A SINGULAR PERTURBATION PROBLEM AND A NEUTRAL DIFFERENTIAL-DIFFERENCE EQUATION

BY
EDWARD MOORE

1. Introduction. Vasil'eva, [2], demonstrates a close connection between the explicit formulae for solutions to the linear difference equation with constant coefficients

$$
\begin{equation*}
z(t)=A z(t-\tau) \tag{1.1}
\end{equation*}
$$

where z is an n-vector, A an $n \times n$ constant matrix, $\tau>0$, and a corresponding differential equation with constant coefficients

$$
\begin{equation*}
\tau \dot{z}=B z . \tag{1.2}
\end{equation*}
$$

(1.2) is obtained from (1.1) by replacing the difference $z(t-\tau)$ by the first two terms of its Taylor Series expansion, combined with a suitable rearrangement of the terms.

We consider the vector differential-difference equation

$$
\begin{equation*}
\dot{x}(t-\tau)=G(t, x(t), \dot{x}(t)) . \tag{1.3}
\end{equation*}
$$

On replacing $\dot{x}(t-\tau)$ by the first two terms of its Taylor Series expansion, and suitably rearranging, we obtain

$$
\begin{equation*}
\tau \dot{x}(t)=H(t, y(t), \dot{y}(t)) . \tag{1.4}
\end{equation*}
$$

A comparison is made of the solutions between (1.3) and (1.4).
2. The vector differential-difference equation. The basic result is given in the following theorem:

Theorem. Suppose $y(t), x(t)$ are n-vectors. Let $\dot{y}(t)=\dot{y}(t-\tau)+f(y, \dot{y}, t), 0 \leq t \leq b$ with $y(t)=\phi(t)$ for $-\tau \leq t \leq 0$ where $\phi(t) \in C^{3}, f(y, \dot{y}, t)$ is differentiable and k_{1} and k_{2} are positive constants such that

$$
\left\|f\left(x_{1}, y_{1}, t\right)-f\left(x_{2}, y_{2}, t\right)\right\| \leq k_{1}\left\|x_{1}-x_{2}\right\|+k_{2}\left\|y_{1}-y_{2}\right\|, \quad 0 \leq t \leq b
$$

Let $\tau \ddot{x}(t)=f(x, \ddot{x}, t)$, with $x(t)=\phi(t)$ for $-\tau \leq t \leq 0$ and

$$
\begin{gathered}
\|e(t)\| \equiv\|x(t)-y(t)\| . \\
77
\end{gathered}
$$

If $(i)\|"(t)\| \leq a_{1}$ for $-\tau \leq t \leq b$,
(ii)

$$
\begin{gathered}
k_{2}<1 \\
\max \left\{\frac{1}{2\left(1-k_{2}\right)}, \frac{k_{2}}{2\left(1-k_{2}\right)}\right\}<1,
\end{gathered}
$$

then there exists a constant a_{2} such that $\|e(t)\| \leq a_{2} \tau^{2}$ for $0 \leq t \leq b$. If (i) is replaced by $\|\dddot{x}(t)\| \leq a_{3} / \tau$, then

$$
\|e(t)\| \leq a_{4} \tau, \quad \text { for } \quad 0 \leq t \leq b
$$

We consider the vector differential-difference equation

$$
\begin{equation*}
\dot{y}(t)=\dot{y}(t-\tau)+f(y, \dot{y}, t), \quad 0 \leq t \leq b \tag{2.1}
\end{equation*}
$$

with

$$
y(t)=\phi(t) \quad \text { for } \quad-\tau \leq t \leq 0
$$

$\phi(t) \in C^{3} ; f(y, \dot{y}, t)$ is continuous and differentiable, and k_{1} and k_{2} are constants such that

$$
\left\|f\left(x_{1}, y_{1}, t\right)-f\left(x_{2}, y_{2}, t\right)\right\| \leq k_{1}\left\|x_{1}-x_{2}\right\|+k_{2}\left\|y_{1}-y_{2}\right\| .
$$

