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Abstract

Although Korean language education is experiencing rapid growth in recent years and several studies
have investigated automated writing evaluation (AWE) systems, AWE for Korean L2 writing still remains
unexplored. Therefore, this study aims to develop and validate a state-of-the-art neural model AWE sys-
tem which can be widely used for Korean language teaching and learning. Based on a Korean learner
corpus, the proposed AWE is developed using natural language processing techniques such as part-of-
speech tagging, syntactic parsing, and statistical language modeling to engineer linguistic features and
a pre-trained neural language model. This study attempted to determine how neural network models use
different linguistic features to improve AWE performance. Experimental results of the proposed AWE tool
showed that the neural AWE system achieves high reliability for unseen test data from the corpus, which
implies metrics used in the AWE system can help differentiate different proficiency levels and predict
holistic scores. Furthermore, the results confirmed that the proposed linguistic features—syntactic com-
plexity, quantitative complexity, and fluency-offer benefits that complement neural automated writing
evaluation.

Keywords: Automated writing evaluation; L2 writing; Korean; Learner corpus

1. Introduction

Technology is applied to all aspects of foreign language learning and teaching including assess-
ments. Among these technologies, there has been an increase in the use of automated writing
evaluation (AWE) for writing assessment. Natural language processing (NLP) and machine learn-
ing are employed in AWE systems to provide language learners with automated corrective
feedback (Li, Dursun, and Hegelheimer 2017) and more accurate and objective scoring, which
can otherwise be biased when performed by test raters. Because automated scoring is faster and
more cost-effective compared to human scoring, it is used to help language teachers easily assess
endless essays. Owing to these benefits, many scholars developed and implemented AWE systems
for various languages including English (Shermis and Burstein 2003), Japanese,* Bahasa Malay,
Chinese, Hebrew, Spanish, and Turkish.
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Despite the large number of pre-existing AWE systems, AWE for Korean L2 writing remains
unexplored. Based on the Modern Language Association (MLA) report, Korean is the only lan-
guage that demonstrated a sharp increase in enrollment over the past few years compared to other
foreign languages. Furthermore, Korean has been consistently ranked as the 15th most commonly
taught foreign languages in US colleges and universities between 2013 and 2016. Therefore, it is
necessary to develop AWE for Korean to provide innovative resources in the growing field of
Korean language education.

In the most basic terms, AWE is defined as “the process of evaluating and scoring written prose
via computer programs” (Shermis and Burstein 2003). With the advent of automatic scoring in
the 1960s (Page 1966), advanced language processing technologies and statistical methods led to
the development of various AWE systems (Li et al. 2017). The first computerized scoring system
called project essay grader™ (PEG™) could detect syntactic errors and predict scores that were
comparable to those of human raters (Page and Petersen 1995).

More advanced AWE systems were developed in the 1990s; the intelligent essay assessor
(IEA) utilized latent semantic analysis to move beyond the capability of scoring and include feed-
back on semantics (Foltz, Laham, and Landauer 1999). Recently, several scoring engines with
more sophisticated language processing techniques and statistical methods have been developed
(Li et al. 2014). E-rater®, Knowledge analysis technologies™, and IntelliMetric™ analyze a wide
range of text features at lexical, semantic, syntactic, and discourse levels.

E-rater (developed by ETS) is an early AWE scoring engine designed to evaluate essays written
by nonnative English learners; it is still widely used for TOEFL and GMAT, which are high-stakes
tests for undergraduate admission or graduate business admission in the United States (Burstein,
Tetreault, and Madnani 2013). E-rater identifies and extracts several feature classes for model
building and scoring using statistical and rule-based NLP (Attali and Burstein 2006). Some of the
feature classes include (1) grammatical errors (e.g., subject—verb agreement errors); (2) word usage
errors (e.g., here versus hear); (3) errors in mechanics (e.g., spelling and punctuation); (4) presence
of discourse elements (e.g., thesis statement, supporting details, and concluding paragraphs); (5)
development of discourse elements; (6) style (e.g., repeated use of the same word); (7) content-
vector analysis (CVA)-based features to evaluate topical word usage; (8) features associated with
the correct usage of prepositions and collocations (e.g., powerful versus strong); and (9) a variety
of sentence structure formation (Burstein et al. 2013). After measuring these features, the e-rater
provides a holistic score that corresponds with human-rated scores. A randomly selected sample
of human-scored essays is run through the e-rater, after which a variety of linguistic features are
extracted and converted to numerical values. Using a regression modeling approach, the values
obtained from this sample are used to determine the weight for each feature. To score a new essay,
the e-rater extracts the set of features and converts the features to a vector value, and then, these
values are multiplied by the weights relevant to each feature. Finally, the sum of the weighted
feature is computed to predict the final score, which represents the overall quality of an essay
(Attali, Bridgeman, and Trapani 2010).

