i = 1, · · · , N.

Each cell is centred at the points xi, where xi = −R + (i − 1/2)�x. For simplicity, we assume a uniform
grid with cell size �x = 2RN−1.
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We denote by ρ̄i(t) the average of the solution ρ(t, x) over the ith cell:

ρ̄i(t) = 1

�x

∫
Ci

ρ(t, x)dx.

Then, equation (1.6) can be integrated on each cell Ci to yield

dρ̄i(t)

dt
+ F

[
ρ
(
t, xi+ 1

2

)] − F
[
ρ
(
t, xi− 1

2

)]
�x

= 0, i = 1, · · · , N,

which we approximate as

dρ̄i(t)

dt
+ Fi+ 1

2
(t) − Fi− 1

2
(t)

�x
= 0, i = 1, · · · , N. (3.1a)

The flux F is split into an advective part Fad and a diffusive part Fdif:

Fi+ 1
2
(t) = Fad

i+ 1
2
(t) + Fdif

i+ 1
2
(t). (3.1b)

The advection flux corresponds to the discretisation of the Fokker–Planck term β∇ · (ρx); here we follow
the discretisation of [5, 15]:

Fad
i+ 1

2
(t) = ρ̄i(t)

(
vi+ 1

2

)+ + ρ̄i+1(t)¬vi+ 1
2
, (3.1c)

where

vi+ 1
2
= −ξi+1 − ξi

�x
and ξi = β

|xi|2

2
, (3.1d)

for (s)+ = max{0, s} and ¬s = min{0, s}.
To treat the diffusion, the gradient term C(1, α− 2)∇ ∫

Rd ρ(y)|x − y|1−αdy is replaced by the
difference

Fdif
i+ 1

2
(t) = I(t, xi+1) − I(t, xi)

�x
. (3.1e)

The term I(t, xi) is the approximation of the integral I2−α[ρ](xi), given as a discrete sum by

I(t, xi) =
N∑

k=1

ρ̄k(t)Ik(xi), where Ik(xi) := C(1, α − 2)
∫

Ck

|xi − y|1−αdy. (3.1f)

To conclude, we impose no-flux boundary conditions:

F1− 1
2
(t) = FN+ 1

2
(t) ≡ 0. (3.1g)

Remark 3.1 (Linearity). Scheme (3.1) is linear. We can rewrite equation (3.1a) as a system

dρ̄(t)

dt
+ Aρ̄(t) = 0,

for a vector ρ̄ = (
ρ̄1 · · · ρ̄i · · · ρ̄N

)�. As with the flux, the constant matrix A can be split into an advective
part and a diffusive part, A = Aad + Adif. The advection matrix is simply

Aad = β

�x

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
v1+ 1

2

)+ ¬v1+ 1
2

. . .
. . .

. . .

−(
vi− 1

2

)+ −¬vi− 1
2
+ (

vi+ 1
2

)+ ¬vi+ 1
2

. . .
. . .

. . .

−(
vN− 1

2

)+ −¬vN− 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

https://doi.org/10.1017/S0956792524000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000172


6 R. Bailo et al.

The diffusion matrix can be written as the product of a discrete Laplacian and a dense matrix, Adif = LD,
where

L = − 1

�x2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎝

I1(x1) I2(x1) . . . IN(x1)

I1(x2) I2(x2) . . . IN(x2)
...

...
. . .

...

I1(xN) I2(xN) . . . IN(xN)

⎞
⎟⎟⎟⎟⎠ . (3.3)

Remark 3.2 (Symmetry). The terms in equation (3.1f) are symmetric, Ik(xi) = Ii(xk). The matrix D is
thus symmetric, and it can be constructed by evaluating only N terms.

Remark 3.3 (Higher order advection). The discretisation of the fractional diffusion term is consistent
to second order, a fact which will be verified in section 4. However, the treatment of the advection term
described above is only first-order accurate. A higher order discretisation (e.g. flux limiters, MUSCL)
may be used, at the expense of the linearity of the scheme. An example is presented in the Appendix.

Remark 3.4 (Time discretisation). In practice, we discretise scheme (3.1) on the interval t ∈ (0, T) using
a uniform step �t. For the sake of stability, we employ the implicit time discretisation

ρ̄
m+1 = (Id +�tA)−1ρ̄

m,

where Id is the identity matrix. The update matrix (Id +�tA)−1 is computed once, offline, for each mesh
size (�t,�x), and then stored for successive use.