We want to compare (2.1) with the equation

$$
\begin{equation*}
\tau \ddot{x}(t)=f(x, \dot{x}, t), \quad 0 \leq t \leq b, \tag{2.2}
\end{equation*}
$$

where $x(t)=\phi(t)$ for $-\tau \leq t \leq 0$.
Now

$$
\begin{equation*}
\dot{x}(t-\tau)=\dot{x}(t)-\tau \ddot{x}(t)+\frac{\tau^{2}}{2!} \ddot{x}(t-\theta \tau) \tag{2.3}
\end{equation*}
$$

where $0<\theta<1$. Substituting from (2.2) into (2.3),

$$
\begin{equation*}
\dot{x}(t)=\dot{x}(t-\tau)+f(x, \dot{x}, t)-\frac{\tau^{2}}{2} \ddot{x}(t-\theta \tau) . \tag{2.4}
\end{equation*}
$$

Hence, if $x(t)$ solves (2.2), then it satisfies (2.1) approximately, the error $E(t)$ being

$$
\begin{equation*}
E(t)=\frac{\tau^{2}}{2} \dddot{x}(t-\theta \tau) \tag{2.4~A}
\end{equation*}
$$

Define the error e between the solutions x and y by $e \equiv x-y$, so subtracting (2.1) from (2.4)

$$
\begin{equation*}
\dot{e}(t)=\dot{e}(t-\tau)+f(x, \dot{x}, t)-f(y, \dot{y}, t)+E(t) \tag{2.5}
\end{equation*}
$$

Integrating the above equation,
(2.6) $e(t)-e(0)=e(t-\tau)-e(-\tau)+\int_{0}^{t}\{f(x, \dot{x}, s)-f(y, \dot{y}, s)\} d s+\int_{0}^{t} E(s) d s$

But $e(0)=e(-\tau)=0$ because of the conditions imposed on y and x in (2.1) and (2.2) respectively, and so (2.6) implies

$$
\begin{equation*}
\|e(t)\| \leq\|e(t-\tau)\|+k_{1} \int_{0}^{\tau}\|e(s)\| d s+k_{2} \int_{0}^{t}\|\dot{e}(s)\| d s+\int_{0}^{t}\|E(s)\| d s \tag{2.7}
\end{equation*}
$$

Also, (2.5) implies

$$
\|\dot{e}(t)\| \leq\|\dot{e}(t-\tau)\|+k_{1}\|e(t)\|+k_{2}\|\dot{e}(t)\|+\|E(t)\| .
$$

Assume $1>k_{2}$, so

$$
\|\dot{e}(t)\| \leq \frac{1}{1-k_{2}}\|\dot{e}(t-\tau)\|+\frac{k_{1}}{1-k_{2}}\|e(t)\|+\frac{1}{1-k_{2}}\|E(t)\| .
$$

Substitute for $\|e(t)\|$, from (2.7), into the above inequality; then

$$
\begin{align*}
\|\dot{e}(t)\| \leq & \frac{1}{1-k_{2}}\|\dot{e}(t-\tau)\|+\frac{1}{1-k_{2}} E_{m}+\frac{k_{1}}{1-k_{2}}\|e(t-\tau)\| \tag{2.9}\\
& +\frac{k_{1}^{2}}{1-k_{2}} \int_{0}^{t}\|e(s)\| d s+\frac{k_{1} k_{2}}{1-k_{2}} \int_{0}^{t}\|\dot{e}(s)\| d s+\frac{k_{1}}{1-k_{2}} \int_{0}^{t}\|E(s)\| d s
\end{align*}
$$

where we define $E_{m}=\max _{0 \leq t \leq b}\|E(t)\|$.
From (2.4A)

$$
E_{m} \leq \frac{\tau^{2}}{2}\|\dddot{x}(t-\theta \tau)\| \leq \frac{\tau^{2}}{2} \max _{-\tau \leq t \leq b}\|\dddot{x}(t)\| .
$$

If $t \in[-\tau, 0]$, then $\dddot{x}(t)=\ddot{\phi}(t)$, so $E_{m}=\leq c_{2} \tau^{2}$ if $\dddot{\phi}(t)$ is bounded by c_{1}. If $t \in[0, b]$, then $E_{m} \leq c_{5} \tau^{2}$ if $\dddot{x}(t) \leq c_{4}$, and $E_{m} \leq c_{6} \tau$ if $x(t) \leq c_{6} / \tau$.