Another important scoring engine is IntelliMetric, which uses the same holistic scoring
approach employed by human raters (Schultz 2013). Similar to the training requirements for
human raters to score a specific prompt, the IntelliMetric system needs to be trained with a set
of previously scored responses from human raters. The system then internalizes the features of
the responses linked to each score point and applies it to score essays with unknown scores. The
IntelliMetric system uses a multistage process to score essays. First, the essays need to be provided
in an electronic form. After the information is received and prepared for analysis, the text is then
parsed to understand the grammatical and syntactic structure of the language. Each sentence is
identified in terms of parts of speech, vocabulary, sentence structure, and expression. After all the
information is collected from the text, statistical techniques are employed to translate the text into
a numerical form. Then, IntelliMetric uses virtual raters (mathematical models) to assign scores.
Each virtual rater attempts to link the features extracted from the text to the scores assigned in
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the training set to ensure accurate scoring for essays with unknown scores. IntelliMetric finally
integrates the information received from the virtual rates to present a single and reliable score.

Powered by these above-mentioned scoring engines, AWE tools such as Criterion and
MYAccess! have been developed. These AWE tools can provide writing scores and feedback
instantly, and students can benefit from these tools by practicing writing and receiving immediate
feedback from the tools. In the context of writing instructions, AWE tools can assist instructors
by providing immediate scoring and feedback, especially in large classroom scenarios.

In general, AWE studies have focused on the validity and reliability of AWE tools (Dikli and
Bleyle 2014). Previous validation studies reported high agreement rates between the AWE tools
and human raters (Burstein et al. 1998; Landauer, Laham, and Foltz 2003; Chodorow, Gamon,
and Tetreault 2010). For example, Shermis et al. (2002) showed that PEG™ achieved scores that
were highly correlated with human scores (r = 0.82) compared with human inter-rater reliabil-
ity (r =0.71). Furthermore, Enright and Quinlan (2010) found high agreement indices between
ratings provided by two human raters and those provided by e-rater and one human in TOEFL
iBT. E-rater proved to be a reliable complement to human ratings under specific testing contexts
(Burstein et al. 1998; Powers et al. 2000; Burstein 2003; Chodorow and Burstein 2004; Attali 2007;
Lee, Gentile, and Kantor 2008).

Neural models have dominated current AWE systems. Ke and Ng (2019), Ramesh and
Sanampudi (2021), and Uto (2021) have summarized recent neural models well. For automatic
essay scoring, there are two main model types. Firstly, in RNN-based models, the RNN output is
sent to mean-over-time to aggregate the input to the fixed length vector and a linear layer for the
scalar value (Taghipour and Ng 2016) or a simple BiLSTM to the linear layer is used for predicting
essay scores (Alikaniotis, Yannakoudakis, and Rei 2016). Secondly, transformer-based models,
for example, BERT with BiLSTM with attention (Nadeem et al. 2019) or BERT concatenated
with handcrafted features (Uto, Xie, and Ueno 2020), can be used to predict the score. Fine-
tuning BERT using multiple losses including regression loss and reranking loss for constraining
automated essay scores has been shown to produce state-of-the-art results (Yang et al. 2020).

Although there are many studies that explore AWE tools and their validation, a majority of
the studies focus on AWE systems developed for native English-speaking writers (Powers et al.
2001; Rudner, Garcia, and Welch 2006; Wang and Brown 2007) or English as a second language
(ESL) writers (Chen and Cheng 2008; Choi and Lee 2010). Only a few studies investigate the use
of the AWE system for less commonly taught languages, and to the best of our knowledge, there
are no studies that investigate AWE for Korean as a foreign language (KFL) because of the lack of
available AWE tools. This study aims to extend the scope of research in this area by introducing a
state-of-the-art AWE system that is developed based on the Korean learner corpus for Koreans.

The goal of this study is to develop a neural Korean AWE engine and validate it in terms of
its capacity to distinguish the developmental level of second language learners. In this paper, we
address the question of how recent advancements in neural network models can help improve
automatic writing evaluation, and how neural network models can use different linguistic features
to improve AWE performance using linguistic features for AWE in a complementary manner.
This paper includes a description of the automated essay scoring system, its natural language
processing-centered approach within the neural system, and details on the validation of the
AWE system in terms of predicting the proficiency level and holistic score simultaneously of the
learners.

