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Abstract

It has long been known that there exist finite connected tetravalent arc-transitive graphs with arbitrarily
large vertex-stabilizers. However, beside a well-known family of exceptional graphs, related to the
lexicographic product of a cycle with an edgeless graph on two vertices, only a few such infinite families
of graphs are known. In this paper, we present two more families of tetravalent arc-transitive graphs with
large vertex-stabilizers, each significant for its own reason.

2010 Mathematics subject classification: primary 20B25.

Keywords and phrases: valency four, arc-transitive.

1. Introduction

A celebrated theorem of Tutte [7, 8] states that, for a finite connected cubic arc-
transitive graph, a vertex-stabilizer has order at most 48. As is well known and will
be shown below, Tutte’s result has no immediate generalization to graphs of valency
four. However, it is still an interesting question whether there exists a relatively
tame function f such that, for every connected tetravalent arc-transitive graph with
n vertices, a vertex-stabilizer has order at most f (n).

Here is a standard example showing that f must grow at least exponentially with
the number of vertices: for r ≥ 3, let Wr denote the lexicographic product Cr [K̄2] of
a cycle of length r with an edgeless graph on two vertices. The graph Wr has vertex
set Zr × Z2 with (v, i) adjacent to (v ± 1, j) for v ∈ Zr and i, j ∈ Z2. This graph
admits an arc-transitive action of the group G ∼= C2 wr Dr , with the base group Cr

2 ≤ G
preserving each fibre V j = { j} × Z2 ⊆ Zr × Z2 setwise and Dr acting naturally on
the set of fibres {V j } j . The vertex-stabilizer Gv is then isomorphic to the group
Cr−1

2 o C2. In particular, the order of Gv is 2r and grows exponentially with the
number of vertices 2r of the graph Wr . Further examples of families of tetravalent
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arc-transitive graphs exhibiting an exponential growth of |Gv| were found by Praeger
and Xu in [5]. The graphs C(r, s), constituting these families, will be described in
Section 3.

On the other hand, it has recently been shown by the authors of this paper
that a completely different picture emerges once the exceptional graphs C(r, s) are
excluded [4, Corollary 3]. Namely, if 0 is a connected tetravalent G-arc-transitive
graph not isomorphic to a graph C(r, s), then either |Gv| ≤ 2436 or

|V0| ≥ 2|Gv| log2(|Gv|/2). (1.1)

Note that (1.1) implies that |Gv| is bounded above by a sublinear function of |V0|. The
first aim of this paper is to construct a family of connected G-arc-transitive graphs, not
isomorphic to C(r, s), attaining the bound given in (1.1). This will done in Section 4
(see Definition 4.1). Both the graphs C(r, s) and the graphs presented in Section 4
have soluble groups of automorphisms.

The only family of connected tetravalent G-arc-transitive graphs with arbitrarily
large vertex-stabilizers and with G nonsoluble that was previously known to us is the
family constructed by Conder and Walker in [2]. For a member 0 of this family,
G ∼= Sym(n) (for some n) and |V0| ≥ (|Gv| − 1)!. In particular, |Gv| grows more
slowly than any logarithmic function of |V0|.

The second family of graphs that we construct in this paper (see Definition 5.1)
consists of tetravalent G-arc-transitive graphs 1n with G ∼= Sym(4n). The vertex-
stabilizer Gv in this family has order 22n , and hence |V1n| = (4n)!/22n . Using
Stirling’s formula, one can see that, asymptotically, |Gv| grows more slowly than
|V0|c for any c > 0, but more rapidly than any logarithmic function of |V0|. This
is much slower than the growth from (1.1) but still considerably faster than the growth
exhibited by the family in [2].