We want to show that the error $e(t)$ between the solutions $x(t)$ and $y(t)$ is, under certain conditions, "small" and tends to zero as τ tends to zero. The resultant inequality (2.7) for $e(t)$ involves $\dot{e}(t)$ and the inequality (2.9) for $\dot{e}(t)$ involves $e(t)$. However $\|e(t)\| \leq\|e(t)\|+\|\dot{e}(t)\|$, so this leads us to define the vector
with a norm such that

$$
z(t)=\left[\begin{array}{l}
e(t) \\
\dot{e}(t)
\end{array}\right]
$$

$$
\|z(t)\| \equiv \frac{1}{2}\{\|e(t)\|+\|\dot{e}(t)\|\}
$$

We thus have from (2.7) and (2.9),

$$
\begin{align*}
\|z(t)\| \leq & \left\{\frac{1}{2}+\frac{k_{1}}{2\left(1-k_{2}\right)}\right\}\|e(t-\tau)\|+\frac{1}{2\left(1-k_{2}\right)}\|\dot{e}(t-\tau)\| \tag{2.10}\\
& +\int_{0}^{t}\left\{\left(\frac{1}{2} k_{1}+\frac{k_{1}^{2}}{2\left(1-k_{2}\right)}\right)\|e(s)\|+\left(\frac{1}{2} k_{2}+\frac{k_{1} k_{2}}{2\left(1-k_{2}\right)}\right)\|\dot{e}(s)\|\right\} d s \\
& +\frac{1}{2\left(1-k_{2}\right)} E_{m}+\int_{0}^{t}\left\{\frac{1}{2}+\frac{k_{1}}{2\left(1-k_{2}\right)}\right\}\|E(s)\| d s \\
\leq & A+C\|z(t-\tau)\|+B \int_{0}^{t}\|z(s)\| d s
\end{align*}
$$

where

$$
\begin{aligned}
A & \equiv \frac{1}{2\left(1-k_{2}\right)} E_{m}+\int_{0}^{b}\left\{\frac{1}{2}+\frac{k_{1}}{2\left(1-k_{2}\right)}\right\}\|E(s)\| d s, \\
B & \equiv \max \left\{\frac{k_{1}^{2}}{2\left(1-k_{2}\right)}, \frac{k_{1} k_{2}}{2\left(1-k_{2}\right)}, \frac{k_{1}}{2}, \frac{k_{2}}{2}\right\}, \\
C & \equiv \max \left\{\frac{1}{2\left(1-k_{2}\right)}, \frac{k_{1}}{2\left(1-k_{2}\right)}+\frac{1}{2}\right\}
\end{aligned}
$$

Equation (2.10) is valid for $t \geq \tau$; thus there is a unique integer $n \geq 1$, such that $n \tau \leq t \leq(n+1) \tau$, and so (2.10) holds for $t \in[n \tau,(n+1) \tau]$.

We now use the method of induction to show, with suitable conditions on $\dddot{x}(t)$ and for $t \in[n \tau,(n+1) \tau]$, that $\|z(t)\| \leq \tau C^{*}$ where C^{*} is used as the generic symbol for a constant, (independent of n and τ), i.e. C^{*} may vary from equation to equation.

We firstly consider the situation when $n=0$, i.e. $t \in[0, \tau]$. Then, in (2.5), $\dot{e}(t)=$ $f(x, \dot{x}, t)-f(y, \dot{y}, t)+E(t)$ since $\dot{e}(t-\tau)=0$ for $0 \leq t \leq \tau$; so

$$
\begin{aligned}
& \|\dot{e}(t)\| \leq k_{1}\|e(t)\|+k_{2}\|\dot{e}(t)\|+E_{m} ; \quad \text { and for } 1<k_{2} \\
& \|\dot{e}(t)\| \leq \frac{k_{1}}{1-k_{2}}\|e(t)\|+\frac{1}{1-k_{2}} E_{m} .
\end{aligned}
$$

In (2.7), for $0 \leq t \leq \tau$,

$$
\begin{equation*}
\left.\|e(t)\| \leq \tau E_{m}+k_{1} \int_{0}^{t}\|e(s)\| d s+k_{2} \int_{0}^{t} \| \dot{(s}\right) \| d s \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12),

$$
\|\dot{e}(t)\| \leq \frac{\left(1+k_{1} \tau\right)}{1-k_{2}} E_{m}+\frac{k_{1}^{2}}{1-k_{2}} \int_{0}^{t}\|e(s)\| d s+\frac{k_{1} k_{2}}{1-k_{2}} \int_{0}^{t}\|\dot{e}(s)\| d s
$$