The rest of this paper is organized as follows. First, the paper presents the Korean learner
corpus used to develop the Korean AWE program and discusses how we define features in the
learner corpus (Section 2). Next, the basic AWE model is presented (Section 3), followed by a
proposed neural AWE model that was designed to compensate for the limitations of the basic
model (Section 4). Finally, the results from an experiment are reported with detailed discussions
(Section 5) and future perspectives for the AWE model in the conclusion (Section 6).
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A100007_v02.xml

<level>Zg1</level>
<nationality>&=</nationality>
<gender>0{Z}</gender>
<term>7 | DA< /term>

<date>2013E" 7}2</date>

<topic>FZ O|OF7|</topic>
<score>70</score>

<p><s>A e LU0 =AM ROIM ZHELICH </s>
<s>A = 2SI S MEOIM ZHELICH </s>
<s>Z M0 S UUSFLICH. </s>

<s>E MM FEMSUICEH </s>

<> Mg AJFLCH </s>

<s>712HA L2Uo| ZHD|UELICE. </s></p>

Figure 1. Example of the Korean learner corpus: <level> = Level 1, <nationality> = Chinese, <gender> = female,
<term> = final examination, <date> = Fall 2013, <topic> = my weekend, and <score>=70. The present example of
Korean writing can roughly be translated into / went to the library on Sunday. | went to the library with a friend. There was
a book in the library. | studied in the library. | read a book. So it’s fun on Sunday.

2. Korean learner corpus
2.1 Learner corpus dataset

We use the dataset from the Korean learner corpus (Park and Lee 2016); this database con-
tains proficiency levels (from Level 1 to Level 6) (<level>), native language by nationality
(<nationality>), gender (<gender>), teacher-attributed score (<score>), and text. Figure 1
shows an example of the Korean learner corpus dataset which indicates the learner’s proficiency
level = Level 1 (A1), L1 = Chinese, gender = F, and score = 70. Furthermore, it shows the title of
the text (<topic>) and the entire text where the sentence is delimited using s (the beginning of a
sentence) and /s (the end of a sentence), and the paragraph using p (the beginning of a paragraph)
and /p (the end of a paragraph).

The Common European Framework of Reference for Languages (CEFR) suggest common ref-
erence levels divided into three level groups: Al and A2 (basic), Bl and B2 (independent), and
C1 and C2 (proficient) users. The Korean proficiency test divides students into beginner, interme-
diate, and advanced groups, which are further divided into levels based on each student’s ability.
These groups are subdivided into Levels 1 (A1) and 2 (A2) for the beginner levels (2% chogeub,
literally “beginner”), Levels 3 (B1) and 4 (B2) for the intermediate levels (5 junggeub, “inter-
mediate”), and Levels 5 (C1) and 6 (C2) for the advanced levels (11 gogeub, “advanced”). The
minimum requirement in universities for foreign students whose first language is not Korean
should be at least Levels 3 and 4 respectively admission and completing their university degree
regardless of their major. For students in Korean studies, Levels 5 and 6 are required for admission
and degree completion, respectively.

Although they hailed from over 80 different countries, the majority of the learners were from
Asian countries where Chinese and Japanese are the first and second most spoken languages.
Writing examples for L1 Mandarin Chinese and Japanese in the corpus represent 38.27% and
21.09%, respectively. If we place students from China, Hong Kong, and Taiwan together, the per-
centage of learners who speak Chinese as L1 increases to 49.72%, and thus, half of the writing tests
can be said to be produced by Chinese L1 learners.

A total of 2523 learners participated in a writing examination to produce 4094 writing
examples. All examinees provided their native language (L1) and gender; there were 700 men,
1822 women, and a participant who did not specify their gender. The corpus also specified that
all students were high school graduates, and over 60% were university graduates. In the learner
corpus, the beginner levels (Levels 1 and 2) represent almost 50% of the corpus. Writing examples
represent about 75% of the corpus if Level 3 (intermediate level) is also considered. Table 1
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Table 1. Examples of most frequent prompts and their number of instances in the learner corpus

Prompts Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 (total)
My weekend 261 - - - - - 261
Seasons and weather in my country - 171 - - - - 171
The day that | remember the most - - 129 - 94 - 223
My future plans 24 96 - - - - 120
My hobby - 50 144 - - - 194
Other prompts 396 828 963 260 389 289 3125
(total) 681 1145 1236 260 483 289 4094

There are over 100 prompts which are used by only a small number of writing examples (“Other prompts” row in Table 1). Most prompts are only for
specific proficiency levels, such as My weekend, Seasons and weather in my country.

presents the most frequently used prompts in the learner corpus. While some writing prompts are
given only to learners at a specific proficiency level (e.g., My weekend requested only for Level 1),
other topics can be used for different proficiency levels (e.g., The day that I remember the most
for Level 3 and Level 5).