2. Preliminaries

The following standard notation and terminology will be used throughout the
paper. All the graphs will be finite, simple and connected. Let 0 be a graph and
let G ≤ Aut(0). We say that 0 is G-arc-transitive provided that G acts transitively on
the set of arcs of 0. In this case, the permutation group G0(v)

v induced by the action of
the stabilizer Gv of a vertex v ∈ V0 on the neighbourhood 0(v) is transitive. A pair
(0, G) is called locally-D4 if 0 is a connected tetravalent G-arc-transitive graph with
G0(v)
v isomorphic to the dihedral group D4 in its natural action on four points. For

a group G, a subgroup H and an element a ∈ G \ H , the coset graph Cos(G, H, a)
is the graph with vertex set the set of right cosets G/H = {Hg : g ∈ G} and edge set
{{Hg, Hag} : g ∈ G}. It was proved by Sabidussi [6] that every G-vertex-transitive
graph is isomorphic to some coset graph of G. More precisely, we have the following
well-known result.
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THEOREM 2.1. Let 0 be a connected G-arc-transitive graph, let Gv be the stabilizer
of the vertex v ∈ V0 and let a ∈ G be an automorphism with va

∈ 0(v). Then
0 ∼= Cos(G, Gv, a).

Conversely, let H be a core-free subgroup of a finite group G and let a ∈ G be such
that G = 〈H, a〉 and a−1

∈ HaH. Then the graph 0 = Cos(G, H, a) is connected
and G-arc-transitive. The valency of 0 is |HaH |/|H | and the neighbourhood 0(H)
of the vertex H ∈ V0 is the set 0(H)= {Hah : h ∈ H}.

Given a connected graph 0, a subgroup G ≤ Aut(0) and a normal subgroup
N � G, the normal quotient graph 0/N is the graph with vertex set the orbit space
V0/N = {vN

: v ∈ V0} and with two orbits uN and vN adjacent in 0/N whenever
there exist a pair of vertices u′, v′ ∈ V0 with u′ ∈ uN and v′ ∈ vN . Note that there
exists a natural (but possibly not faithful) action of G/N on 0/N . Moreover, if G is
transitive on the vertices (respectively, arcs) of 0, then G/N is transitive on vertices
(respectively, arcs) of 0/N .

A special case of normal quotients arises when the quotient projection π : 0→
0/N , v 7→ vN , is locally bijective (that is, π maps the neighbourhood of an arbitrary
vertex v ∈ V0 bijectively onto the neighbourhood of π(v) in 0/N ). It is well known
that, in this case, G/N acts faithfully on V(0/N ), and that the vertex-stabilizers Gv

and (G/N )π(v) are isomorphic and induce permutation isomorphic local groups G0(v)
v

and (G/N )0/N (π(v))
π(v) . When the quotient projection π : 0→ 0/N is locally bijective,

we will say that the pair (0, G) is an N-cover of the pair (0/N , G/N ). If, in addition,
N is contained in the centre of G, then we say that the pair (0, G) is a central N-cover
of the pair (0/N , G/N ).

We will need the following lemma describing the relationship between covers and
coset graphs.

LEMMA 2.2. Let G be a group generated by a core-free subgroup H and an
element a. Further, let 0 = Cos(G, H, a) and let N be a normal subgroup of G not
containing a and intersecting the set Ha H trivially. Let Ḡ = G/N, let H̄ = H N/N,
and let ā = Na ∈ G/N. Then 0/N ∼= Cos(Ḡ, H̄ , ā) and (0, G) is an N-cover of
(0/N , Ḡ).

PROOF. Let v denote the vertex of 0 = Cos(G, H, a) corresponding to the coset
H ∈ G/H . Then H = Gv and Ha

= Gva . As 0 is G-arc-transitive, to show that
the quotient projection π : 0→ 0/N is locally bijective, it suffices to show that the
N -orbit of va intersects the neighbourhood of v only in va , that is, (va)N

∩ (va)H
=

{va
}. Now, if u ∈ (va)N

∩ (va)H , then u = vaz
= vah for some z ∈ N and h ∈ H .

Therefore azh−1a−1
∈ Gv = H , and thus z ∈ Ha H . Since N ∩ Ha H = 1, this

implies that z = 1 and that u = va
= vah , and hence (va)N

∩ (va)H
= {va

}. This
shows that π : 0→ 0/N is indeed a covering projection and hence (0, G) is an N -
cover of (0/N , G/N ). It follows that G/N acts faithfully and arc-transitively on 0/N .
The stabilizer of the vertex vN in G/N is the group H̄ = H N/N ∼= H/(H ∩ N )∼= H ,
and ā maps the vertex π(v) to the neighbour π(va). By Theorem 2.1 we may thus
conclude that 0/N ∼= Cos(Ḡ, H̄ , ā), as claimed. 2
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3. The family of graphs with exponential growth of the vertex-stabilizer

In this section we describe the family of graphs C(r, s) mentioned in Section 1,
which generalize the graphs Wr . We give a definition that is slightly different from but
equivalent to the definition used in [5], where they were first introduced.