As before, we define

$$
z(t) \equiv\left[\begin{array}{l}
e(t) \\
\dot{e}(t)
\end{array}\right]
$$

also, $\|z(t)\|=\frac{1}{2}\{\|e(t)\|+\|\dot{e}(t)\|\}$.
Hence, for $0 \leq t \leq \tau$,

$$
\|z(t)\| \leq \frac{\left(1+\tau\left(1+k_{1}-k_{2}\right)\right)}{2\left(1-k_{2}\right)} E_{m}+\frac{1}{2} M \int_{0}^{t}\|z(s)\| d s
$$

where

$$
M=\max \left(k_{1}, k_{2}, \frac{k_{1}^{2}}{1-k_{2}}, \frac{k_{1} k_{2}}{1-k_{2}}\right) .
$$

Let

$$
L \equiv \frac{1+\tau\left(1+k_{1}-k_{2}\right)}{2\left(1-k_{2}\right)}
$$

then by Gronwall's Inequality,

$$
\|z(t)\| \leq E_{m} L \exp (M \tau)
$$

Since $E_{m} \leq C_{3} \tau$, under appropriate conditions as given previously, then

$$
\|z(t)\| \leq \tau C^{*} \text { for } t \in[0, \tau] .
$$

We now assume the induction hypothesis, viz. that $\|z(t)\| \leq \tau C^{*}$, is true for some integer $(n-1)$, that is for $t \in[(n-1) \tau, n \tau]$. We want to prove that, for $t \in[n \tau,(n+1) \tau],\|z(t)\| \leq \tau C^{*}$.

We note, in passing, that $E_{m} \leq \tau C^{*}$ and so, therefore, is A. (2.10) may be written as

$$
\begin{aligned}
\|z(t)\| & \leq A+C\left(\tau C^{*}\right)+B \int_{0}^{t}\|z(s)\| d s \\
& \leq \tau C^{*}+B \int_{0}^{t}\|z(s)\| d s
\end{aligned}
$$

On using Gronwall's Inequality,

$$
\|z(t)\| \leq \tau C^{*} e^{B t} \leq \tau C^{*} e^{B b} \leq \tau C^{*}
$$

Hence, by the principle of induction,
and so

$$
\|z(t)\| \leq \tau C^{*}
$$

$$
\|e(t)\|=\|x(t)-y(t)\| \leq \tau C^{*} \quad \text { for } \quad 0 \leq t \leq b
$$

The theorem is now proved.
3. Boundedness of derivative. Condition (i) of the theorem on page 2 immediately poses the problem as to when $\ddot{x}(t)$ is bounded. This leads to a consideration of the conditions under which the solution of the singular perturbation problem (2.2) converges to the solution of the equation obtained from (2.2) by putting $\tau=0$; this equation is called the degenerate equation.

Following Wasow [3], we summarise the results pertaining to the autonomous differential system

$$
\begin{align*}
\dot{x} & =u \\
\tau \dot{u} & =g(x, u) . \tag{3.1}\\
x(0) & =\alpha, \quad y(0)=\beta
\end{align*}
$$

where x is a scalar and u a two-dimensional vector. The mathematical analysis of the problem is analogous for the non-autonomous problem and also for the situation where x and u are vectors of any dimension.

We assume that g is continuous in an open region Ω of the (x, u) space and that there is a function $\phi(x)$ continuous in $\zeta_{1} \leq x \leq \zeta_{2}$ such that the points $(x, \phi(x))$, $\zeta_{1} \leq x \leq \zeta_{2}$, are in Ω and

$$
g(x, \phi(x)) \equiv 0
$$

$\phi(x)$ is called the root of the equation $g(x, u)=0$. A further assumption is that there exists a positive η, independent of x, such that

$$
\|u-\phi(x)\|<\eta, \quad u \neq \phi(x) \quad \text { in } \quad \zeta_{1} \leq x \leq \zeta_{2}
$$