There are over 100 writing prompts. Twenty-one writing prompts are given to multiple profi-
ciency levels, and these prompts represent 42.96% of the dataset. For the proposed AWE system,
we use <level> and <score> as target classes, and extract various linguistic features only from
sentences. Although other annotations in the learner corpus would be target classes for other
learner corpus-related applications, such as <nationality> for native language identification,
we do not use them in this study.

2.2 Features in the learner corpus

We explore various automatic metrics that aim to describe the characteristics of the learner
corpus, and we find relevant features for the classification tasks. Such characteristics are rep-
resented in terms of complexity, fluency, and accuracy features. These features can be used for
learner corpus-related applications such as automated assessment and language proficiency clas-
sification. All metrics described here should be measured and extracted automatically from the
corpus. Therefore, they are evaluated without any human intervention to assess writing quality
and classify language proficiency automatically.

2.2.1 Complexity features
Complexity features use quantitative measures such as the number of words and sentences in the
text with their numbers and mean lengths. The length of the written text is considered as an impor-
tant feature in the learner corpus. Most previous work on proficiency classification focused on the
number of words (Ortega 2003; Vajjala and Loo 2013; Alfter et al. 2016). Since many official writ-
ing tests for proficiency levels define the number of words for each level, the quantitative measures
of text in the learner corpus become the most obvious feature for learner corpus applications.
We use a part-of-speech (POS) tagging system for Korean morphological analysis to count the
number of morphemes instead of eojeols (a blank-separated word unit in Korean). The POS tag-
ger can attribute POS tag information while performing the segmentation task for the word in
Korean. For example, the following sentence in (1b) is morphologically analyzed and segmented
in (1c). Although the number of tokens differs based on basic units such as eojeols and mor-
pheme, we can deal with compound words in which these units may appear with or without
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hajiman (‘however’) hajiman/MAJ

bili (‘Billy”) bili/NNP

ssi-hago (‘Mr.-CONJ’) ssi/NNB+hago/JKB
naoko (‘Naoko’) naoko/NNP

ssi-neun (‘Ms.-TOP’) ssi/NNB+neun/JX
modu (‘all’) modu/MAG
sajingi-ga (‘camera-NOM’) sajingi/NNG+galJKS

eobs-eoss-eoyo.  (‘do_not_have-PAST-DECL’)  eobs/VA+eoss/EP+eoyo/EF+./SF

Figure 2. Example of Sejong corpus-style POS tagging analysis: MA{J|G} are for adverbs, NN{P|B|G} for nouns, J{KB|X|KS} for
postpositions, E{P|F} for verbal endings, VA for adjectives, and SF for punctuations.

a blank space, in which case we can tokenize Korean words into morphemes to obtain a con-
sistent number of tokens for compound words regardless of the blanks. For example, for two
identical but differently segmented compound nouns hakseubja kopeoseu and hakseubjakopeoseu
(“a learner corpus”)—both of which are correct and grammatical—the number of morphemes
can be homogeneously counted as two using the proposed counting scheme. This scheme per-
forms counting based on what the compound word or phrase semantically represents instead of
its surface segmentation, which can be different. Therefore, this scheme counts both as two tokens
(as for hakseubja kopeoseu) instead of one token (as for hakseubjakopeoseu).

(1) a SPARE 2] Aot ed Ne  EF ARIZIZE §iglols.

hajiman bili  ssi-hago naoko ssi-neun modu sajingi-ga eobs-eoss-eoyo.
However, Billy Mr.-CONJ Naoko Ms.-TOP all camera-NOM do_not_have-PAST-DECL.
“However, Mr. Billy and Ms. Naoko, both of them do not have a camera.”

b. hajiman bili ssi-hago naoko ssi-neun modu sajingi-ga eobs-eoss-eoyo. (# of tokens by
word = 8)

c. hajiman bili ssi -hago naoko ssi -neun modu sajingi -ga eobs -eoss -eoyo. (# of tokens by a
morpheme = 13, punctuations excluded)

A type/token ratio is calculated using %, where the number of types represents the

unique number of tokens, and the number of tokens represents the number of morphemes. This
ratio can help measure the vocabulary richness of a corpus between 0 and 1. Within this range, 0
and 1 indicate low and high lexical variation, respectively. We use the morphological analysis and
POS tagging model described in Park and Tyers (2019), which can generate POS tagging results,
as shown in Figure 2.

