Canad. Math. Bull. Vol. 17 (1), 1974

A SINGULAR PERTURBATION PROBLEM AND A NEUTRAL DIFFERENTIAL-DIFFERENCE EQUATION

BY EDWARD MOORE

1. Introduction. Vasil'eva, [2], demonstrates a close connection between the explicit formulae for solutions to the linear difference equation with constant coefficients

(1.1)
$$z(t) = Az(t-\tau)$$

where z is an *n*-vector, A an $n \times n$ constant matrix, $\tau > 0$, and a corresponding differential equation with constant coefficients

(1.2)
$$\tau \dot{z} = Bz.$$

(1.2) is obtained from (1.1) by replacing the difference $z(t-\tau)$ by the first two terms of its Taylor Series expansion, combined with a suitable rearrangement of the terms.

We consider the vector differential-difference equation

(1.3)
$$\dot{x}(t-\tau) = G(t, x(t), \dot{x}(t)).$$

On replacing $\dot{x}(t-\tau)$ by the first two terms of its Taylor Series expansion, and suitably rearranging, we obtain

(1.4)
$$\tau \dot{x}(t) = H(t, y(t), \dot{y}(t)).$$

A comparison is made of the solutions between (1.3) and (1.4).

2. The vector differential-difference equation. The basic result is given in the following theorem:

THEOREM. Suppose y(t), x(t) are n-vectors. Let $\dot{y}(t) = \dot{y}(t-\tau) + f(y, \dot{y}, t)$, $0 \le t \le b$ with $y(t) = \phi(t)$ for $-\tau \le t \le 0$ where $\phi(t) \in C^3$, $f(y, \dot{y}, t)$ is differentiable and k_1 and k_2 are positive constants such that

$$||f(x_1, y_1, t) - f(x_2, y_2, t)|| \le k_1 ||x_1 - x_2|| + k_2 ||y_1 - y_2||, \quad 0 \le t \le b.$$

Let $\tau \ddot{x}(t) = f(x, \ddot{x}, t)$, with $x(t) = \phi(t)$ for $-\tau \le t \le 0$ and

$$||e(t)|| \equiv ||x(t) - y(t)||.$$

77

E. MOORE

If (i) $\| \overset{\dots}{(t)} \| \leq a_1 \text{ for } -\tau \leq t \leq b$, (ii)

(iii)
$$\max\left\{\frac{1}{2(1-k_2)}, \frac{k_2}{2(1-k_2)}\right\} < 1,$$

then there exists a constant a_2 such that $||e(t)|| \le a_2\tau^2$ for $0 \le t \le b$. If (i) is replaced by $||\ddot{x}(t)|| \le a_3/\tau$, then

 $k_2 < 1$

 $\|e(t)\| \le a_4\tau, \quad for \quad 0 \le t \le b.$

We consider the vector differential-difference equation

(2.1)
$$\dot{y}(t) = \dot{y}(t-\tau) + f(y, \dot{y}, t), \quad 0 \le t \le b,$$

with

$$y(t) = \phi(t)$$
 for $-\tau \le t \le 0$,

 $\phi(t) \in C^3$; $f(y, \dot{y}, t)$ is continuous and differentiable, and k_1 and k_2 are constants such that

 $||f(x_1, y_1, t) - f(x_2, y_2, t)|| \le k_1 ||x_1 - x_2|| + k_2 ||y_1 - y_2||.$

We want to compare (2.1) with the equation

(2.2)
$$\tau \ddot{x}(t) = f(x, \dot{x}, t), \qquad 0 \le t \le b,$$

where $x(t) = \phi(t)$ for $-\tau \le t \le 0$.

Now

(2.3)
$$\dot{x}(t-\tau) = \dot{x}(t) - \tau \ddot{x}(t) + \frac{\tau^2}{2!} \ddot{x}(t-\theta\tau),$$

where $0 < \theta < 1$. Substituting from (2.2) into (2.3),

(2.4)
$$\dot{x}(t) = \dot{x}(t-\tau) + f(x, \dot{x}, t) - \frac{\tau^2}{2} \ddot{x}(t-\theta\tau).$$

Hence, if x(t) solves (2.2), then it satisfies (2.1) approximately, the error E(t) being

(2.4A)
$$E(t) = \frac{\tau^2}{2} \ddot{x}(t-\theta\tau).$$

Define the error e between the solutions x and y by $e \equiv x - y$, so subtracting (2.1) from (2.4)

(2.5)
$$\dot{e}(t) = \dot{e}(t-\tau) + f(x, \dot{x}, t) - f(y, \dot{y}, t) + E(t).$$