Remark 3.5 (The range α ≤ 1). The scheme presented in subsection 3.1 is only valid in the range
1<α < 2 due to the inversion formula (1.4) used to rewrite the Lévy–Fokker–Planck equation as (1.5).
The range 0<α ≤ 1 can be handled using instead the inversion formulae for the Poisson problem on
the ball. The relevant kernels are given in [13, Section 3]:

Ik(xi) = 1

π

∫ x
k+ 1

2

x
k− 1

2

log

⎛
⎝R2 − xiy +

√(
R2 − x2

i

)
(R2 − y2)

R|xi − y|

⎞
⎠ dy, for α = 1;

Ik(xi) = κ(1, α)
∫ x

k+ 1
2

x
k− 1

2

|xi − y|α−1

∫ r0(xi ,y)

0

t
α
2 −1(

t + 1
1
2
)dt dy, for 0<α < 1;

where

r0(xi, y) =
(
R2 − |xi|2

) (
R2 − |y|2

)
R2|xi − y|2

, κ(1, α) = �( 1
2
)

2απ
1
2�2

(
α

2

) .

Unfortunately, this approach renders the matrix D no longer symmetric. We will not address this case
directly.

3.2. Two dimensions

In two dimensions, the inversion formula (1.4) no longer restricts the fractional exponent. Therefore, we
construct a scheme for equation (1.6) in the range 0<α < 2.

We consider without loss of generality a square domain 
= (−R, R)2, divided into N2 cells
given by Ci, j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
], for i, j = 1, · · · , N. Each cell is centred at the points (xi, yj),

where xi = −R + (i − 1/2)�x, yj = −R + (j − 1/2)�y and�x =�y = 2RN−1. As in subsection 3.1, we
approximate the cell averages of equation (1.6) to arrive at
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dρ̄i, j(t)

dt
+ Fi+ 1

2 , j(t) − Fi− 1
2 , j(t)

�x
+ Gi, j+ 1

2
(t) − Gi, j− 1

2
(t)

�y
= 0, i, j = 1, · · · , N. (3.4a)

Once again, the fluxes are split into an advective part Fad and a diffusive part Fdif:

Fi+ 1
2 , j(t) = Fad

i+ 1
2 , j

(t) + Fdif
i+ 1

2 , j
(t), Gi, j+ 1

2
(t) = Gad

i, j+ 1
2
(t) + Gdif

i, j+ 1
2
(t). (3.4b)

The advection terms are now

Fad
i+ 1

2 , j
(t) = ρ̄i, j(t)

(
vi+ 1

2 , j

)+ + ρ̄i+1, j(t)¬vi+ 1
2 , j, (3.4c)

Gad
i, j+ 1

2
(t) = ρ̄i, j(t)

(
wi, j+ 1

2

)+ + ρ̄i, j+1(t)¬wi, j+ 1
2
, (3.4d)

where

vi+ 1
2 , j = −ξi+1, j − ξi, j

�x
, wi, j+ 1

2
= −ξi, j+1 − ξi, j

�y
, ξi, j = β

|xi|2 + |yj|2

2
, (3.4e)

following [5, 15].
The treatment of the diffusive part described in the previous section generalises to two dimensions:

Fdif
i+ 1

2 , j
(t) = I(t, xi+1, yj) − I(t, xi, yj)

�x
and Gdif

i, j+ 1
2
(t) = I(t, xi, yjp) − I(t, xi, yj)

�y
. (3.4f)

The discrete integrals I(t, xi, yj) are given by the sum

I(t, xi, yj) =
N∑

k,l=1

ρ̄k, l(t)Ik, l(xi, yj), (3.4g)

where

Ik, l(xi, yj) := C(2, α− 2)
∫

Ck, l

|(xi, yj) − (u, v)|−αdu dv. (3.4h)

Once again, we impose no-flux boundary conditions:

F1− 1
2 , j(t) = FN+ 1

2 , j(t) ≡ 0, Gi, 1− 1
2
(t) = Gi, N+ 1

2
(t) ≡ 0, i, j = 1, · · · , N. (3.4i)

3.2.1. Dimensional splitting
As in the one-dimensional case, scheme (3.4) is linear. Writing

dρ̄(t)

d(t)
+ Aρ̄(t) = 0 (3.5)

for a vector ρ̄ = (
ρ̄1,1 ρ̄2,1 · · · ρ̄N,1 ρ̄1,2 · · · ρ̄i,j · · · ρ̄N,N

)�, we may split the matrix of the scheme into an
advective part and a diffusive part, A = Aad + Adif, which are two-dimensional generalisations of (3.2)
and (3.3).