Complexity features can also measure syntactic complexity in L2 writing (Polio 1997; Ortega
2003; Lu 2010), whereas first language syntactic complexity measures include Yngve’s depth
algorithm (Yngve 1960), Frazier’s local non-terminal numbers (Frazier 1985), and the D-level
scale (Rosenberg and Abbeduto 1987; Covington et al. 2006), we do not consider them in this
manuscript for second language learning. A tree structure obtained by constituent parsing can
show linguistic discrepancy. For example, if the subject is omitted in the sentence, a tree structure
of the parsing result has a vp node as a root. A standard tree has an s node as a root as shown
in Figure 3. If the root node is a vp, we may consider it as a syntactic complexity feature. We
note that a vp root sentence also may be a grammatically relevant sentence in Korean. We use the
phrase-structure models described in Kim and Park (2022), which trained the Sejong treebank for
Korean using the Berkeley neural parser (Kitaev, Cao, and Klein 2019) with the pre-training of
deep bidirectional transformers (Devlin et al. 2019). For syntactic complexity features, we add the
distribution of grammatical morphemes such as the number of verbal endings and prepositions.
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SENT

S
T
AP S VP

/\

MAG NP-SBJ NP-SBJ AP VP

NG T
hajiman NP NP NP NP MAG NP-SBJ

AN AN AN A T

NNP NNB JKB NNP NNB JX  modu NNG JKS VA EP EF SF

bili ssi hago naoko  ssi neun sajingi  ga  eobs eoss eoyo

Figure 3. Example of phrase-structure analysis.

2.2.2 Fluency features

We define fluency as the capability of producing language effortlessly. Fluency is the potential of
a language learner to apply their knowledge of grammar to produce intelligible speech and writ-
ing. This plays an important role in language production. We differentiate between the language
fluency of a learner by observing their level of comfort when using that language and identifying
if they can efficiently express themselves verbally and in text. Pauses in production and the length
of written text are good indicators of fluency (Towell, Hawkins, and Bazergui 1996; Ge, Wei, and
Zhou 2018; Martindale and Carpuat 2018; Qiu and Park 2019). Previous work defined various
metrics for fluency. Two metrics defined in previous work and an additional fluency metric by the
unigram language model are given below.

log P,,(h) —log P, (h
1. Fluency by Asano, Mizumoto, and Inui (2017): f(h) = 08 P (h) — log Pu(h)

|h|
1 log P,,,(h
2. Fluency by Ge et al. (2018): f(h) = TH(x) where H(x) = —OgTrr()
log P, (h)

3. Fluency by the unigram language model: f(h) = ]
here P, represents the probability of the sentences given by the language model, and P,, denotes
the unigram probability of the sentences.

We collect a very large monolingual dataset for Korean, which contains over 9.6 M sentences
and 130.6 M eojeols, to create a language model: Korean Wikipedia® (5.3 M sentences and 71.8 M
eojeols), the Sejong morphologically analyzed corpus (3.0 M and 40.0 M), and articles from The
Hankyoreh daily newspaper during 2016 (1.2 M and 18.6 M, previously presented in Park 2017).
After preprocessing the raw text into morpheme-segmented text using the POS tagging system
(Park and Tyers 2019), we create a linearly interpolated trigram model and implement the fluency
metrics described in Asano et al. (2017) and Ge et al. (2018), and the fluency feature counted by the
unigram language model. As indicated in (2), we attach the POS label to the morpheme-segmented
lexicon and explicitly include a + symbol for consecutive morphemes. A raw text collection for
creating a language model is available at http://doi.org/10.5281/zenodo.4317288 by authors of the
manuscript.

