
4

Conductor-dominant transverse fields

In this chapter, we consider transverse field configurations that can be approxi-
mated as uniform along the z axis. We begin by considering the general form
of the solutions to the magnetostatic equations in two dimensions. We next treat
the fields produced by line currents, current sheets, and current blocks. We
find that multipole errors are introduced when we approximate ideal current
distributions with practical conductor configurations. The shapes of the fields
discussed here are primarily determined by the location of the conductors.
Any iron that may be present only acts to enhance the strength of the field in
the magnet aperture. A high-field accelerator magnet is one example of
a magnet that produces fields of this type. We conclude with a brief discussion
of superconductors and 3D conductor configurations used at the end of these
magnets.

4.1 General solution to the Laplace equation in two dimensions

The two-dimensional Laplace’s equation in the polar coordinates r and θ is

1

r
∂rðr ∂rVÞ þ 1

r2
∂2θ V ¼ 0: (4.1)

This is identical with the first two terms in Equation 3.39, so the solutions for the
radial and azimuthal dependence of the potential follow from Equations 3.43, 3.44,
3.46, and 3.47. Thus the general solution for Laplace’s equation in polar coordi-
nates has the form

Vðr; θÞ ¼
X∞
n¼1

ðCnr
n þ Dnr

�nÞ ðEncos nθþ Fnsin nθÞ þ ðC0lnrþ D0Þ ðE0 þ F0Þ:

(4.2)
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Example 4.1: vector potential inside a magnet aperture
The aperture of a magnet is the open area enclosed by the coils. We consider here the
general form for the magnetic field in a magnet aperture. We use a polar coordinate
system with the origin inside the aperture and let the variable V in Equation 4.2 refer
to the z component of the vector potential. In addition, we assume that there are no
external fields present outside themagnet and no current filaments inside the aperture.
In this case, we can ignore the n = 0 terms in Equation 4.2. Since the potential must be
finite at r = 0, we must have all the coefficients Dn ¼ 0. Thus the vector potential
inside the aperture has the form

Azðr; θÞ ¼
X∞
n¼1

Cn r
nðEncos nθþ Fnsin nθÞ: (4.3)

The magnetic field is given by

B
!ðr; θÞ ¼ r � A

! ¼ r̂
1

r
∂θAz � θ̂ ∂rAz: (4.4)

Evaluating the radial field component, we find

Brðr; θÞ ¼
X∞
n¼1

Cn r
n�1½�En nsin nθþ Fn ncos nθ�: (4.5)

Defining the new coefficients

An ¼ �n Cn Fn

Bn ¼ �n Cn En;
(4.6)

the radial field inside the magnet aperture can be written as

Brðr; θÞ ¼
X∞
n¼1

rn�1ð�Ancos nθþ Bnsin nθÞ: (4.7)

The coefficients An andBn describe themultipole field content of the transverse field.1

Returning to Equation 4.4, the azimuthal field component is

Bθðr; θÞ ¼ �
X∞
n¼1

Cn n rn�1½Encos nθþ Fnsin nθ�:

1 Caveat emptor. The reader should be aware that a number of different definitions are used in the literature to
describe the multipole content of a transverse field.
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Using Equation 4.6, the azimuthal field in the magnet aperture is

Bθðr; θÞ ¼
X∞
n¼1

rn�1ðAnsin nθþ Bncos nθÞ: (4.8)

On the midplane of the magnet (θ = 0, r = x), Bx and By are given by power series in x

�BxðxÞ ¼ �Brðx; 0Þ ¼ A1 þ A2xþ A3x2 þ � � �
ByðxÞ ¼ Bθðx; 0Þ ¼ B1 þ B2xþ B3x2 þ � � � :

(4.9)

Example 4.2: scalar potential inside a magnet aperture
We again begin by considering the general form of the solution of Laplace’s equation
in polar coordinates given in Equation 4.2. We then specialize to the case for a region
containing r = 0 and obtain an equation analogous to Equation 4.3.

μ0Vmðr; θÞ ¼
X∞
n¼1

Gnr
nðHncos nθþ Insin nθÞ: (4.10)

The magnetic field is given by

B
!ðr; θÞ ¼ �μ0rVm ¼ �r̂ μ0

∂Vm

∂r
� θ̂

μ0
r

∂Vm

∂θ
:

Thus the radial field is

Br ¼ �
X∞
n¼1

n Gn r
n�1ðHncos nθþ Insin nθÞ: (4.11)

The field components calculated from this potential must equal the same quantities
calculated from the vector potential. We can make Br have the same form as
Equation 4.5 if we demand that

�n GnHn ¼ n CnFn ¼ �An

�n GnIn ¼ �n CnEn ¼ Bn:

Thus we identify

Gn ¼ Cn

Hn ¼ �Fn

In ¼ En:
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The scalar potential inside the aperture is then given by2

μ0Vmðr; θÞ ¼
X∞
n¼1

Cn r
nðEnsin nθ� Fncos nθÞ: (4.12)

The resulting magnetic field components are still given by Equations 4.7 and 4.8.

If the field in some region is known, for example through calculations or
measurements, then the multipole field coefficients can be determined using
Fourier analysis. Multiplying both sides of Equation 4.8 by cos mθ and integrating
around a circular path, we haveð2π

0
Bθðr; θÞ cos mθ dθ ¼

X∞
n¼1

rn�1½An I1 þ Bn I2�;

where for m ≥ 1 and n ≥ 1 the integrals have the values3

I1 ¼
ð2π
0
sin nθ cos mθ dθ ¼ 0 (4.13)

and

I2 ¼
ð2π
0
cos nθ cos mθ dθ ¼ π δmn

¼
ð2π
0
sin nθ sin mθ dθ:

(4.14)

Thus we find one set of multipole field components is given by

Bn ¼ 1

πrn�1

ð2π
0
Bθðr; θÞ cos nθ dθ: (4.15)

Likewise, we can multiply Equation 4.8 with sin mθ and find the other set of
multipole components is

An ¼ 1

πrn�1

ð2π
0
Bθðr; θÞ sin nθ dθ: (4.16)

2 We will see in the next chapter that this relationship between the vector and scalar potentials follows directly
from the Cauchy-Riemann equations.