However, the linear treatment of the scheme becomes impractical here, as the storage required for
matrix of the scheme grows exponentially. While Aad is a banded matrix, Adif is dense. For N = 27, a
dense N2 × N2 matrix would require 2 gigabytes of RAM. For N = 28, the size would be 16 gigabytes,
or 128 gigabytes for N = 29. In order to handle the computation, an approach which does not require the
direct inversion of the matrix (Id +�tA) is required. The Krylov subspace methods, such as GMRES or
BiCGSTAB [36], are among the available options. Instead, we resort to a dimensional splitting strategy.

The (matrix) operator A in equation (3.5) is decomposed as A = A2 + A1, where A1 corresponds to the
transport terms along the x-direction (those in equation (3.4a) which arise from the fluxes Fi+ 1

2 , j), and
A2 corresponds to the transport along the y-direction (terms related to Gi, j+ 1

2
); naturally, A1 and A2 are

independent of ρ̄, as is A. Formally, the solution to (3.5) can be written as ρ̄(t) = exp (tA)ρ̄0. One would
like to approximate this by exp (tA2) exp (tA1)ρ̄0 (i.e. by solving the problem one dimension at a time)
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ρ̄mi−1,j ρ̄mi,j ρ̄mi+1,j· · · · · ·

ρ̄mi−1,j+1 ρ̄mi,j+1 ρ̄mi+1,j+1· · · · · ·

ρ̄mi−1,j−1 ρ̄mi,j−1 ρ̄mi+1,j−1· · · · · ·

ρ̄
m+ 1

2
i−1,j ρ̄

m+ 1
2

i,j ρ̄
m+ 1

2
i+1,j

· · · · · ·

ρ̄mi−1,j+1 ρ̄mi,j+1 ρ̄mi+1,j+1· · · · · ·

ρ̄mi−1,j−1 ρ̄mi,j−1 ρ̄mi+1,j−1· · · · · ·

Figure 1. Dimensional splitting, row update. The split implicit problem considers information on the
whole domain, but the density is allowed to change only within a single row. These updates take place
independently for each row in parallel and can be parallelised.

but, in general, the solution operator cannot be factored in that way: exp (tA2 + tA1) �= exp (tA2) exp (tA1).
However, the Lie–Trotter (or Trotter–Kato) formula

exp (tA2 + tA1) = lim
n→∞

(
exp

( t

n
A2

)
exp

( t

n
A1

))n

does hold for general square matrices [39] and some linear operators [27] and has been used to study
the convergence of dimensional splitting in the case of linear semi-groups [26]. Choosing �t = tn−1,
we see that the exact solution operator exp (tA2 + tA1) can be approximated by applying the operators
exp (�tA1) and exp (�tA2) in an alternating sequence, i.e. the exact solution ρ̄(t) can be approximated
by performing a sequence of intermediate updates of ρ̄0, each involving a short time, alternating the
x-direction and y-direction sub-problems. Upon discretising time, the approximate solution ρ̄

m+1 at time
(m + 1)�t is computed from ρ̄

m (that at time m�t) via ρ̄
m+ 1

2 , an intermediate step; ρ̄
m+ 1

2 is computed
from ρ̄

m by solving the x-direction problem and ρ̄
m+1 is found from ρ̄

m+ 1
2 by solving the y-problem.

At this stage, the advantage of the dimensional splitting approach is not clear: the matrices A1 and A2

are dense, as was A, so the memory requirement has effectively doubled. However, one further approx-
imation is possible: each of the dimensional updates can be approximately decomposed row-wise or
column-wise. For instance, to compute ρ̄

m+ 1
2 from ρ̄

m: for each row j, compute ρ̄m+ 1
2

i, j by solving the one-
dimensional implicit problem within the row, assuming the value of the density will not change outside
of it (i.e. ρ̄m+ 1

2
i, k ≡ ρ̄m

i, k whenever k �= j). This is done independently on each row, and therefore can be triv-
ially parallelised. A schematic diagram of the update is shown in Figure 1. Each update now involves
the inversion of an N × N matrix, rather than N2 × N2, though the matrices are no longer independent
of ρ̄

m. To obtain ρ̄
m+1, the process is repeated along the y-direction, mutatis mutandis.