Integrating the above equation,

(2.6)
$$e(t)-e(0) = e(t-\tau)-e(-\tau) + \int_0^t \{f(x, \dot{x}, s)-f(y, \dot{y}, s)\} ds + \int_0^t E(s) ds$$

But $e(0)=e(-\tau)=0$ because of the conditions imposed on y and x in (2.1) and (2.2) respectively, and so (2.6) implies

(2.7) $\|e(t)\| \le \|e(t-\tau)\| + k_1 \int_0^\tau \|e(s)\| \, ds + k_2 \int_0^t \|\dot{e}(s)\| \, ds + \int_0^t \|E(s)\| \, ds$ Also, (2.5) implies

$$\|\dot{e}(t)\| \le \|\dot{e}(t-\tau)\| + k_1 \|e(t)\| + k_2 \|\dot{e}(t)\| + \|E(t)\|$$

Assume $1 > k_2$, so

$$\|\dot{e}(t)\| \leq \frac{1}{1-k_2} \|\dot{e}(t-\tau)\| + \frac{k_1}{1-k_2} \|e(t)\| + \frac{1}{1-k_2} \|E(t)\|.$$

Substitute for ||e(t)||, from (2.7), into the above inequality; then

$$(2.9) \quad \|\dot{e}(t)\| \leq \frac{1}{1-k_2} \|\dot{e}(t-\tau)\| + \frac{1}{1-k_2} E_m + \frac{k_1}{1-k_2} \|e(t-\tau)\| \\ + \frac{k_1^2}{1-k_2} \int_0^t \|e(s)\| \, ds + \frac{k_1k_2}{1-k_2} \int_0^t \|\dot{e}(s)\| \, ds + \frac{k_1}{1-k_2} \int_0^t \|E(s)\| \, ds,$$

where we define $E_m = \max_{0 \le t \le b} ||E(t)||$.

From (2.4A)

$$E_m \leq \frac{\tau^2}{2} \| \ddot{x}(t-\theta\tau) \| \leq \frac{\tau^2}{2} \max_{-\tau \leq t \leq b} \| \ddot{x}(t) \|.$$

If $t \in [-\tau, 0]$, then $\ddot{x}(t) = \ddot{\phi}(t)$, so $E_m = \leq c_2 \tau^2$ if $\ddot{\phi}(t)$ is bounded by c_1 . If $t \in [0, b]$, then $E_m \leq c_5 \tau^2$ if $\ddot{x}(t) \leq c_4$, and $E_m \leq c_6 \tau$ if $x(t) \leq c_6 / \tau$.

We want to show that the error e(t) between the solutions x(t) and y(t) is, under certain conditions, "small" and tends to zero as τ tends to zero. The resultant inequality (2.7) for e(t) involves $\dot{e}(t)$ and the inequality (2.9) for $\dot{e}(t)$ involves e(t). However $||e(t)|| \le ||e(t)|| + ||\dot{e}(t)||$, so this leads us to define the vector

$$z(t) = \begin{bmatrix} e(t) \\ \dot{e}(t) \end{bmatrix}$$

with a norm such that

$$||z(t)|| \equiv \frac{1}{2} \{ ||e(t)|| + ||\dot{e}(t)|| \}$$

We thus have from (2.7) and (2.9),

$$\begin{aligned} (2.10) \quad \|z(t)\| &\leq \left\{ \frac{1}{2} + \frac{k_1}{2(1-k_2)} \right\} \|e(t-\tau)\| + \frac{1}{2(1-k_2)} \|\dot{e}(t-\tau)\| \\ &+ \int_0^t \left\{ \left(\frac{1}{2}k_1 + \frac{k_1^2}{2(1-k_2)} \right) \|e(s)\| + \left(\frac{1}{2}k_2 + \frac{k_1k_2}{2(1-k_2)} \right) \|\dot{e}(s)\| \right\} ds \\ &+ \frac{1}{2(1-k_2)} E_m + \int_0^t \left\{ \frac{1}{2} + \frac{k_1}{2(1-k_2)} \right\} \|E(s)\| ds \\ &\leq A + C \|z(t-\tau)\| + B \int_0^t \|z(s)\| ds, \end{aligned}$$

6

where

$$A \equiv \frac{1}{2(1-k_2)} E_m + \int_0^b \left\{ \frac{1}{2} + \frac{k_1}{2(1-k_2)} \right\} \|E(s)\| ds,$$

$$B \equiv \max\left\{ \frac{k_1^2}{2(1-k_2)}, \frac{k_1k_2}{2(1-k_2)}, \frac{k_1}{2}, \frac{k_2}{2} \right\},$$

$$C \equiv \max\left\{ \frac{1}{2(1-k_2)}, \frac{k_1}{2(1-k_2)} + \frac{1}{2} \right\}$$

Equation (2.10) is valid for $t \ge \tau$; thus there is a unique integer $n \ge 1$, such that $n\tau \le t \le (n+1)\tau$, and so (2.10) holds for $t \in [n\tau, (n+1)\tau]$.