3 CRC 497, 502.
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A similar analysis using Equation 4.7 for the radial component of the field gives

Bn ¼ 1

πrn�1

ð2π
0
Brðr; θÞ sin nθ dθ (4.17)

and

An ¼ �1

πrn�1

ð2π
0
Brðr; θÞ cos nθ dθ: (4.18)

The strength of the multipole fields provides a measure of the field quality.
Limits on the field uniformity are imposed by the application that needs the
magnetic field. The presence of harmonics of the desired field limits the size of
the useful magnet aperture. Sometimes, when examining the field quality of
a magnet, it is more useful to examine the relative magnitude of the multipole
coefficients with respect to the coefficient for the desired multipole. Thus for
a dipole design, for example, one could calculate the dimensionless quantities

bn ¼ Bn rn�1
0

B1
;

where r0 is a reference radius, typically ~2/3 of the magnet aperture.
The boundary conditions for the vector potential in polar coordinates at some

radius rb can be determined from the boundary conditions on the magnetic field.
From the condition on the normal component of B, we have

Bð1Þ
r ¼ Bð2Þ

r

1

rb

∂Að1Þ
z

∂θ
¼ 1

rb

∂Að2Þ
z

∂θ
:

From this relation, we know that Að2Þ can differ from Að1Þ by at most a constant,
which we can ignore since constants are removed when we take derivatives to
obtain the field. Thus we have

Að2Þ
z ðrb; θÞ ¼ Að1Þ

z ðrb; θÞ: (4.19)

From the boundary condition on Ht,

Hð2Þ
t � Hð1Þ

t ¼ K;

we have

� 1

μð2Þ
∂Að2Þ

z ðrb; θÞ
∂r

þ 1

μð1Þ
∂Að1Þ

z ðrb; θÞ
∂r

¼ K: (4.20)
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4.2 Harmonic expansion for a line current

Consider a line current perpendicular to the x-y plane, as shown in Figure 4.1.
The vector potential for a line current was given in Equation 3.8

Azðr; θÞ ¼ � μI
2π

ln
R
r0

� �
; (4.21)

where the distance from the line current at (a, ϕ) to the observation point P located
at (r, θ) is given by

R ¼ ðr cos θ� a cos ϕÞ2 þ ðr sin θ� a sin ϕÞ2
n o1=2

(4.22)

and r0 is some constant reference radius for the two-dimensional potential. We look
for a harmonic expansion for Az. When r > a we extract a factor of r2 from the
logarithm and find that

lnðRÞ ¼ ½ lnðr2Þ þ½ ln 1þ a2

r2
� 2

a
r
cos ðθ� ϕÞ

� �
:

Writing the cosine in terms of complex exponentials gives

lnðRÞ ¼ lnðrÞ þ½ ln 1þ a2

r2
� a

r
eiðθ�ϕÞ � a

r
e�iðθ�ϕÞ

� �
¼ lnðrÞ þ½ ln 1� a

r
eiðθ�ϕÞ

�
þ ln 1� a

r
e�iðθ�ϕÞ

�� i
:

�h

Figure 4.1 Geometry of a line current.
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Using the series expansion for lnð1þ xÞ for x < 1, we find

lnðRÞ ¼ lnðrÞ � a
r
cos ðθ� ϕÞ � 1

2

a
r

� �2
cos 2ðθ� ϕÞ½ � þ � � �

¼ lnðrÞ �
X∞
n¼1

1

n
a
r

� �n
cos ½nðθ� ϕÞ�:

Thus the vector potential for the line current when r > a is [1]

Azðr; θÞ ¼ � μI
2π

lnðrÞ þ μI
2π

X∞
n¼1

1

n
a
r

� �n
cos ½nðθ� ϕÞ� (4.23)

plus a constant term involving r0. The expansion of lnR for the case r < a can be
done in a similar manner by first extracting a factor of a2 from the argument of the
logarithm. This results in the vector potential

Azðr; θÞ ¼ � μI
2π

lnðaÞ þ μI
2π

X∞
n¼1

1

n
r
a

� �n
cos ½nðθ� ϕÞ�: (4.24)

Example 4.3: line current in circular iron cavity
Consider a line current at radius a inside the circular aperture of a piece of ironwith radius
R, as shown in Figure 4.2.We know fromEquations 4.23 and 4.24 that the contribution to
the total vector potential from the line current has different expansions depending on
whether r is greater than or lesser than the radius a of the line current. Similarly, the field
induced in the iron has different expressions depending on whether r is greater than or
smaller than the radius R of the opening in the iron.[2, 3] The induced vector potential
must have the general form given in Equation 4.2. Tomatch thefield from the line current
at the boundaries, the induced field must have the same angular dependence as the line
current. The induced field must also be finite at r = 0 and at r → ∞. Let k ¼ I=2π and
ω ¼ θ � ϕ. Then the total vector potential in the region (1) with r < a is

Figure 4.2 Quarter section of a line current in a circular iron cavity.
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Az1 ¼ �μ0k lnðaÞ þ μ0k
X∞
n¼1

1

n
r
a

� �n
cos nωþ μ0

X∞
n¼1

Cn r
ncos nω:

In the region (2) with a < r < R between the line current and the iron boundary, the
vector potential is

Az2 ¼ �μ0k lnðrÞ þ μ0k
X∞
n¼1

1

n
a
r

� �n
cos nωþ μ0

X∞
n¼1

Cn r
ncos nω:

Lastly, in the region (3) with r > R inside the iron, the vector potential is

Az3 ¼ �μ k lnðrÞ þ μ k
X∞
n¼1

1

n
a
r

� �n
cos nωþ μ

X∞
n¼1

Dn r
�ncos nω;

where μ ¼ μr μ0 is the assumed constant permeability of the iron. We determine the
unknown coefficients Cn and Dn by demanding continuity of

Br ¼ 1

r
∂θAz

Hθ ¼ � 1

μ
∂rAz

at the surface r = R of the iron.

μ0k
n

anR�n�1 þ μ0Cn R
n�1 ¼ μ k

n
anR�n�1 þ μDn R

�n�1

�Cn Rn�1 ¼ Dn R�n�1:

This gives two equations in two unknowns, which can be solved to give,

Cn ¼ k
n

an

R2n

μ� μ0
μþ μ0

Dn ¼ � k
n
an

μ� μ0
μþ μ0

:

In the region inside the radius a of the line current, the vector potential can be
expressed as

Az1 ¼ � μ0I
2π

lnðaÞ þ μ0I
2π

X∞
n¼1

1

n
r
a

� �n
1þ α

a
R

� �2n� �
cos nω; (4.25)
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where

α ¼ μ� μ0
μþ μ0

:

The term in brackets shows the enhancement factor due to the iron. For points inside
the iron, the solution is

Az3 ¼ μI
2π

�lnðrÞ þ
X∞
n¼1

1

n

a

r

� �n
ð1� αÞ cos nω

" #
: (4.26)

We are now in a position to relate the solution of the previous example with the
method of images for a circular boundary that we discussed in Section 2.7. For the
region interior to the filament, r < a, the vector potential can be written in the form