While this approach to dimensional splitting is partially justified by Lie–Trotter formula above, we
will nevertheless justify it numerically in section 4, both in terms of checking the convergence of the
scheme and its long-time behaviour.

Remark 3.6 (Sweeping dimensional splitting). A valid alternative is the sweeping dimensional splitting
described in [5]. In that approach, the row and column updates take place sequentially, each considering
the updated information from the previous step. This approach can be beneficial in some settings (it was
used in [5] to prove structural properties of the scheme), but was discarded here because it cannot be
parallelised.
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4. Numerical experiments

We now demonstrate the accuracy and performance of our scheme in a variety of test cases, both in
one and two dimensions. We will refer to the fractional heat equation (1.1) and the Lévy–Fokker–Plank
equation (1.2) in the discussion; however, for the numerics, these are always understood as equation
(1.6) with β = 0 and β = 1, respectively.

In one dimension, we employ scheme (3.1); in two dimensions, we employ scheme (3.4) with the
dimensional splitting described in subsection 3.2.1. Experiments use the first-order upwind fluxes
(3.1c) and (3.4c), unless otherwise stated. The experiments that compute the order of accuracy of the
scheme use instead the second-order minmod flux (A.1) presented in the Appendix and discussed in
Remark 3.3.

4.1. One dimension
4.1.1. Fractional diffusion
We first consider the fractional heat equation (1.1). As in the classical heat equation, an explicit self-
similar solution on the whole space is known when α = 1:

φ(t, x) = C(d)
t

(t2 + |x|2)

d+1
2

.

Notice that the problem is linear. We pick C(d) so that ‖φ‖L1 = 1, i.e., C(1) = 1
π

and C(2) = 1
2π

. We shall
use this explicit solution to validate our numerical scheme. Technically, scheme (3.1) is not valid for
α = 1; however, we can set α= 1 + ε and perform the comparison regardless. In practice, we choose
ε= 10−11.

Figure 2 shows a comparison of the numerical solution (α = 1 + ε, R = 100, �x = 0.1, �t = 0.1)
on 
= (−R, R) and the restriction of φ to 
. The initial datum is taken as φ(�t, x). Both solutions
match well on the interior of the domain; however, there is a clear discrepancy on the boundary, where
the numerical solution behaves singularly. The discrepancy is explained by the fact that the self-similar
profile φ is leptokurtic (i.e. has higher kurtosis, or thicker tails, than a Gaussian); therefore, the amount
of mass that is ignored by considering φ on a bounded domain is never exponentially small. The singular
behaviour at the boundary is a known effect of certain fractional operators [2]. This effect is explored
further in the next experiment.

4.1.2. Singular behaviour at the boundary
We consider here the steady states of the fractional heat equation (1.1) on a bounded domain in order
to explore the singular behaviour at the boundary. In one dimension, the steady state ρ∞ of (1.6) with
β = 0 satisfies

∂xx

(∫ R

−R

ρ∞(y)

|x − y|α−1
dy

)
= 0,

which, upon considering the boundary conditions, reduces to∫ R

−R

ρ∞(y)

|x − y|α−1
dy = C

for some constant C. For α > 1, the steady profile can be found explicitly:

ρ∞(x) = cos2

(
π (α− 1)

2

)
C(R + x)

α
2 −1

π 2(R − x)1− α
2

∫ R

−R

(R − y)1− α
2 (R + y)

α
2 −1

y − x
dy + A sin (π (α− 1))

2π (R + x)2−α ; (4.1)

see [23] for details.
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Figure 2. Fractional heat equation (1.1) in one dimension. Numerical solution ρ̄
m on
= (−R, R) and

explicit solution φ on R. Scheme (3.1), α = 1 + ε, R = 100, �x = 0.1, �t = 0.1. Good agreement is
shown on the interior of the domain; boundary effects are visible.

Figure 3 shows the numerical solution (α= 1.5, R = 50, �x = 0.1, �t = 0.5) on 
= (−R, R) as it
tends to the stationary profile (4.1). The datum is taken as in the previous section. The explicit steady state
is captured by the numerical solution as time grows. Note, however, that we have to run the simulation
for a long time before the match is apparent; this is in contrast to the experiment in the next section. The
slow convergence may be due to the singular behaviour at the boundary.