Let C(r, 1)=Wr . Let s be an integer satisfying 2≤ s ≤ r − 2 and let C(r, s) be the
graph with vertices being the (s − 1)-paths of C(r, 1) containing at most one vertex
from each fibre V j , j ∈ Zr , and with two such (s − 1)-paths being adjacent in C(r, s)
if and only if their intersection is an (s − 2)-path in C(r, 1). The number of vertices of
C(r, s) is clearly

|VC(r, s)| = r2s . (3.1)

It is easy to see that the girth of C(r, s) is 4. Furthermore, C(r, s) is bipartite
provided that r is even.

For i ∈ Zr , let xi denote the automorphism of Wr which interchanges the two
vertices in the fibre Vi and fixes all other vertices. Further, let a be the automorphism
of Wr which maps each (v, i) ∈ VWr to (v + 1, i), and let b be the automorphism
acting on the vertices of Wr according to the rule (v, i)b = (−v, i) for every v ∈ Zr
and i ∈ Z2. Then the group

Gr = 〈x0, . . . , xr−1〉o 〈a, b〉 ∼= Cr
2 o Dr (3.2)

acts arc-transitively on Wr . It was shown in [5] that if r 6= 4, then Aut(Wr )= Gr .
Furthermore, W4 ∼= K4,4 and hence Aut(W4)∼= Sym(4) wr Sym(2).

Since Gr permutes the (s − 1)-paths of Wr containing at most one vertex from each
fibre V j , the group Gr acts as a group of automorphisms of C(r, s). The stabilizer
in G = Gr of the vertex v of C(r, s) corresponding to the (s − 1)-path (r − s, 0)
(r − s + 1, 0) · · · (r − 1, 0) in Wr is the group H = 〈x0, x1, . . . , xr−s−1, bs〉, where
bs is the element of G acting as (v, i)bs = (r − s − 1− v, i). Note that G = 〈H, a〉.
Using Theorem 2.1, it is now easy to see that the graphs C(r, s) can be defined in terms
of coset graphs as follows.

LEMMA 3.1. The graph C(r, s) is isomorphic to the coset graph Cos(Gr,s, Hr,s, a)
where

Gr,s = 〈x0, . . . , xr−1, a, b | x2
0 = · · · = x2

r−1 = ar
= b2
= (ab)2 = 1,

xa
i = xi+1, xb

i = xr−s−1−i 〉,

Hr,s = 〈x0, . . . , xr−1, b〉 ≤ Gr,s .

Let us finish this section by reporting the following result from [5] regarding the
automorphism group of C(r, s).

LEMMA 3.2 [5, Lemma 2.12]. Let 0 = C(r, s) with 1≤ s ≤ r − 1. If r 6= 4, then
Aut(0)= Gr,s . Moreover,

Aut(C(4, 1))∼= Aut(K4,4)∼= Sym(4) wr Sym(2),

Aut(C(4, 2))∼= Sym(2) wr Sym(4)

https://doi.org/10.1017/S0004972710002078 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002078


[5] Tetravalent arc-transitive graphs with unbounded vertex-stabilizers 83

and
Aut(C(4, 3))∼= (Sym(2) wr D4) · Sym(2).

4. The graphs attaining the bound (1.1)

In this section, for every t ≥ 2, we construct two locally-D4 pairs (0+t , G+t ) and
(0−t , G−t ) with |V0±t | = t2t+2 and |G±t | = t22t+3. Since |(G±t )v| = |G

±
t |/|V0

±
t | =

2t+1, we see that the pairs (0±t , G±t ) indeed meet the bound (1.1) stated in Section 1.
Let t be an integer satisfying t ≥ 2. We start by considering the extraspecial group

Et of order 22t+1 of plus type, which has the following presentation:

Et = 〈x0, . . . , x2t−1, z | x2
i = z2

= [xi , z] = 1 for 0≤ i ≤ 2t − 1,

[xi , x j ] = 1 for |i − j | 6= t, [xi , xt+i ] = z for 0≤ i ≤ t − 1〉.
(4.1)

We will now extend the group Et by the dihedral group

D2t = 〈a, b | a2t
= b2
= 1, ab

= a−1
〉, (4.2)

using two different 2-cocycles. In both extensions, the generators a and b will act upon
the generators of Et according to the rules

xa
i = xi+1 and xb

i = xt−1−i for 0≤ i ≤ 2t − 1 (with indices taken mod 2t).

