The semi-analytical motion theory of the third order in planetary masses for the Sun - Jupiter - Saturn - Uranus Neptune's system

Alexander Perminov(1) and Eduard Kuznetsov(1)
Ural Federal University, Lenina Avenue, 51, Yekaterinburg, 620000, Russia

Abstract

The averaged four-planetary motion theory is constructed up to the third order in planetary masses. The equations of motion in averaged elements are numerically integrated for the Solar system's giant planets for different initial conditions. The comparison of obtained results with the direct numerical integration of Newtonian equations of motion shows an excellent agreement with them. It suggests that this motion theory is constructed correctly. So, we can use this theory to investigate the dynamical evolution of various extrasolar planetary systems with moderate orbital eccentricities and inclinations.

Keywords. celestial mechanics, methods: analytical, methods: numerical, planets and satellites: individual (Jupiter, Saturn, Uranus, Neptune)

The osculating Hamiltonian of the four-planetary problem is written in Jacobi coordinates. Then it is expanded into the Poisson series in the small parameter and orbital elements of the second Poincaré system. This algorithm is described in (Perminov, Kuznetsov (2015)).

The averaged Hamiltonian is constructed by the Hori-Deprit method. The implementation of the Hori-Deprit algorithm is considered in (Perminov, Kuznetsov (2016) and Perminov, Kuznetsov (2020)). The first-order terms of the averaged Hamiltonian are constructed up to $6^{\text {th }}$ degree in eccentric and oblique Poincaré elements, the second-order and third-order terms are constructed up to $4^{\text {th }}$ and $2^{\text {nd }}$ degrees correspondingly.

The equations of motion in averaged elements are integrated by the Everhart method of $15^{\text {th }}$ order (Everhart (1974)) with a time step of 1000 years to modeling of the orbital evolution of the Solar system's giant planets for different initial conditions (according to DE 432 ephemeris). Also, the same simulation is performed by Wisdom-Holman integrator with symplectic corrector of $11^{\text {th }}$ order (Rein, Tamayo (2015)) and a time step of 4 days. The Time interval of the integration is 100 Myr for all cases. The limits of the change of osculating orbital eccentricities $\left(e_{\min }, e_{\max }\right)$ and inclinations $\left(I_{\min }, I_{\max }\right)$ in barycentric frame giving by semi-analytical (SA) motion theory and Wisdom-Holman (WH) methods are presented in Table 1 for four initial dates of the integration (at the moment $00^{\mathrm{h}} 00^{\mathrm{m}} 00^{\mathrm{s}}$ UTC). The transition from averaged elements to osculating ones is carried out using the variables change functions of the first order. Table 2 presents the periods of the change of averaged orbital elements and the MEGNO indicator, which is computed in the process of the numerical simulation for each initial date.

The differences between periods of the change of orbital inclinations obtained by numerical methods and semi-analytical motion theory do not exceed 0.2% for all planets and all initial conditions. These discrepancies between periods of the change of orbital

[^0]Table 1. The range of osculating orbital eccentricities and inclinations.