Az1 ¼ � μ0I
2π

lnðaÞ þ μ0I
2π

X∞
n¼1

1

n
r
a

� �n
cos nωþ μ0I

2π

X∞
n¼1

1

n
rn

α
rn1
cos nω; (4.27)

where

r1 ¼ R2

a
:

Comparing with Equation 4.24, the first two terms give the potential for the true
line current at r = a. Since in magnetostatics constant terms in the potential have no
physical effects, we can arbitrarily add to the potential a constant term

� μ0I
2π

lnðr1Þ:

Then this term plus the last term in Equation 4.27 give the potential for a line current
at r1 with current α I. Thus the vector potential in region (1) can be written as

Az1 ¼ ALCðaÞ þ α ALCðr1Þ;
where ALC is the vector potential for a line current. For the region inside the iron,
r > R, let us define

β ¼ 1� α ¼ 2μ0
μþ μ0

:

Then Equation 4.26 can be rewritten in the form

Az3 ¼ μI
2π

�ln rþ β ln r� β ln rþ β
X∞
n¼1

1

n
a
r

� �n
cos nω

" #
:
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Using Equation 4.23 for the vector potential of a line current, we find

Az3 ¼ μI
2π

�ð1� βÞ ln rþ β �ln rþ
X∞
n¼1

1

n
a
r

� �n
cos nω

 !" #
¼ α ALCð0Þ þ β ALCðaÞ:

We see that the coefficients α and β are the same as those for the image currents in
Equations 2.27–2.30.

4.3 Field for a current sheet

Consider a conductor in the form of an infinitely thin sheet that is uniform in the
z direction, as shown in Figure 4.3. Assume here that the current also flows in the
z direction. From the Biot-Savart law for a current sheet, Equation 1.13, we have

B
! ¼ μ0

4π

ð
K
!� R

!
R3

dS

Assume the observation point P is in the x-y plane, as shown in Figure 4.4.
We have

K
! ¼ dI

ds
ẑ

ρ2 ¼ r2 þ a2 � 2 r a cos ðθ� ϕÞ
R2 ¼ ρ2 þ z2

dS ¼ ds dz;

Figure 4.3 Current sheet with cross-section along the curve C and extending
infinitely along the z direction.
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where a ¼ aðsÞ, ϕ ¼ ϕðsÞ and s is the arclength around the sheet. The vector
ρ is the distance between the current element and the field point in the x-y plane.
Thus

B
!ðr; θÞ ¼ μ0

4π

ð
KðsÞ

ð∞
�∞

ẑ � ð ρ!þ z ẑÞ
fρ2 þ z2g3=2

dz ds

¼ μ0
4π

ð
KðsÞ IðρÞ ẑ � ρ! ds;

where4

IðρÞ ¼
ð∞
�∞

dz

fρ2 þ z2g3=2
¼ 2

ρ2
: (4.28)

Thus we find that the field from the current sheet is given by

B
!ðr; θÞ ¼ μ0

2π

ð
KðsÞ ẑ � ρ!

ρ2
ds: (4.29)

It will also be useful to have an expression for the vector potential of a current
sheet. Assuming the sheet is composed of parallel line currents and using
Equation 4.21, we have

Azðr; θÞ ¼ � μ0
2π

ð
KðsÞln ρ

ρ0

� �
ds: (4.30)

Figure 4.4 Sheet geometry.

4 GR 2.271.5.
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For the case of a circular sheet with constant radius a,

ds ¼ a dϕ

K ¼ dI
dϕ

dϕ
ds

¼ 1

a
dI
dϕ

:

The field due to the circular sheet is

B
!ðr; θÞ ¼ μ0

2π

ðϕ2
ϕ1

dI
dϕ

ẑ � ρ!
ρ2

dϕ (4.31)

and the vector potential is

Azðr; θÞ ¼ � μ0
2π

ðϕ2
ϕ1

dI
dϕ

ln
ρ
ρ0

� �
dϕ: (4.32)

Example 4.4: field between two parallel, straight current sheets
Consider the two parallel current sheets shown in Figure 4.5. The current, which is
uniform along y, flows into the page on the sheet on the right and returns back out
of the page on the sheet on the left. The field observation point P is at ðxo; yoÞ.
We have

ρ! ¼ ðxo � xÞ x̂ þ ðyo � yÞ ŷ

K ¼ dI
dy

:

Figure 4.5 Parallel current sheets.
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Applying Equation 4.29, the field can be written as

B
!ðxo; yoÞ ¼ μ0

2π
K
ð∞
�∞

�ðxo � aÞŷ � ðyo � yÞx̂
ðxo � aÞ2 þ ðyo � yÞ2 þ

ðxo þ aÞŷ � ðyo � yÞx̂
ðxo þ aÞ2 þ ðyo � yÞ2

" #
dy:

All the current elements on both sheets give positive By because the magnitude of xo
is smaller than a. Thus we can write

By ¼ μ0
2π

K ½ða� xoÞ I1 þ ðaþ xoÞ I2�;

where5

I1 ¼
ð∞
�∞

dy

ðxo � aÞ2 þ ðyo � yÞ2 ¼
π

a� xo

I2 ¼
ð∞
�∞

dy

ðxo þ aÞ2 þ ðyo � yÞ2 ¼
π

aþ xo
:

Thus the vertical field between the sheets is

By ¼ μ0
dI
dy

: (4.33)

This is, as expected, twice the field we found for a single sheet in Equation 1.17 and
independent of the location of the observation point. In a similar manner, we find

Bx ¼ μ0
2π

K½yoI1 � I3 � yoI2 þ I4�;

where

I3 ¼
ð∞
�∞

y

ðxo � aÞ2 þ ðyo � yÞ2 dy

and I4 is a similar integral with xo þ a in the denominator. If we let D represent the
denominator, then6

I3 ¼ ½ ln½D�∞�∞ þ yoI1:

Using l’Hopital’s rule, we can show that the first term vanishes, and find that

I3 ¼ yo I1
I4 ¼ yo I2:

5 GR 2.172. 6 GR 2.175.1.
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Substituting back in, we find that the horizontal field between the sheets
vanishes.

Bx ¼ 0:

Thus there is a pure dipole field in the region between the current sheets.