To obtain the split extension G+t , we let a2t
= b2
= 1, and thus define

G+t = Et o D2t , a2t
= b2
= 1, xa

i = xi+1, xb
i = xt−1−i . (4.3)

The second extension G−t is nonsplit, and we have a2t
= z and b2

= 1:

G−t = Et · D2t , a2t
= z, b2

= 1, xa
i = xi+1, xb

i = xt−1−i . (4.4)

Finally, let
H±t = 〈x0, . . . , xt−1, b〉 ≤ G±t , (4.5)

and observe that H+t ∼= H−t ∼= Ct
2 o C2. The graphs 0+t and 0−t are now defined as

coset graphs on the groups G+t and G−t , respectively.

DEFINITION 4.1. Let t ≥ 2 and let a, H±t and G±t be as above. Then 0+t =

Cos(G+t , H+t , a) and 0−t = Cos(G−t , H−t , a).

Before stating the main theorem of this section, let us first show that for any
t ≥ 2, a triple (G, H, a)= (G±t , H±t , a) satisfies the conditions of Theorem 2.1 and
thus gives rise to a connected G-arc-transitive graph 0±t . Observe first that since
a cyclically permutes the elements of the generating set {x0, . . . , x2t−1} of E , and
since x0 ∈ H , the group 〈H, a〉 contains the subgroup E . Since b ∈ H , we see that
〈H, a〉 = 〈H, b, a〉 = 〈E, b, a〉 = G. The graph 0±t is therefore connected.

https://doi.org/10.1017/S0004972710002078 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002078
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To see that H is core-free in G, observe that

H ∩ Hat
= 〈x0, . . . , xt−1, b〉 ∩ 〈xt , . . . , x2t−1, b〉 = 〈b〉.

Since b /∈ Ha , we see that H ∩ Hat
∩ Ha

= 1, implying that the core of H in G is
trivial. Finally, since b ∈ H , it follows that HaH = HbabH = Ha−1 H , and hence
a−1
∈ HaH . In view of Theorem 2.1, this implies that the graph 0±t is indeed

connected and G-arc-transitive.

THEOREM 4.2. Let t be an integer with t ≥ 2 and let (0, G) be either (0+t , G+t ) or
(0−t , G−t ). Then the following statements hold:

(i) |V0| = t2t+2 and |Gv| = 2t+1, and hence the bound (1.1) in Section 1 is met;
(ii) (0, G) is a central C2-cover of the pair (C(2t, t), G2t,t ), where G2t,t is as in

Lemma 3.1;
(iii) (0, G) is a locally-D4 pair;
(iv) the girth of 0 is 4 if 0 = 0+2 , is 6 if 0 = 0+3 , and is 8 otherwise;
(v) if (0, G) 6= (0−2 , G−2 ), then Aut(0)= G, while |Aut(0−2 ) : G

−

2 | = 9.

PROOF. Let E = Et and let H = H+t or H−t , so that 0 = Cay(G, H, a). To prove
part (i), note that

|G| = |Et ||D2t | = 22t+14t = t22t+3

and that

H ∼= 〈x0, . . . , xt−1〉o 〈b〉 ∼= C t
2 o C2,

implying that |Gv| = |H | = 2t+1. Therefore, |V0| = |G|/|H | = t2t+2, as claimed.
To prove part (ii), first observe that 〈z〉 ∼= C2 is contained in the centre of G, that

G/〈z〉 ∼= G2t,t and that the natural isomorphism between G/〈z〉 and G2t,t maps the
group H bijectively onto the group H2t,t ≤ G2t,t (defined in Lemma 3.1), and the
element a ∈ G from the definition of the graph 0 = Cos(G, H, a) to the element a
from the definition of the graph C(2t, t)= Cos(G2t,t , H2t,t , a).