4.1.3. Steady states as a function of domain size
We now turn to the Lévy–Fokker–Planck equation (1.2). First, we consider the case α = 1, where an
explicit solution on the whole line is known:

ρ∗(t, x) = 1

π

et(et − 1)

(1 + x2)e2t − 2et + 1
;

as t → ∞, this solution tends to the steady state

ρ∞(x) = 1

π

1

1 + x2
. (4.2)
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Figure 3. Fractional heat equation (1.1) in one dimension. Numerical solution ρ̄
m and explicit steady

state ρ∞ on 
= (−R, R). Scheme (3.1), α = 1.5, R = 50, �x = 0.1, �t = 0.5. The numerical solution
tends to ρ∞.

Figure 4 shows the numerical solution (α = 1 + ε, R = 50, �x = 0.05, �t = 0.01) on 
= (−R, R)
compared to the explicit steady state (4.3). The datum for the numerical solution is a uniform distribution
with unit mass. Once again, the explicit steady state is captured well by the numerical solution as time
grows. Unlike in the previous experiment, this solution approaches the corresponding steady state very
rapidly.

As was the case with the fractional heat equation, the typical solution of the Lévy–Fokker–Planck
equation is leptokurtic, as it has algebraic tails. Thus, the error committed when a whole-space solution
is restricted to a bounded domain is not exponentially small, even if the presence of the Fokker–Planck
term prevents singularities from developing at the boundary. We therefore expect that the steady state in
a bounded domain will differ from (4.3) by a non-trivial amount.

Figure 5 shows the L1(
) distance between the numerical steady state of the Lévy–Fokker–Planck
equation (α= 1 + ε, �x = 2R/212, �t = 0.1) on 
= (−R, R) for various values of R, and the explicit
steady state (4.3). As expected, the error decreases as R tends to infinity, though the decay does not
follow an obvious pattern.

We show the relative entropy of our numerical solution (for α = 1 + ε) with respect to the equilibrium
ρ∞ in Figure 6. The results show good agreement with the exponential trend predicted by [24], using
two most common entropy functions: �(x) = (x − 1)2 and �(x) = x( log x − 1) + 1.
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Figure 4. Lévy–Fokker–Planck equation (1.2) in one dimension. Numerical solution ρ̄
m, exact solution

ρ∗, and explicit steady state ρ∞. Scheme (3.1), α = 1 + ε, R = 50,�x = 0.05,�t = 0.01. The numerical
solution clearly tends to ρ∞.
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Figure 5. Lévy–Fokker–Planck equation (1.2) in one dimension. L1(
) distance between the numeri-
cal steady state with α = 1 + ε on 
= (−R, R) and the explicit steady state with α= 1. Scheme (3.1),
�x = 2R/212, �t = 0.1. The mismatch decreases as R increases.

Figure 6. Lévy–Fokker–Planck equation (1.2) in one dimension. Dissipation of the relative entropy
with α = 1 + ε with respect to the equilibrium ρ∞. Scheme (3.1), R = 50, �x = 0.05, �t = 0.01. Black
reference line has slope one.

A similar analysis can be performed when α/2 = 1. The Lévy–Fokker–Planck equation reduces to
the classical Fokker–Planck equation

∂tρ =�ρ + ∇ · (xρ),

whose unique, asymptotically stable steady state is

ρ∞(x) = 1

(2π )
d
2

e− |x|2
2 (4.3)
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Figure 7. Lévy–Fokker–Planck equation (1.2) in one dimension. L1(
) distance between the numerical
steady state with α/2 = 0.99 on 
= (−R, R) and the explicit steady state with α= 2. Scheme (3.1),
�x = 2R/212, �t = 0.1. The distance decreases as R increases.

in dimension d (for solutions with unit mass on the whole space). If we let α

2
= 0.99, the steady state

of our numerical scheme should be close to this one, and the agreement should improve as the domain
grows.

Figure 7 shows the L1(
) distance between the numerical steady state of the Lévy–Fokker–Planck
equation (α/2 = 0.99, �x = 2R/212, �t = 0.1) on 
= (−R, R) for various values of R and the explicit
steady state (4.4). Once again, the error decreases as R tends to infinity, as expected.

Figure 8 shows the numerical steady states of the Lévy–Fokker–Planck equation (1.2) (R = 50,
�x = 0.05, �t = 0.01) on 
= (−R, R) for various fractional orders α ∈ (1, 2). We recover symmet-
ric distributions with algebraic tails that become thicker as α decreases. We compare the tails of our
numerical results with the expected behaviour predicted in ref. [9], given by ρ(t, x) � min{1, |x|−α−d}.