4.4 Ideal multipole current sheet

Assume we have a circular current sheet with radius a and with azimuthal current
density in the z direction given by

dI

dϕ
¼ I0 cos mϕ;

where I0 is the current flowing at the midplane (ϕ = 0). We obtain the vector
potential for the sheet by integrating the weighted distribution of the vector
potential for a line current. Let us first consider the case where the observation
point (r, θ) has r < a. Using Equation 4.24 for the line current and ignoring the
constant term, the vector potential for the multipole sheet is

Az ¼ μI0
2π

X∞
n¼1

1

n
r
a

� �n ð2π
0
cos mϕ cos ½nðθ� ϕÞ� dϕ:

Expanding the integrand and using Equations 4.13 and 4.14, the integral has the
value ð2π

0
cos mϕ cos ½nðθ� ϕÞ� dϕ ¼ 0 if m ≠ n

π cos mθ if m ¼ n
:

�
(4.34)

Therefore the vector potential for r < a is [4]

Azðr; θÞ ¼ μI0
2m

r
a

� �m
cos mθ (4.35)

and the components of the magnetic field are

Brðr; θÞ ¼ � μI0
2a

r
a

� �m�1
sin mθ

Brðr; θÞ ¼ � μI0
2a

r
a

� �m�1
cos mθ:

(4.36)
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In the case of a dipole distribution (m = 1),

By ¼ Brsin θþ Bθcos θ ¼ � μI0
2a

Bx ¼ Brcos θ� Bθsin θ ¼ 0

showing that the cos θ angular distribution also produces a pure vertical field in the
magnet aperture.
For the case when r > a, we use Equation 4.23 for the vector potential of the line

current and obtain

Az ¼ � μI0
2π

ð2π
0
cos mϕ ln r dϕþ μI0

2π

X∞
n¼1

1

n
a
r

� �nð2π
0
cos mϕ cos ½nðθ� ϕÞ� dϕ:

The first integral vanishes over a complete circle and the second integral can again
be evaluated using Equation 4.34. Thus the vector potential of the multipole sheet
for the region r > a is

Azðr; θÞ ¼ μI0
2m

a

r

� �m
cos mθ (4.37)

and the magnetic field is

Brðr; θÞ ¼ � μI0
2

am

rmþ1
sin mθ

Brðr; θÞ ¼ μI0
2

am

rmþ1
cos mθ:

(4.38)

Example 4.5: cos mθ sheet in circular iron cavity
Consider a circular cos mθ sheet with radius a inside a symmetric circular iron cavity
with radius R. We first solve the boundary value problem using vector potentials. There
are two vector potentials for the sheet, depending on whether r is smaller than or greater
than a, and two vector potentials for the image effects in the iron, depending on whether
r is smaller than or greater thanR. The angular dependence of the image effects must also
use the cosine term in Equation 4.2 and only the mth term in the summation in order to
match the boundary conditions. This introduces two unknown coefficients,C andD, and
requires that the total vector potential for the three regions be given as

Az1 ¼ μ0I0
2m

r

a

� �m
cos mθþ C rmcos mθ

Az2 ¼ μ0I0
2m

a
r

� �m
cos mθþ C rmcos mθ

Az3 ¼ μI0
2m

a
r

� �m
cos mθþ D r�mcos mθ:
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To determine the values forC andD, we demand that Br andHθ are continuous across
the iron boundary.

μ0I0
2

a

R

� �m
þ C m Rm ¼ μI0

2

a

R

� �m
þ D m R�m

C
Rm

μ0
¼ �D

R�m

μ
:

Solving these two equations, we find that the unknown coefficients are

C ¼ μ0I0
2mRm

a
R

� �m μ� μ0
μþ μ0

D ¼ � μI0
2mR�m

a
R

� �m μ� μ0
μþ μ0

:

Using these values, the vector potential is now known in the three regions. The effect
of the iron can be summarized by defining the iron enhancement factor

αm ¼ 1þ μr � 1

μr þ 1

a
R

� �2m
; (4.39)

which agrees with the enhancement factor from Equation 4.25. We can write the
vector potential inside the magnet aperture as

Az1ðr; θÞ ¼ μ0I0
2m

r
a

� �m
αm cos mθ: (4.40)

The corresponding field components inside the aperture are

Brðr; θÞ ¼ � μ0I0
2a

r
a

� �m�1
αm sin mθ

Brðr; θÞ ¼ � μ0I0
2a

r
a

� �m�1
αm cos mθ:

(4.41)

The iron enhancement factor in Equation 4.39 ignores any saturation effects
in the iron. When saturation becomes significant, the enhancement factor for the
dipole field is decreased. In addition, the saturation of the iron does not occur
uniformly. This causes changes in the field from the azimuthal distribution of
the enhanced currents, leading to sextupole and higher multipole errors in the
field in the magnet aperture. Fortunately, there are techniques, such as modify-
ing the iron shape, which can be used to adjust the value of B3 at a fixed
operating current.[5]
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Example 4.6: cos mθ sheet in circular iron cavity using the scalar potential
It is instructive to use an alternative method of solving the preceding boundary
value problem. In this case, we will use the scalar potential and take into account
the presence of the current sheet through the addition of another pair of boundary
conditions. Unlike the previous example, the unknown coefficients here take into
account both the field from the sheet and the field from the images in the iron.
We know from the boundary condition across a current sheet, Equation 2.23, that
the angular dependence of the current must match the angular dependence of
the fields on either side of the sheet. Since the fields are given by the derivative
of the potential and the current goes like cos mθ, this implies that we must use
the sine term in Equation 4.2 for the potential. Thus the scalar potentials for the three
regions are

Vm1 ¼ A rmsin mθ

Vm2 ¼ ðB rm þ C r�mÞ sin mθ

Vm3 ¼ D r�msin mθ:

The boundary conditions at the sheet are

A am ¼ B am � C a�m

�mðB am þ C a�mÞ þ mA am ¼ I0;

while the boundary conditions at the iron surface are

�μ0ðB Rm � C R�mÞ ¼ μDR�m

B Rm þ C R�m ¼ D R�m:

Solving the four equations for the four unknowns, we find

A ¼ I0
2mam

αm

B ¼ I0 am

2mR2m

μ� μ0
μþ μ0

C ¼ � I0 am

2m

D ¼ � μ0I0 a
m

mðμþ μ0Þ
:

Evaluating the field components inside the magnet aperture, we again obtain
Equation 4.41.
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4.5 Multipole dependence on the current distribution

We next seek to determine how the multipole fields in a magnet aperture are related
to the current distribution on a circular current sheet.
Recall that the vector potential for a line current at (a, ϕ) is

Azðr; θÞ ¼ μI
2π

X∞
m¼1

1

m
r
a

� �m
cos ½mðθ� ϕÞ�:

The corresponding azimuthal field component is

Bθðr; θÞ ¼ � μI
2π

X∞
m¼1

rm�1

am
cos ½mðθ� ϕÞ� : (4.42)

From Equation 4.15, the contribution to the normal multipole is

Bn ¼ 1

πrn�1

ð2π
0
Bθðr; θÞ cos nθ dθ

¼ � μI
2π2

X∞
m¼1

1

am

ð2π
0
cos ½mðθ� ϕÞ� cos nθ dθ :

Expanding the cosine and integrating, we find

Bn ¼ � μI
2π2

X∞
m¼1

1

am
π cos mϕ δmn

¼ � μI
2πan

cos nϕ :

(4.43)

For a current sheet, we can generalize this by integrating over the current
distribution.