We now show that z 6∈ Ha H . Suppose (to the contrary) that z ∈ Ha H . Every
element of H is of the form ebε for some e ∈ 〈x0, . . . , xt−1〉 ≤ E and ε ∈ {0, 1},
hence z can be written in the form (ebε)a(e′bε

′

). Since E is normal in G, we have
z = c(bε)abε

′

, for some c ∈ E . Since z ∈ E , it follows that (bε)abε
′

= 1 and hence
ε = ε′ = 0. It follows that z can be written in the form

(xε0
0 · · · x

εt−1
t−1 )

a(x
ε′0
0 · · · x

ε′t−1
t−1 )= (x

ε0
1 · · · x

εt−1
t )(x

ε′0
0 · · · x

ε′t−1
t−1 ).

If εt−1 = 0, then the latter belongs to the elementary abelian group 〈x0, . . . , xt−1〉,
which does not contain z. Similarly, if ε′0 = 0, then the latter belongs to the elementary
abelian group 〈x1, . . . , xt 〉, which does not contain z. Hence we may assume
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that εt−1 = ε
′

0 = 1. Now, since xt x0 = x0xt z, it follows that

z = xε0
1 · · · x

εt−2
t−1 xt x0x

ε′1
1 · · · x

ε′t−1
t−1

= xε0
1 · · · x

εt−2
t−1 x0xt zx

ε′1
1 · · · x

ε′t−1
t−1

= xε0
1 · · · x

εt−2
t−1 x0x

ε′1
1 · · · x

ε′t−1
t−1 xt z = dxt z

with d ∈ 〈x0, . . . xt−1〉. Therefore we have xt ∈ 〈x0, . . . , xt−1〉, which is clearly a
contradiction. Thus we have shown that z 6∈ Ha H . It follows by Lemma 2.2 that
0/〈z〉 ∼= C(2t, t) and that 0 is a 〈z〉-cover of C(2t, t). Part (ii) of the theorem is thus
proved.

Moreover, since the pair (C(2t, t), G2t,t ) is locally-D4, so is the covering pair
(0, G), thus proving part (iii).

In the proof of parts (iv) and (v) we will need detailed information about the spheres
of radius 2 and 3 around the vertex H . For i ≥ 1 and v ∈ V0, let 0i (v) denote the set
of vertices in 0 at distance i from v. To determine the neighbourhood 01(H), observe
that Ha, Ha−1

= Hab, H x2t−1a = Hax0 and H xt a−1
= Ha−1xt−1 = Habxt−1 are

four pairwise distinct cosets of the form Hah with h ∈ H . Since 0 has valency four,
this implies that

01(H)= {Hg : g ∈ X1} where X1 = {a, x2t−1a, a−1, xt a
−1
}. (4.6)

Further, observe that

02(H)= {Hg : g ∈ X2} \ {H} where X2 = {gh : g, h ∈ X1}. (4.7)

An easy computation shows that

X2 = {x
ε1
2t−2xε2

2t−1a2
: ε1, ε2 ∈ {0, 1}} ∪ {xε1

t xε2
t+1a−2

: ε1, ε2 ∈ {0, 1}}

∪ {xt , xt z, x2t−1, x2t−1z}.
(4.8)

Similarly, note that

03(H)= {Hg : g ∈ X3} \ 01(H) where X3 = {gh : g, h ∈ X1, X2}. (4.9)

By a straightforward computation,

X3 = {x
ε1
2t−3xε2

2t−2xε3
2t−1a3

: ε1, ε2, ε3 ∈ {0, 1}}

∪ {xε1
t xε2

t+1xε3
t+2a−3

: ε1, ε2, ε3 ∈ {0, 1}}

∪ {xε1
t xε2

2t−1zε3a : ε1, ε2, ε3 ∈ {0, 1}}

∪ {x2t−2xε1
2t−1zε2a : ε1, ε2 ∈ {0, 1}}

∪ {xε1
t xε2

t+1zε3a−1
: ε1, ε2, ε3 ∈ {0, 1}}

∪ {xε1
t x2t−1zε2a : ε1, ε2 ∈ {0, 1}}.

(4.10)
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Having computed the second and the third neighbourhood of the vertex H , it is now
easy to determine the girth of the graph 0. Recall first that 0 is a twofold cover of the
graph C(2t, t), which is bipartite and of girth four. This implies that 0 is also bipartite
and of girth not exceeding eight.