4.1.4. Convergence of steady states
To conclude, we verify the order of convergence of the scheme. We fix the domain and compute the
steady state of the Lévy–Fokker–Planck equation (1.2) as in the previous section, for various values
of α. We compute the steady states on a sequence of refining meshes, and study their convergence.
Since the analytical steady state is not known explicitly, we shall monitor the error between numerical
steady states and show that this decays with the mesh size.

Figure 9 shows the L1(
) and L2(
) distance between successive numerical steady states (R = 50,
�t =�x = 2R/2n for 5 ≤ n ≤ 10) computed with scheme (3.1) on 
= (−R, R). The scheme is first-
order accurate for all fractional orders α ∈ (1, 2).

Figure 10 performs the same analysis on scheme (3.1) with the second-order flux (A.1) (viz. Remark
3.3), letting �t =�x2 instead. The scheme is second-order accurate for all fractional orders α ∈ (1, 2).

4.2. Two dimensions
4.2.1. Steady states as a function of domain size
We begin our two-dimensional experiments by verifying the behaviour of the dimensionally split
scheme. Figure 11 shows the numerical steady states of the Lévy–Fokker–Planck equation (1.2) (R = 20,
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Figure 8. Lévy–Fokker–Planck equation (1.2) in one dimension. Numerical steady state for varying
fractional order α ∈ (1, 2). Scheme (3.1), R = 50,�x = 0.05,�t = 0.01. Top: profile at the centre of the
domain. Bottom: detail of the algebraic tails, compared with the predicted asymptotic behaviour |x|−α−d

(dashed).

�x =�y = 0.15, �t = 0.2) on 
= (−R, R)2 for various fractional orders. We recover radially sym-
metric distributions with algebraic tails that become thicker as α decreases. We compare the tails of
our numerical results with the expected behaviour predicted in ref. [9], which is given by ρ(t, x) �
min{1, |x|−α−d}.

As in the one-dimensional case, an explicit solution to the Lévy–Fokker–Planck equation on the
whole space is known for α = 1. The solution is found from the self-similar solution to the fractional
heat equation [19] through the change of variables proposed in ref. [8], just as a solution to the classical
Fokker–Planck equation can be derived from a solution to the heat equation. The solution in question is
given by

ρ∗(t, x, y) = 1

2π

e2t(et − 1)

((1 + x2 + y2)e2t − 2et + 1)
3
2

,
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Figure 9. Lévy–Fokker–Planck equation (1.2) in one dimension. Convergence of scheme (3.1) for vary-
ing fractional order α. R = 50, �x = 2R/2n for 5 ≤ n ≤ 10, �t =�x. Black reference line has slope
one.

Figure 10. Lévy–Fokker–Planck equation (1.2) in one dimension. Convergence of scheme (3.1)
with second-order flux (A.1) (viz. Remark 3.3) for varying fractional order α. R = 50, �x = 2R/2n

for5 ≤ n ≤ 10, �t =�x. Black reference line has slope two.

which tends to the steady state

ρ∞(x, y) = 1

2π

1

(1 + x2 + y2)
3
2

. (4.4)

Figure 12 shows the numerical solution (α= 1, R = 20,�x =�y = 0.08,�t = 0.1) on
= (−R, R)2

compared to the explicit steady state (4.4). The datum for the numerical solution is a uniform distribution
with unit mass.

We now study the convergence of the numerical steady state to the profile (4.4) as the size of the
domain grows. Unlike the one-dimensional test, the two-dimensional analysis can be performed setting
α = 1 exactly. Figure 13 shows the L1(
) distance between the numerical steady state of the Lévy–
Fokker–Planck equation (α = 1, �x =�y = 2R/28, �t = 0.1) on 
= (−R, R)2, for various values of
R, and the explicit steady state (4.4). As in the one-dimensional case, the error decreases as R tends to
infinity.

https://doi.org/10.1017/S0956792524000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000172


European Journal of Applied Mathematics 17

Figure 11. Lévy–Fokker–Planck equation (1.2) in two dimensions. Numerical steady state for varying
fractional order α ∈ (0, 2). Scheme (3.4) with splitting (viz. subsection 3.2.1), R = 20,�x =�y = 0.15,
�t = 0.2. Top: central section. Bottom: detail of the algebraic tails, compared with the dotted lines of
the predicted long time asymptotic behaviour |x|−α−d.