Bn ¼ � μ
2πan

ð2π
0

dI
dϕ

cos nϕ dϕ: (4.44)

We can find the skew multipoles in a similar manner using Equation 4.16.

An ¼ � μ
2πan

ð2π
0

dI
dϕ

sin nϕ dϕ: (4.45)

As the name suggests, a multipole field is characterized by the number of poles it
has around the circumference of the sheet. Every magnet has an equal number of
positive and negative poles. We use the indexN to refer to the design number of pole
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pairs in themultipole magnet. ThusN = 1 refers to a dipolemagnet because it has one
pair of poles, N = 2 to a quadrupole, etc. The current in the magnet goes in opposite
directions on the adjacent sides of a pole, as shown in Figure 4.6. This corresponds to
the way these coils are usually wound, with the cable bending around the pole and
returning in the opposite direction. As we can see from Equations 4.44 and 4.45, the
multipole coefficients are weighted sums of the current distribution. The Bn coeffi-
cients are referred to as the normalmultipoles. They are largest when the magnitude
of the current reaches a maximum on the midplane. The An coefficients are referred
to as the skew multipoles, which are largest when the current changes sign at the
midplane. The field in a skewmultipole of orderN has the same pattern as the normal
multipole rotated by π/2N. For example, a normal dipole has a vertical field, while
a skew dipole has a horizontal field.
Consider the current distribution for an ideal multipole of order N given by

dI
dϕ

¼ I0 cos Nϕ:

The normal multipole coefficient for a complete angular distribution is

Bn ¼ � μ0I0
2π an

ðϕ2
ϕ1

cos Nϕ cos nϕ dϕ:

Figure 4.6 Multipole symmetries for dipoles (m = 1) and quadrupoles (m = 2).
N and S indicate the north and south poles of the magnet. Plus and minus signs
indicate the direction of the current.
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From Equation 4.14, this vanishes unless n = N, in which case

BN ¼ � μ0I0
2aN

:

Similarly, Equation 4.13 shows that all the An coefficients vanish for this current
distribution. The multipole coefficients are constructed such that they uniquely
identify the symmetry of the current distribution. Likewise, an ideal current dis-
tribution of the form

dI
dϕ

¼ I0 sin Nϕ

is uniquely associated with the skew multipole AN .

Example 4.7: quadrupole field
The coefficient for a quadrupole field corresponds to N = 2. The current density is
given by

dI
dϕ

¼ I0 cos 2ϕ:

Thus

B2 ¼ � μ0I0
2π a2

ðϕ2
ϕ1

cos2ð2ϕÞ dϕ

¼ � μ0I0
2 a2

:

4.6 Approximate multipole configurations

The idealized multipole current configurations discussed previously require
a continuously varying distribution of current around the entire circumference.
On the other hand, actual magnets are typically constructed from multiple layers of
cables with uniform current density. Thus it is important to develop methods for
approximating the desired multipole distribution, such that it produces the max-
imum amount of the desired multipole and still meets the required field quality for
the magnet. To illustrate this, we consider here the design of a normal dipole
magnet using circular current sheet sectors with constant current density.
We know that the idealized current distribution for a dipole goes like cos θ.
The simplest approximation to a cos θ distribution is to put constant current sectors
in each of the four quadrants, as shown in Figure 4.7. The multipole fields result
from the sum of the contributions of the four sheets.
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Bn ¼ � μ0I
2πan

ðϕ2
ϕ1

cos nϕ dϕ�
ðπ�ϕ1

π�ϕ2

� � � �
ðπþϕ2

πþϕ1

� � � þ
ð�ϕ1

�ϕ2

� � �
( )

Let S( ) = sin( ). Then Bn can be written as the sum of eight sine terms.

Bn ¼ � μ0I
2πnan

½ Sðnϕ2Þ � Sðnϕ1Þ � Sðnπ� nϕ1Þ þ Sðnπ� nϕ2Þ
�Sðnπ þ nϕ2Þ þ Sðnπþ nϕ1Þ � Sðnϕ1Þ þ Sðnϕ2Þ �:

If n is even, the terms in the brackets cancel, so Bn = 0. For odd values of n, we get

Bn ¼ � 2μ0I
πnan

½sin nϕ2 � sin nϕ1�: (4.46)

A similar calculation shows that An = 0 for both odd and even values of n. Thus the
allowed harmonics for this current configuration are just the Bn, for odd values of n.
In addition to the desired harmonic B1 that represents the dipole, the approxima-

tion of the ideal multipole distribution above introduces other harmonics, which
represent errors to the desired field. The dominant allowed error here is the
sextupole term B3. The angle ϕ1 is typically set as close to 0 as possible in order
to maximize the dipole strength. The angle ϕ2 can then be used to remove the
sextupole component from the field. Since

B3≃ � 2μ0I
3πa3

sin 3ϕ2;

we can eliminate the sextupole term by setting ϕ2 ¼ π=3. Removing other allowed
higher harmonics from the field requires additional degrees of freedom. A number

Figure 4.7 Dipole approximation.
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of coil configurations have been proposed to approximate a cos θ distribution.[6]
For example, a second current sector can be added in each quadrant that is
separated from the first sector by a non-conducting spacer, or sectors could be
added at different radii.[7] In principle, these additional sectors could also have
independent currents. A two-layer design with spacers is described in Section 11.6.
The allowed harmonics for anymultipole of orderN follow from the requirement

that the direction of the current is in opposite directions on either side of a pole.
The first pole is located at

ϕ ¼ π
2N

:

Referring to Figure 4.7, the current distributions on the opposite sides of the
pole are

dI

dϕ
ðβÞ ¼ � dI

dϕ
ðϕÞ;

where

β ¼ 2
π
2N

� ϕ ¼ π
N
� ϕ:

To get a net contribution to a normal multipole of order n

Bn ∝
dI
dϕ

ðϕÞ cos nϕ

from the current on both sides of the pole, the cosine function must also change sign.

cos n
π
N
� ϕ

� �h i
¼ �cos nϕ

cos
nπ
N

cos nϕþ sin
nπ
N

sin nϕ ¼ �cos nϕ:

This requires that

cos
nπ
N

¼ �1

sin
nπ
N

¼ 0:

The sine equation requires that n/N is an integer, while the more restrictive cosine
relation demands that n/N is an odd integer. Thus the allowed Bn must have

n ¼ Nð2mþ 1Þ; m ¼ 0; 1; 2; � � � (4.47)
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A similar argument shows that the allowed skew multipoles also satisfy
Equation 4.47.
The symmetry of the current distribution is directly related to the allowed

harmonics. Let KðϕÞ ¼ dI=dϕ, for example, and assume the current distribution
is up-down symmetric, so that