Now, if t = 2 and 0 = 0+t , then the order of a is four, and hence the
elements a−2, a2, listed in (4.8) coincide. In particular, 0 contains the 4-cycle
(H, Ha, Ha2, Ha−1), and thus the girth of 0 is four.

In all the other cases (that is, if 0 = 0−2 or if t ≥ 3), the 12 elements of X2 listed
in (4.8) are representatives of 12 pairwise distinct H -cosets. This implies that the girth
of 0 is at least six. If t = 3 and 0 = 0+t , then a3

= a−3 and therefore 0 contains the
6-cycle (H, Ha, H2, Ha3, Ha−2, Ha−1). In particular, the girth of 0+3 is six.

In all the other cases (that is, if 0 = 0−3 or if t ≥ 4), the 36 elements of X3, listed
in (4.10), are pairwise distinct, and in fact are representatives of 36 pairwise distinct
H -cosets. The girth of 0 is thus at least (and therefore exactly) eight. This proves part
(iv) of the theorem.

Let us now prove part (v). The automorphism groups of 0±t for t ≤ 3 can be
determined using Magma [1]. We will therefore assume that t ≥ 4 and set 0 = 0±t
and A = Aut(0).

We will first show that the orbits of 〈z〉 on V0 form a system of imprimitivity for
the action of A on V0. Set

C =
⋂

u∈0(H)

03(u)= 03(H)a ∩ 03(H)x2t−1a ∩ 03(H)a
−1
∩ 03(H)xt a

−1 (4.11)

and set B = C ∪ {H}. Using (4.10), a straightforward calculation shows that

B = {H, H xt x2t−1, H z, H xt x2t−1z}. (4.12)

We claim that B is a block of imprimitivity for A. Observe first that the setwise
stabilizer AB of the set B in A acts transitively on B and contains the vertex
stabilizer AH . The latter follows directly from the definition of the set B, while the
former follows from the observation that the group 〈xt x2t−1, z〉 preserves B and acts
transitively upon it. In particular, AB = AH 〈xt x2t−1, z〉. Hence B is an orbit of a
subgroup of A which strictly contains the vertex-stabilizer AH . This shows that B is a
block of imprimitivity for A.

Now observe that each of the vertices H and H z has a neighbour in each of the four
translates Ba, Ba−1, Bx2t−1a, Bxt a−1 of the block B; this is obviously true for H ,
and follows easily for H z from the fact that z is contained in the centre of G. On the
other hand, direct inspection shows that H xt x2t−1 and H xt x2t−1z have no neighbours
in these four translates of B. In particular, the stabilizer AH cannot map the vertex
H z to either of the other two vertices H xt x2t−1 and H xt x2t−1z in the block B. In
particular, AH fixes the vertex H z, and hence AH = AH z . It follows that the group
〈AH , z〉 preserves the set {H, H z}, acts upon it transitively, and contains the vertex-
stabilizer AH . This implies that its orbit {H, H z} is a block of imprimitivity for A, as
claimed.
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Now consider the kernel K of the action of A on 〈z〉-orbits. Since 0→ 0/〈z〉
is a covering projection, we know that K acts semiregularly on V0. On the other
hand, 〈z〉 ≤ K has the same orbits on V0 as K , and hence K = Kv〈z〉 = 〈z〉. In
particular, 〈z〉 is normal in A. Therefore A/〈z〉 ≤ Aut(0/〈z〉)∼= Aut(C(2t, t))∼= G2t,t
(see Lemma 3.2). In particular, |A| = 2|G2t,t | = |G|, and therefore A = G. 2

REMARK 4.3. Since G+t and G−t are nonisomorphic groups, it follows from
Theorem 4.2 that Aut(0+t ) 6∼= Aut(0−t ). In particular, 0+t and 0−t are nonisomorphic
graphs. Moreover, since the girth of the graphs C(r, s) is four, none of the graphs 0±t ,
other than possibly 0+2 , is isomorphic to any of the graphs C(r, s). On the other hand,
it can be easily checked that 0+2

∼= C(4, 3).

5. A family of Sym(n)-arc-transitive graphs

In this section, we introduce another interesting family of tetravalent G-arc-
transitive graphs with arbitrarily large vertex-stabilizers. Unlike the graphs 0±t , which
have soluble automorphism groups, the graphs we describe here have an almost simple
arc-transitive group of automorphisms.