Date	Theory	$e_{\text {min }}$	$e_{\text {max }}$	$I_{\text {min }},{ }^{\circ}$	$I_{\text {max }},{ }^{\circ}$	$e_{\text {min }}$	$e_{\text {max }}$	$I_{\text {min }},{ }^{\circ}$	$I_{\text {max }}$,
		Jupiter				Saturn			
31.01.2016	SA	0.025428	0.061603	1.093929	2.065336	0.012644	0.086018	0.557715	2.600120
	WH	0.025074	0.061959	1.093609	2.062945	0.009449	0.087273	0.561106	2.595098
29.02.2016	SA	0.025663	0.061743	1.093711	2.065397	0.012919	0.086132	0.559167	2.597615
	WH	0.025252	0.062026	1.095261	2.063808	0.009323	0.087498	0.561043	2.596079
31.01 .2020	SA	0.026164	0.061377	1.089352	2.066233	0.012506	0.085095	0.559413	2.599554
	WH	0.025670	0.061914	1.094836	2.065492	0.009516	0.087377	0.560680	2.595056
29.02.2020	SA	0.025727	0.061232	1.094927	2.065816	0.012196	0.085157	0.563841	2.595928
	WH	0.025180	0.061789	1.094095	2.062955	0.009289	0.087229	0.565407	2.594549
		Uranus				Neptune			
31.01.2016	SA	0.006304	0.071602	0.391638	2.766937	0.003247	0.015126	0.775906	2.376785
	WH	0.003386	0.073773	0.378761	2.777150	0.002383	0.016046	0.773544	2.373315
29.02.2016	SA	0.006084	0.071265	0.425230	2.740155	0.003322	0.015133	0.780070	2.374410
	WH	0.003572	0.073201	0.427249	2.734788	0.002635	0.015978	0.783357	2.373475
31.01 .2020	SA	0.005017	0.070079	0.446119	2.718907	0.003483	0.014972	0.769256	2.390563
	WH	0.002174	0.071974	0.444978	2.728521	0.002727	0.015824	0.777828	2.379745
$\overline{29.02 .2020}$	SA	0.005501	0.070569	0.414775	2.735945	0.003487	0.014914	0.776324	2.380880
	WH	0.002735	0.072512	0.430827	2.730216	0.002553	0.015786	0.779464	2.379941

Table 2. The periods of osculating orbital elements and the MEGNO indicator.

		Jupiter	Saturn	Uranus	Neptune	Jupiter	Saturn	Uranus	Neptune	
Date	Theory		Periods of orbital eccentricities, years			Periods of orbital inclinations, years				MEGNO
31.01.2016	SA	54675	54675	1136375	537 640, 364967	49213	49213	432905	1886811	2.28
	WH	54735	54735	1136375	534765,363640	49141	49141	432905	1886811	
29.02.2016	SA	53764	53764	1136375	537640,364967	49262	49262	432905	1886811	6.69
	WH	54055	54055	1123607	534765,362323	49189	49189	432905	1886811	
31.01 .2020	SA	51949	51949	1111122	540 546, 363640	49432	49432	432905	1886811	103.63
	WH	51841	51841	1098912	537640,362323	49335	49335	432905	1886811	
29.02.2020	SA	54113	54113	1123607	540 546, 364967	49335	49335	432905	1886811	1.99
	WH	53677	53677	1111122	537640, 362323	49237	49237	432905	1886811	

eccentricities of Jupiter and Saturn are in the range $0.1 \%-0.8 \%$. These differences do not exceed 1.1% and 0.7% correspondingly for Uranus and Neptune. The discrepancies for minimal and maximum values of the orbital eccentricities and inclinations do not exceed a few percent, except minimal orbital eccentricities of Saturn, Uranus, and Neptune.

The constructed semi-analytical motion theory can be used to study the orbital evolution and stability of extrasolar planetary systems with moderate orbital eccentricities and inclinations. The orbital elements of extrasolar systems are known from observations with highly uncertain, and some elements are not determined due to the specificity of the observation methods. We can vary unknown and known with errors orbital elements within allowable limits to determine the set of various initial conditions for modeling the orbital evolution. The limits of the change of orbital elements can be determined depending on the specific initial conditions. The assumption about the stability of observed planetary systems allows us to exclude the initial conditions leading to extreme values of the orbital eccentricities and inclinations that identify those under which these elements conserve small or moderate values over the whole modeling interval. Thus, it is possible to narrow the allowable range of unknown orbital elements and determine their most probable values in terms of stability.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation via the State Assignment Project FEUZ-2020-0038.

References

Everhart, E. 1974, Celest. Mech. 10, 35-55
Perminov, A. S., Kuznetsov, E. D. 2015, Solar Syst. Res. 49(6), 430-441
Perminov, A. S., Kuznetsov, E. D. 2016, Solar Syst. Res. 50(6), 426-436
Perminov, A. S., Kuznetsov, E. D. 2020, Math. Comput. Sci. 14, 305-316
Rein, H., Tamayo, D. 2015, Mon. Not. R. Astron. Soc. 2015, 452(1), 376-388

[^0]: (C) The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