KðϕÞ ¼ Kð�ϕÞ:
Then the skew multipoles are

An ¼ � μ0
2πan

ðπ
0
½KðϕÞ sin nϕþ Kð�ϕÞ sin ð�nϕÞ� dϕ

¼ μ0
2πan

ðπ
0
KðϕÞ½sin nϕ� sin nϕ� dϕ ¼ 0:

Thus the fact that the dipole approximation had An = 0 follows from the up-down
symmetry of the current distribution that we used. The consequences of some other
symmetries for current distributions are listed in Table 4.1. These symmetries are
inevitably violated to some extent in building an actual magnet and this leads to the
presence of “nonallowed” multipoles in the fields. Random errors in the construc-
tion of the magnet can introduce values for any multipole.[9] If these nondesired
multipoles exceed their tolerances, they must be removed by modifications in the
manufacturing process or by introducing correction coils.

4.7 Field for a block conductor

Block conductors, which have a finite area in the x-y plane, are the most realistic
approximation to actual conductors in two dimensions. We again consider the case
where the conductor is infinitely long in the z direction and where the currents only
flow along z. From the Biot-Savart law Equation 1.14, we have

B
! ¼ μ0

4π

ð
J
!� R

!
R3

dV:

Table 4.1 Multipole symmetries [8]

Symmetry Normal multipoles Skew multipoles Example

Up-down symmetric all An = 0 Normal dipole
Up-down antisymmetric all Bn = 0 Skew dipole
Left-right symmetric Bn = 0 for odd n An = 0 for even n Normal quadrupole
Left-right antisymmetric Bn = 0 for even n An = 0 for odd n Normal dipole
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Assume an observation point P is located at (r, θ) in the x-y plane and the current
element is at (a, ϕ), as shown in Figure 4.8. Let the vector ρ be the distance between
the current element and the field point in the x-y plane and let σ be the current
density in the conductor. Then we have

J
! ¼ σ ẑ

R
! ¼ ρ!þ z ẑ

dV ¼ dS dz:

Thus B can be written as

B
!ðr; θÞ ¼ μ0

4π

ð
σ
ð∞
�∞

ẑ � ½ ρ!þ z ẑ�
fρ2 þ z2g3=2

dz dS

¼ μ0
4π

ð
σ IðρÞ ẑ � ρ! dS;

where IðρÞ is given by Equation 4.28.We find that the field from the current block is
given by

B
!ðr; θÞ ¼ μ0

2π

ð
σ
ẑ � ρ!
ρ2

dS: (4.48)

The vector potential for a current block can be found by integrating the vector
potential for the line current, Equation 4.21, over the area of the block.

Azðr; θÞ ¼ � μ0
2π

ð
σ ln

ρ
ro

� �
dS: (4.49)

Figure 4.8 Current block geometry.
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Example 4.8: overlapping circular conductors
Imagine we have two circular cylindrical conductors with constant current density
flowing in opposite directions. We know from Equation 1.27 that the field inside the
conductor is

Bϕ ¼ μ0Jρ
2

:

Suppose we overlap the two conductors with the centers displaced along the x axis at
c and –c, as shown in Figure 4.9. The field at some arbitrary point P in the overlap
region is the sum of the fields from the two conductors. From the geometry in the
figure, we see that [10]

Bx ¼ μ0J
2

½�r2sin θ2 þ r1sin θ1� ¼ 0

By ¼ μ0J
2

½r1cos θ1 � r2cos θ2� ¼ μ0J
2

2c;

where 2c is the separation between the centers of the two circles. Thus the field in the
overlap region is a pure dipole. The strength of the field is proportional to the separation
between the circles. In the region where the two coils overlap, the net current is zero.
Thus the conductor in the overlap region can be removedwithout affecting thefield there.
Next we examine the coil thickness t as a function of the azimuthal angle ϕ, as

shown in Figure 4.10. The coil thickness at some angle ϕ is the distance between the
points P1 and P2. Point P1 is determined by the intersection of circle 1

ðxþ cÞ2 þ y2 ¼ a2

Figure 4.9 Overlapping circular cylindrical conductors.
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with the straight line

y ¼ x tan ϕ ¼ mx:

We find that

x1 ¼ �cþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � m2c2 þ m2a2

p

1þ m2
:

Point P2 is determined by the intersection of circle 2

ðx� cÞ2 þ y2 ¼ a2

with the straight line. We find that the expression for x2 is the same as the one for x1,
except that the first term in the numerator is +c instead of –c. Thus we have

Δx ¼ x2 � x1 ¼ 2c
1þ tan2 ϕ

Δy ¼ y2 � y1 ¼ Δx tan ϕ:

The resulting thickness of the conductor is

tðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxÞ2 þ ðΔyÞ2

q
¼ 2c cos ϕ:

Thus the overlapping circular conductors represent another form of a cosine current
distribution. Quadrupole fields can be designed in the same manner using over-
lapping elliptical conductors.[8]

Figure 4.10 Conductor thickness for overlapping circle configuration.
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Example 4.9: on-axis field of an annular sector with constant current density
Consider the annular sector conductor shown in Figure 4.11. For a field point on the
axis we have

ρ! ¼ �a cos ϕ x̂ � a sin ϕ ŷ:

Then Equation 4.48 gives

B
!ð0; 0Þ ¼ � μ0σ

2π

ða2
a1

ðϕ2
ϕ1

ẑ � ða cos ϕ x̂ þ a sin ϕ ŷÞ
a2

a dϕ da

¼ � μ0σ
2π

ða2
a1

ðϕ2
ϕ1

ðcos ϕ ŷ � sin ϕ x̂Þ dϕ da:

Thus the on-axis field of the annular sector is

B
!ð0; 0Þ ¼ � μ0σ

2π
ða2 � a1Þ½ðsin ϕ2 � sin ϕ1Þŷ þ ðcos ϕ2 � cos ϕ1Þx̂�:

(4.50)

We see that the field for the case of constant current density is directly proportional to
the radial thickness of the conductor.