4.2.2. Convergence of steady states
We verify the order of convergence of the dimensionally split scheme. As in one dimension, we fix
the domain size and compute the steady state of the Lévy–Fokker–Planck equation (1.2) for various
values of α. Figure 14 shows the L1(
) and L2(
) distance between numerical steady states (R = 20,
�t =�x =�y = 2R/2n for 5 ≤ n ≤ 8) computed with scheme (3.4) on 
= (−R, R)2 as the mesh size
is halved. The order of the scheme appears slightly less than one; this might be a consequence of the
dimensional splitting. Noticeably, the convergence is initially very slow when the fractional order is
close to zero.

4.2.3. Long-time asymptotics
To conclude, we study the rate of convergence of the numerical solution of the Lévy–Fokker–Planck
equation (1.2) to the corresponding steady states. Figure 15 shows the L1(
) and L2(
) distances of
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Figure 12. Lévy–Fokker–Planck equation (1.2) in two dimensions. Numerical steady state and explicit
steady state. Scheme (3.4) with splitting (viz. subsection 3.2.1), α = 1 + ε, R = 20, �x =�y = 0.08,
�t = 0.1.

Figure 13. Lévy–Fokker–Planck equation (1.2) in two dimensions. L1(
) distance between the numeri-
cal steady state on
= (−R, R)2 and the explicit steady state. Scheme (3.4) with splitting (viz. subsection
3.2.1), α = 1, �x = 2R/28, �t = 0.1. The mismatch decreases as R increases.

the numerical solution (R = 20, �x =�y = 0.15, �t = 0.08) on 
= (−R, R)2 for various fractional
orders to their asymptotic steady states as a function of time. Perhaps due to the highly symmetric initial
data, the numerical solutions show an improved rate of convergence (e−2t) towards the steady state with
respect to the result of [24] (e−αt). This acceleration phenomena due to symmetry of the datum is well-
documented, as it has been observed also in the classical Fokker–Planck setting [7], as well as in the
porous medium equation [14].
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Figure 14. Lévy–Fokker–Planck equation (1.2) in two dimensions. Convergence of scheme (3.4)
with splitting (viz. subsection 3.2.1) for varying fractional orders α. R = 20, �x =�y = 2R/2n for
n = 5, . . . , 8, �t =�x. Black reference line has slope one.

Figure 15. Lévy–Fokker–Planck equation (1.2) in two dimensions. Convergence to steady state of
numerical solutions for varying fractional order. Scheme (3.4) with splitting (viz. subsection 3.2.1),
R = 20, �x =�y = 0.15, �t = 0.08. Black reference line has slope two.
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Appendix A: A second-order discretisation

The discretisation of the advection terms described in section 3 is only accurate to first order. However,
the discretisation of the fractional diffusion term is second-order accurate, as discussed in Remark 3.3.
In order to verify this, the validation tests of section 4 employ a higher order scheme for the advection
part. The discretisation of choice is classical: upwind with a minmod limiter [30, 31], which has been
used successfully for generalised Fokker–Planck equations [5, 15]. For the sake of self-consistency, we
detail here the one-dimensional discretisation.

The definition of the diffusive flux Fdif
i+ 1

2
(t) given in equation (3.1e) is not modified. Similarly, the

advective velocity vi+ 1
2

is kept as given in equation (3.1d). The only alteration takes place in the advective
flux Fad

i+ 1
2
(t); the first-order upwind formula (3.1c) is replaced by

Fad
i+ 1

2
(t) = ρ̄E

i (t)(vi+ 1
2
)+ + ρ̄W

i+1(t)¬vi+ 1
2
. (A.1)

These east and west values are computed from a piecewise linear reconstruction:

ρ̄E
i (t) = ρ̄i(t) + �x

2
dρ̄i(t), ρ̄W

i (t) = ρ̄i(t) − �x

2
dρ̄i(t).

The discrete gradient dρ̄i is defined as

dρ̄i(t) = minmod

(
ρ̄i − ρ̄i−1

�x
,
ρ̄i+1 − ρ̄i−1

2�x
,
ρ̄i+1 − ρ̄i

�x

)
,

where

minmod(a, b, c) :=

⎧⎪⎨
⎪⎩

min{a, b, c} if a, b, c> 0,

max{a, b, c} if a, b, c< 0,

0 otherwise.
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