imply that $g(x, u) \neq 0$, in $\zeta_{1} \leq x \leq \zeta_{2}$. Such a root $\phi(x)$ is called isolated in $\zeta_{1} \leq x \leq \zeta_{2}$.
The boundary layer equation belonging to (2.15) is defined as

$$
\begin{equation*}
\frac{d u}{d T}=g(x, u) \tag{3.2}
\end{equation*}
$$

where x is a parameter.
Our next assumption is that the singular point $u=\phi(x)$ of (3.2) is asymptotically stable for all x in $\zeta_{1} \leq x \leq \zeta_{2}$. Such a root is called a stable root. Finally, we assume that (3.1) and the degenerate equation

$$
\begin{align*}
\dot{x} & =u \\
u & =\phi(x) \tag{3.3}\\
x(0) & =\alpha
\end{align*}
$$

have a unique solution in an internal $0 \leq t \leq b$.
We define a point $(\alpha, \beta) \in \Omega, \zeta_{1} \leq \alpha \leq \zeta_{2}$, to lie in the domain of influence of the stable root $u=\phi(x)$ if the solution of the problem

$$
\frac{d u}{d T}=g(\alpha, u), \quad y(0)=\beta
$$

exists and remains in Ω for all $T>0$, and if it tends to $\phi(\alpha)$, as $T \rightarrow+\infty$.
We now state Tihonov's convergence theorem:
Theorem. Let the above assumptions be satisfied and let (α, β) be a point in the domain of influence of the root $u=\phi(x)$. Then the solution $x(t), u(t)$ of (3.1) is related to the solution $x_{0}(t), u_{0}(t)=\phi\left(x_{0}(t)\right)$ of (3.3) by the fact that as $\tau \rightarrow 0, x(t) \rightarrow x_{0}(t)$, $u(t) \rightarrow u_{0}(t)=\phi\left(x_{0}(t)\right)$ for $0 \leq t \leq T_{0}$.

Here T_{0} is any number such that $u=\phi\left(x_{0}(t)\right)$ is an isolated stable root of $g\left(x_{0}(t), u\right)=$ 0 for $\left\{t: 0 \leq t \leq T_{0}\right\}$. The convergence is uniform in $\left\{t: 0 \leq t \leq T_{0}\right\}$, for $x(t)$, and in any interval $I=\left\{t: 0<t_{1} \leq t \leq T_{0}\right\}$ for $u(t)$.

Tihonov's theorem admits the following interpretation. If (α, β) lies on the curve $C: g(x, u)=0$, or is within a "tube" of width $0(\tau)$ centred on C, and if the other assumptions of the theorem are satisfied, then the trajectory described in the $x-u$ space by the solution of (3.1) is a slowly traced path which takes place near the curve $g(x, u)=0$, or $g(x, \dot{x})=0$. Since the equation $g(x, \dot{x})=0$ contains no τ, then $\dddot{x}(t)$ will be bounded for some finite time interval I, and for some sufficiently small τ.

This interpretation and conclusion carries over immediately to the non-autonomous case and in particular to (2.2).

The above reasoning suggests that the solution to $f\left(x_{0}, \dot{x}_{0}, t\right)=0$ would supply an approximation to the solution, $y(t)$, of (2.1). However, if $\|\ddot{x}(t)\|$ is bounded by some constant a_{1}, and if $\left\|y(t)-x_{0}(t)\right\| \leq a_{3} \tau$ then by the theorem on page 2 , $\|x(t)-y(t)\| \leq a_{2} \tau^{2}$, so that the agreement between $x(t)$ and $y(t)$ is possibly better than the agreement between $x(t)$ and $x_{0}(t)$.

References

1. N. Levinson, Perturbations of Discontinuous Solutions of Non-linear Systems of Differential Equations, Acta Math., 82, 71-106.
2. A. B. Vasil'eva, Correspondence Between Certain Properties of Solutions of Linear Difference Systems and Systems of Ordinary Linear Differential Equations, Trudy Sem. Teor. Differential Uravnenii S Otklon. Argumentom., Univ. Druzby Narodov Patrisa Lumumby, 5 (1967), 21-44.
3. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Interscience Publishers, New York, 1965.

Faculty of Engineering and Applied Science,
Memorial University of Newfoundland,
St. John's, Newfoundland, Canada