We now use the method of induction to show, with suitable conditions on $\ddot{x}(t)$ and for $t \in [n\tau, (n+1)\tau]$, that $||z(t)|| \le \tau C^*$ where C^* is used as the generic symbol for a constant, (independent of n and τ), i.e. C^* may vary from equation to equation.

We firstly consider the situation when n=0, i.e. $t \in [0, \tau]$. Then, in (2.5), $\dot{e}(t) = f(x, \dot{x}, t) - f(y, \dot{y}, t) + E(t)$ since $\dot{e}(t-\tau) = 0$ for $0 \le t \le \tau$; so

$$\|\dot{e}(t)\| \le k_1 \|e(t)\| + k_2 \|\dot{e}(t)\| + E_m$$
; and for $1 < k_2$,

(2.11)
$$\|\dot{e}(t)\| \leq \frac{k_1}{1-k_2} \|e(t)\| + \frac{1}{1-k_2} E_m.$$

In (2.7), for $0 \le t \le \tau$,

(2.12)
$$\|e(t)\| \le \tau E_m + k_1 \int_0^t \|e(s)\| \, ds + k_2 \int_0^t \|\dot{e}(s)\| \, ds.$$

From (2.11) and (2.12),

$$\|\dot{e}(t)\| \leq \frac{(1+k_1\tau)}{1-k_2} E_m + \frac{k_1^2}{1-k_2} \int_0^t \|e(s)\| \, ds + \frac{k_1k_2}{1-k_2} \int_0^t \|\dot{e}(s)\| \, ds.$$

As before, we define

$$z(t) \equiv \begin{bmatrix} e(t) \\ \dot{e}(t) \end{bmatrix};$$

also, $||z(t)|| = \frac{1}{2} \{ ||e(t)|| + ||\dot{e}(t)|| \}.$ Hence, for $0 \le t \le \tau$,

$$\|z(t)\| \leq \frac{(1+\tau(1+k_1-k_2))}{2(1-k_2)} E_m + \frac{1}{2}M \int_0^t \|z(s)\| \, ds,$$

where

$$M = \max\left(k_1, k_2, \frac{k_1^2}{1 - k_2}, \frac{k_1 k_2}{1 - k_2}\right).$$

Let

$$L \equiv \frac{1 + \tau (1 + k_1 - k_2)}{2(1 - k_2)},$$

https://doi.org/10.4153/CMB-1974-013-1 Published online by Cambridge University Press

[March

then by Gronwall's Inequality,

$$||z(t)|| \le E_m L \exp(M\tau).$$

Since $E_m \leq C_3 \tau$, under appropriate conditions as given previously, then

$$||z(t)|| \le \tau C^*$$
 for $t \in [0, \tau]$.

We now assume the induction hypothesis, viz. that $||z(t)|| \le \tau C^*$, is true for some integer (n-1), that is for $t \in [(n-1)\tau, n\tau]$. We want to prove that, for $t \in [n\tau, (n+1)\tau], ||z(t)|| \le \tau C^*$.

We note, in passing, that $E_m \leq \tau C^*$ and so, therefore, is A. (2.10) may be written as

$$||z(t)|| \le A + C(\tau C^*) + B \int_0^t ||z(s)|| \, ds,$$

$$\le \tau C^* + B \int_0^t ||z(s)|| \, ds.$$

On using Gronwall's Inequality,

$$||z(t)|| \leq \tau C^* e^{Bt} \leq \tau C^* e^{Bb} \leq \tau C^*.$$

Hence, by the principle of induction,

$$\|z(t)\| \le \tau C^*$$

and so

$$||e(t)|| = ||x(t) - y(t)|| \le \tau C^*$$
 for $0 \le t \le b$.

The theorem is now proved.

3. Boundedness of derivative. Condition (i) of the theorem on page 2 immediately poses the problem as to when $\ddot{x}(t)$ is bounded. This leads to a consideration of the conditions under which the solution of the singular perturbation problem (2.2) converges to the solution of the equation obtained from (2.2) by putting $\tau=0$; this equation is called the degenerate equation.

Following Wasow [3], we summarise the results pertaining to the autonomous differential system

(3.1)
$$\begin{aligned} x &= u \\ \tau \dot{u} &= g(x, u). \\ x(0) &= \alpha, \quad y(0) &= \beta \end{aligned}$$

where x is a scalar and u a two-dimensional vector. The mathematical analysis of the problem is analogous for the non-autonomous problem and also for the situation where x and u are vectors of any dimension.