Example 4.10: field due to a rectangular conductor
Consider a rectangular conductor with constant current density σ in the z direction, as
shown in Figure 4.12. We substitute

ρ! ¼ ðxo � xÞ x̂ þ ðyo � yÞ ŷ

Figure 4.11 Annular current block.
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into Equation 4.48 and find that

dB
�! ¼ μ0σ

2π
½ðxo � xÞ ŷ � ðyo � yÞ x̂�
ðxo � xÞ2 þ ðyo � yÞ2 dS: (4.51)

Looking at By, we have

By ¼ μ0σ
2π

ðb
a

ðd
c

ðxo � xÞ
ðxo � xÞ2 þ ðyo � yÞ2 dx dy:

Integrating first over x, we evaluate7

I1ðx1; x2Þ ¼
ðx2
x1

ðxo � xÞ
ðxo � xÞ2 þ ðyo � yÞ2 dx

¼ � 1

2
ln½ðxo � xÞ2 þ ðyo � yÞ2�x2x1 :

Then integrating over y, we find8

I2ðy1; y2; αÞ ¼
ðy2
y1

ln½ðxo � αÞ2 þ ðyo � yÞ2� dy

¼ �ðyo� yÞln½ðxo� αÞ2þðyo� yÞ2�þ 2ðyo� yÞ�2sðxo� αÞ tan�1 yo� y
sðxo� αÞ
� �� �y2

y1 ;

where s = ±1. In order to get a physical solution, we need to choose s ¼ þ1 when
xo > α and s ¼ �1 when xo < α. This is equivalent to taking the absolute value of
ðxo � αÞ. Thus we can write By as

Figure 4.12 Rectangular conductor.

7 GR 2.175.1. 8 GR 2.733.1.
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By ¼ � μ0σ
4π

½I2ðc; d; bÞ � I2ðc; d; aÞ�

¼ � μ0σ
4π

ðyo � cÞ ln½ðxo � bÞ2 þ ðyo � cÞ2� þ 2jxo � bj tan�1 yo � c
jxo � bj
� ��

� ðyo � dÞ ln½ðxo � bÞ2 þ ðyo � dÞ2� � 2jxo � bj tan�1 yo � d
jxo � bj
� �

� ðyo � cÞ ln½ðxo � aÞ2 þ ðyo � cÞ2� � 2jxo � aj tan�1 yo � c
jxo � aj
� �

þ ðyo � dÞ ln½ðxo � aÞ2 þ ðyo � dÞ2� þ 2jxo � aj tan�1 yo � d
jxo � aj
� ��

:

From the symmetry of Equation 4.51, we see that the result for Bx is the negative of
the result for By with the substitutions

x↔y
xo↔yo

ða; bÞ↔ðc; dÞ:
Thus Bx is given by

Bx ¼ μ0σ
4π

ðxo � aÞ ln½ðxo � aÞ2 þ ðyo � dÞ2� þ 2jyo � dj tan�1 xo � a
jyo � dj
� ��

� ðxo � bÞ ln½ðxo � bÞ2 þ ðyo � dÞ2� � 2jyo � dj tan�1 xo � b
jyo � dj
� �

� ðxo � aÞ ln½ðxo � aÞ2 þ ðyo � cÞ2� � 2jyo � cj tan�1 xo � a
jyo � cj
� �

þ ðxo � bÞ ln½ðxo � bÞ2 þ ðyo � cÞ2� þ 2jyo � cj tan�1 xo � b
jyo � cj
� ��

:

Using these expressions for the field, we show in Figure 4.13 a scan of the vertical
field component along the x axis for a square conductor centered at the origin.
The calculation using these equations fails when the observation point is located at
one of the four corners of the rectangle.

We can find the multipoles produced by an annular sector conductor block
analogously to the procedure used for current sheets in Section 4.5. The normal
multipoles are given by

Bn ¼ � μ
2π

ðð
Jða; ϕÞ cos nϕ

an�1
da dϕ: (4.52)
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The skew multipoles can be found in a similar manner and are given by

An ¼ μ
2π

ðð
Jða; ϕÞ sin nϕ

an�1
da dϕ: (4.53)

4.8 Ideal multipole current block

Consider an annular current block with a pure multipole current density J.
We assume that the block is composed of a radial distribution of ideal multipole
current sheets extending from a1 to a2. We find the vector potential for the block by
integrating the potential for a multipole sheet. The current density in the block is
assumed to be proportional to cos mϕ.
There are three cases, depending on the radius of the field observation point r.

Case 1: r < a1
The vector potential, Equation 4.35, for the ideal multipole sheet is

Azshðr; θÞ ¼ μI0
2m

r
a

� �m
cos mθ:

Then the vector potential for the current block is

Azðr; θÞ ¼ μJ0
2m

cos mθ
ða2
a1

r
a

� �m
a da:

Figure 4.13 Vertical field from a square conductor with sides of length 2 centered
at the origin.
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For m ≠ 2, this can be written as

Azðr; θÞ ¼ μJ0
2m

rmcos mθ
a�mþ2
2 � a�mþ2

1

�mþ 2

� �
: (4.54)

When m = 2, we have

Az ¼ μJ0r2

4
cos 2θ ln

a2
a1

� �
: (4.55)

Case 2: r > a2
When the observation point is always larger than the radius of any of the multipole
sheets, we use Equation 4.37 for the vector potential of the ideal multipole sheets.

Azshðr; θÞ ¼ μI0
2m

a
r

� �m
cos mθ:

The vector potential of the current block is

Azðr; θÞ ¼ μJ0
2m rm

cos mθ
ða2
a1

am a da:

Evaluating the integrals, we have

Azðr; θÞ ¼ μJ0
2m

r�mcos mθ
amþ2
2 � amþ2

1

mþ 2

� �
: (4.56)

Case 3: a1 < r < a2
In the third case, where the observation point can be inside the current block, we
must break the radial integration into two parts, depending on the relative positions
of r and the multipole sheet.

Azðr; θÞ ¼ μJ0
2m

cos mθ r�m
ðr
a1

amþ1 daþ rm
ða2
r
a�mþ1 da

� �
:

Evaluating the integrals, we have for m ≠ 2,

Az ¼ μJ0
2m

cos mθ r�m rmþ2 � amþ2
1

mþ 2

� �
þ rm

a�mþ2
2 � r�mþ2

�mþ 2

� �� �
: (4.57)

For the case m = 2, we have instead

Az ¼ μJ0
4

cos 2θ r�2 r4 � a41
4

� �
þ r2 ln

a2
r

� �� �
: (4.58)
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The components of the magnetic field in each of these regions is easily com-
puted from these vector potentials. Figure 4.14 shows a radial scan of the
vertical component of the magnetic field along the midplane for an ideal dipole.
The current block extends from 0.2 m to 0.3 m in this example. The field is
constant and purely vertical inside the aperture, as expected. The field changes
direction inside the current block. The strength of the field slowly falls off
outside the block.