Let m ≥ 2 be an integer and let G be the symmetric group Sym(4m) acting on the
set {1, 2, . . . , 4m}. Define the following permutations of G:

xi = (2i − 1, 2i) for 1≤ i ≤ 2m − 1,

h = (4m − 1, 4m)
m−1∏
i=1

(2i − 1, 4m − 2i − 1)(2i, 4m − 2i)

a = (4m − 2, 4m)
m−1∏
i=1

(2i − 1, 4m − 2i − 3)(2i, 4m − 2i − 2)

g = (1, 3, 5, . . . , 4m − 3)(2, 4, 6, . . . , 4m − 4, 4m − 2, 4m − 1, 4m).

We can now define the graphs 1m .

DEFINITION 5.1. For G = Sym(4m) and H = 〈x1, x2, . . . , x2m−1, h〉, let 1m =

Cos(G, H, a).

Before proving that the graphs1m are indeed connected tetravalent graphs, we first
observe that the following hold:

g = ah,

xh
i = x2m−i for 1≤ i ≤ 2m − 1,

xg
i = xi+1 for 1≤ i ≤ 2m − 2,

xg
2m−1 = (4m − 3, 4m − 2)g = (1, 4m − 1).

(5.1)

In particular, the group H is isomorphic to a semidirect product C2m−1
2 o C2 and has

order 22m .
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THEOREM 5.2. For any m ≥ 2, the graph 1m is nonbipartite, connected, tetravalent
and G-arc-transitive. Moreover, |V1m | = (4m)!/22m and |Gv| = 22m .

PROOF. Let us first prove that the triple (G, H, a) from Definition 5.1 satisfies the
conditions stated in Theorem 2.1. In other words, let us prove that the core of H in
G is trivial, that G = 〈H, a〉, and that Ha−1 H = HaH . Since a is an involution, the
latter condition is automatically fulfilled. Furthermore, since the only nontrivial proper
normal subgroup of G = Sym(4m) is the group Alt(4m) and since H 6= Alt(4m), it
follows that the core of H in G is trivial. It remains to see that G is generated by H
and a.

Set K = 〈H, a〉, and observe by (5.1) that g ∈ K and hence G is a transitive
subgroup of Sym(4m). Furthermore, g is a product of two cycles of lengths 2m − 1
and 2m + 1. Since 2m − 1 and 2m + 1 are coprime, it follows that K is a primitive
subgroup of Sym(4m). As K contains the transposition x1 = (1, 2), we see from [3,
Theorem 3.3A(ii)] that K = Sym(4m)= G. Theorem 2.1 now implies that 1m is a
connected G-arc-transitive graph with Gv

∼= H .
Finally, recall that xa

i = x2m−i−1 for i = 1, . . . , 2m − 2. In particular, H ∩ Ha
≥

〈x1, . . . , x2m−2〉 and |H : H ∩ Ha
| divides 4. Since H ∩ Ha is the stabilizer in G

of the arc (H, Ha) and since 1m is G-arc-transitive, we find that the valency of 1m
divides 4. As G is almost simple and acts faithfully on1m , we see that1m has valency
four. Since H � Alt(4m), the group Alt(4m) is transitive on V1m . As Alt(4m) is the
only subgroup of index two in G, we see that 1m is nonbipartite. 2

Let 0 =1m as in Definition 5.1 and let G = Sym(4m)≤ Aut(0). We consider the
growth rate of the quantity x = |Gv| = 22m with respect to y = |V0| = (4m)!/22m .
Using Stirling’s formula for the factorial term in y, one easily obtains that

y ≈
√

4π log(x)x1−2 log(e) log(x)log(x2),

with all the logarithms having base 2. Since log(x)log(x2)
= x2 log(x) log(log(x)), this

shows that x = |Gv| grows more rapidly than any logarithmic function on y = |V0|
but more slowly than |V0|c for any c > 0. The graphs 1m are thus quite far from
attaining the bound given in (1.1). We conjecture that a much faster growth of |Gv|

cannot be expected when G is almost simple.

CONJECTURE 5.3. For any positive constant c there exists a finite family of
graphs Fc, such that the following holds: if G is an almost simple group and 0 is
a connected tetravalent G-arc-transitive graph such that 0 is not contained in Fc, then
|Gv|< |V0|c.
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