We assume that g is continuous in an open region Ω of the (x, u) space and that there is a function $\phi(x)$ continuous in $\zeta_1 \leq x \leq \zeta_2$ such that the points $(x, \phi(x))$, $\zeta_1 \leq x \leq \zeta_2$, are in Ω and

$$g(x,\phi(x))\equiv 0.$$

1974]

E. MOORE

 $\phi(x)$ is called the root of the equation g(x, u)=0. A further assumption is that there exists a positive η , independent of x, such that

$$||u - \phi(x)|| < \eta, \quad u \neq \phi(x) \text{ in } \zeta_1 \le x \le \zeta_2$$

imply that $g(x, u) \neq 0$, in $\zeta_1 \leq x \leq \zeta_2$. Such a root $\phi(x)$ is called isolated in $\zeta_1 \leq x \leq \zeta_2$. The boundary layer equation belonging to (2.15) is defined as

(3.2)
$$\frac{du}{dT} = g(x, u)$$

where x is a parameter.

Our next assumption is that the singular point $u = \phi(x)$ of (3.2) is asymptotically stable for all x in $\zeta_1 \le x \le \zeta_2$. Such a root is called a stable root. Finally, we assume that (3.1) and the degenerate equation

(3.3)
$$\begin{aligned} \dot{x} &= u \\ u &= \phi(x) \\ x(0) &= \alpha \end{aligned}$$

have a unique solution in an internal $0 \le t \le b$.

We define a point $(\alpha, \beta) \in \Omega$, $\zeta_1 \le \alpha \le \zeta_2$, to lie in the domain of influence of the stable root $u = \phi(x)$ if the solution of the problem

$$\frac{du}{dT} = g(\alpha, u), \qquad y(0) = \beta$$

exists and remains in Ω for all T>0, and if it tends to $\phi(\alpha)$, as $T \rightarrow +\infty$.

We now state Tihonov's convergence theorem:

THEOREM. Let the above assumptions be satisfied and let (α, β) be a point in the domain of influence of the root $u = \phi(x)$. Then the solution x(t), u(t) of (3.1) is related to the solution $x_0(t)$, $u_0(t) = \phi(x_0(t))$ of (3.3) by the fact that as $\tau \to 0$, $x(t) \to x_0(t)$, $u(t) \to u_0(t) = \phi(x_0(t))$ for $0 \le t \le T_0$.

Here T_0 is any number such that $u = \phi(x_0(t))$ is an isolated stable root of $g(x_0(t), u) = 0$ for $\{t: 0 \le t \le T_0\}$. The convergence is uniform in $\{t: 0 \le t \le T_0\}$, for x(t), and in any interval $I = \{t: 0 < t_1 \le t \le T_0\}$ for u(t).

Tihonov's theorem admits the following interpretation. If (α, β) lies on the curve C:g(x, u)=0, or is within a "tube" of width $0(\tau)$ centred on C, and if the other assumptions of the theorem are satisfied, then the trajectory described in the x-u space by the solution of (3.1) is a slowly traced path which takes place near the curve g(x, u)=0, or $g(x, \dot{x})=0$. Since the equation $g(x, \dot{x})=0$ contains no τ , then $\ddot{x}(t)$ will be bounded for some finite time interval I, and for some sufficiently small τ .

This interpretation and conclusion carries over immediately to the non-autonomous case and in particular to (2.2). The above reasoning suggests that the solution to $f(x_0, \dot{x}_0, t)=0$ would supply an approximation to the solution, y(t), of (2.1). However, if $||\ddot{x}(t)||$ is bounded by some constant a_1 , and if $||y(t)-x_0(t)|| \le a_3\tau$ then by the theorem on page 2, $||x(t)-y(t)|| \le a_2\tau^2$, so that the agreement between x(t) and y(t) is possibly better than the agreement between x(t) and $x_0(t)$.

REFERENCES

1. N. Levinson, Perturbations of Discontinuous Solutions of Non-linear Systems of Differential Equations, Acta Math., 82, 71-106.

2. A. B. Vasil'eva, Correspondence Between Certain Properties of Solutions of Linear Difference Systems and Systems of Ordinary Linear Differential Equations, Trudy Sem. Teor. Differential Uravnenii S Otklon. Argumentom., Univ. Druzby Narodov Patrisa Lumumby, 5 (1967), 21-44. 3. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience Publishers, New York, 1965.

FACULTY OF ENGINEERING AND APPLIED SCIENCE, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN'S, NEWFOUNDLAND, CANADA