4.9 Field from a magnetized body

Let us consider the field intensity outside a magnetized body.9 We saw from
Equation 3.32 that the scalar potential for a magnetic body is

Vm ¼ 1

4π

ð
M0�!·R

!
R3

dV 0:

In the two-dimensional case, let us assume M only has x and y components.
The scalar potential is

Vm ¼ 1

4π

ð
Mx

0
ð∞
�∞

Rx

R3
dz0 þMy

0
ð∞
�∞

Ry

R3
dz0

� �
dS0;

Figure 4.14 Radial scan of the vertical component of the magnetic field of an ideal
dipole (m =1, a1 = 0.2 m, a2 = 0.3 m, J0 = 100 A/mm2).

9 We will consider H inside a magnetized body in Chapter 9.
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where Rx ¼ x� x0, etc. Define the transverse distance in the plane with z = 0 as

ρ! ¼ Rx x̂ þ Ry ŷ:

The integrals over z0 are10ð∞
�∞

Rx

R3
dz0 ¼ Rx

ð∞
�∞

dz0

fρ2 þ z02g3=2
¼ 2Rx

ρ2
:

Then the two-dimensional potential is given by

Vm ¼ 1

2π

ð
M0�!· ρ!
ρ2

dS0: (4.59)

The two-dimensional field is

H
!

m ¼ � 1

2π
r
ð
M0�!· ρ!
ρ2

dS0:

Using the vector relation B.2,

r M0�! ·
ρ!
ρ2

� �
¼ M0�!� r� ρ!

ρ2

� �
þ ρ!

ρ2
� r� M0�!� �

þ M0�! ·r
� � ρ!

ρ2

þ ρ!
ρ2

· r
� �

M0�!: (4.60)

The gradient operator only acts on unprimed coordinates, so the second and fourth
terms on the right-hand side vanish.
In the first term, we have using Equation B.6

r� ρ!
ρ2

¼ 1

ρ2
r� ρ!þr 1

ρ2

� �
� ρ!: (4.61)

The first term here vanishes because ρ is radial and so its curl vanishes. In the
second term

r 1

ρ2

� �
¼ x̂ ∂x

1

ρ2

� �
þ ŷ ∂y

1

ρ2

� �
¼ � 2

ρ4
ρ!:

Thus the cross-product of the last two factors in Equation 4.61 is 0, and the second
term also vanishes.

10 GR 2.271.5.

4.9 Field from a magnetized body 103

https://doi.org/10.1017/9781009291156.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.005


Thus only the third term in Equation 4.60 survives and we have

H
!

m ¼ � 1

2π

ð
ðM0�!·rÞ ρ!

ρ2
dS0: (4.62)

Expanding the dot product,

H
!

m ¼ � 1

2π

ð
Mx

0 ∂x
ρ!
ρ2

� �
þMy

0 ∂y
ρ!
ρ2

� �� �
dS0:

Writing out the vector ρ in terms of its x and y components, taking the derivatives,
combining terms, and dropping the primes, we find that the two-dimensional field
from an iron element is given by

H
!

m ¼ � 1

2π

ð
M
!
ρ2

� 2ðM! · ρ!Þ
ρ4

ρ!
" #

dS: (4.63)

4.10 Superconductors

High-field magnets are usually energized using superconducting cables. In the
superconducting state, the resistivity vanishes, so a large current can flow through
the magnet coils without losing power due to Joule heating. In a superconducting
material, attractive forces between pairs of electrons are transmitted through
vibrations in the material lattice.[11] The operating conditions for superconductiv-
ity lie below the surface of a three-dimensional space of temperature, magnetic
field, and current density. The limiting values on each of the three axes are called
the critical values. When the superconductor is not in the superconducting state, it
is said to be in the normal state. There are several classes of superconducting
materials. Type I materials exhibit theMeissner effect, where any external magnetic
field is excluded from the interior of the superconductor. A magnetization is
generated in the superconductor that just cancels the external field. This remains
true as the external field is increased until it reaches the critical field Hc. Type I
superconductors are perfect diamagnetic materials.
Some alloys of intermetallic compounds form what are called type II super-

conductors. Two important examples are NbTi and Nb3Sn. The critical current
density for these materials at 4 K is shown as a function of the magnetic flux density
in Figure 4.15.[12] NbTi is a useful material for fields up to ~9 T at 4 K, whereas
Nb3Sn can be used up to ~22 T. These materials have two critical magnetic fields,
Hc1 and Hc2, which can be much larger than Hc1. For H < Hc1, the material
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completely excludes the external flux and it behaves like a type I superconductor.
For Hc1 < H < Hc2, flux begins to penetrate into the material and the magnitude of
the magnetization begins to fall, but electrically it still has zero resistivity.
The magnetic flux enters the superconductor in the form of discrete, quantized
flux lines known as fluxoids. The field still vanishes in the material surrounding the
fluxoids. The fluxoids can move because of Lorentz forces, creating heat. To stop
the fluxoids from moving, inhomogeneities known as pinning centers must be
introduced into the lattice. Finally when H > Hc2, the material returns to the
normal state.
Magnets with superconducting cables must deal with the problem of persistent

currents.[13] As the current in the magnet is ramped up or down, eddy currents11

are induced in the superconductor. These induced shielding currents produce a field
that opposes the change in the field caused by the magnet’s power supply. Because
of the lack of resistance in a superconductor, the decay times for the induced
currents are very long. The persistent currents produce undesired sextupole and
higher multipoles that can be particularly significant at low field values.

4.11 End fields

Although this chapter has mainly been concerned with transverse fields that are
uniform along the z direction, real currents exist as closed loops, so we must
comment on what happens at the end of this type of magnet. At the ends of
a dipole, the conductor on one side of a pole must bend in such a way that it returns
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Figure 4.15 Engineering current density at 4 K as a function of the magnetic field.

11 Eddy currents will be discussed in more detail in Section 10.4.
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in the opposite direction at the symmetrical location on the other side of the pole.
There are several standard end configurations. If the aperture in the end regions
does not need to be open, the simplest configuration is the racetrack coil.[10]
The coil bends around an arc, maintaining the same vertical position as the coils in
the straight part of the magnet. The bedstead end bends the conductors by 90° as
quickly as possible and then crosses over the pole at a fixed z location. This
configuration does keep a clear aperture in the end regions, but the sharp bend in
the conductor may not be acceptable for mechanical reasons. Another type of end
that maintains a clear aperture is the saddle end.[10] In this case, the conductor
turns cross over the pole following an arc that is spread out over z. The magnetic
design of real coil ends is usually done numerically using the Biot-Savart equation.
The end turns introduce additional multipole contributions to the field of

a magnet. However, it is possible to define a new set of multipole coefficients
defined in terms of the field components integrated along the axis of the magnet.
Flux theorems have been developed that can relate these integrated multipoles to
the geometry of the end turns.[14] The z locations where the cross-over for various
conductors begin can be adjusted using spacers to help balance the integrated
multipoles in the magnet.[15]
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