Chttps://dumps.wikimedia.org/kowiki. We used a version of 20201101.

https://doi.org/10.1017/51351324922000298 Published online by Cambridge University Press


http://doi.org/10.5281/zenodo.4317288
https://dumps.wikimedia.org/kowiki
https://doi.org/10.1017/S1351324922000298

1348 K. Lim et al.

S gohyang yeseo jumal e chingu wa manna seo eseo eoyo.
A 1 2|||R:ADP]| | |eseol | IREQUIRED]| | |-NONE-| | |0
A 7 8||IR:ADP| | |sil | IREQUIRED| | |-NONE-|| |0

Figure 4. Example of an M2 file for the Korean learner corpus.

(2) <bos> 5Fx|IHMAJ Hl2]/NNP #]/NNB +5}1/JKB L}9 T/NNP #J/NNB +=/JX

hajiman bili SSi +hago naoko SsSi +neun
However  Billy Mr. +CONJ Naoko Ms. +TOP
R =/MAG A Z7]/NNG +7HIKS $I/VA +%1/EP +0] Q/EF +./SF <eos>
modu sajingi +ga eobs +eoss +eoyo
1. all cameras +NOM do_not_have +PAST +DECL

2.2.3 Accuracy features

Thus far, we discussed features that can be extracted automatically from the learner corpus. Now,
we define accuracy as a feature in the learner corpus. This feature represents the ability to pro-
duce correct sentences using correct grammar and vocabulary. However, such a learner corpus
requires linguistic information such as grammatical error categories and error correction (e.g.,
the NUS learners corpus Dahlmeier, Ng, and Wu 2013 or the treebank of learner English Berzak
et al. 2016). These errors are annotated based on target expressions that a native speaker would
produce given the identical context, and they are used to distinguish non-standardized linguistic
expressions in the learner corpus. Figure 4 shows a conceptual example of the annotated sentence
described in (3) from the Korean learner. S represents the learner’s sentence, and A represents
the error correction annotation. 1 2 indicates the path of the tokens where the correction needs
to be introduced. The value R:ADP indicates the type of error. For example, yeseo, a functional
morpheme (ADP) at 1 2, should be replaced by eseo according to the annotation.

(3) a. *aLFo|A FHoll et whlols.
gohyang yeseo jumal e chingu wa manna seo eseo eoyo.
“@ (met) a friend (in the hometown) on weekend.”
b. gohyang eseo jumal e chingu wa mannasi  eoss eoyo.
hometown LOC weekend AJT friend CJT meet HON PAST IND.
“@ met a friend in the hometown on weekend.”

The correct sentence is presented in (3b). This example illustrates functional morpheme errors,
which are among the most common errors: specifically, these errors involve postposition and
honorific morphemes, which we denote as adpositions (ADP) for functional morphemes using
a universal part-of-speech tagset (Petrov, Das, and McDonald 2012). Using the error-annotated
learner corpus, it is possible to perform a grammatical error correction (GEC) process by auto-
matically detecting and correcting grammatical errors in the text. In recent years, the consistent
increase in the number of foreign language learners, especially learners of Korean, and the demand
to facilitate their learning with timely feedback have resulted in GEC becoming increasingly pop-
ular and attracting considerable attention in both academia and industry. However, because the
learner corpus needs to be in another form, that is, an error-annotated corpus instead of the cur-
rent version of the corpus because of the lack of the error correction dataset in the learner corpus
for Korean L2 writing, a task such as GEC including accuracy features is beyond the scope of this
study, and we leave it as future work.

2.2.4 Summary

We summarize the list of features, including the bag of morphemes, in Table 2, which also
shows examples of feature values for the learner corpus presented in Figure 1, which contains
six sentences. We present several quantitative complexity features, such as the mean length
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Table 2. Example of features and teir values for te learner’s writing in Figure 1

Features Values
bag of morp Z{/PRON +=/JX &2 2/NNG +0{|/JKB =AM Z/NNG +
0| M/JKB 7HVV +QF/EP +&L|ICHEF 2/PRON +=/JX
2IF/NNG +3t22/JC A Z/NNG +0|MAUKB 7HVV
+Q/EP +&UCHEF =AM3/NNG +0{/JJKB 2i/NNG
+2/JKO UV +A/EP +SLICHEF Z=A{ZH/NNG +
OMUKB ZE/NNG +3l/XSV +Q/EP +&LICHEF
Z/PRON +=/JX ZH/NNG +2/JKO A/VV +U/EP +&
LICHEF J2iA/MAJ 22 2/NNG +0i|/(JKB 0| QL/VA
+&L|CHEF
complexity # of sent 6
#of para 1
# of tok 43
sent by morp 7.166666666666667
wd by morp 2.263157894736842
type/token ratio 0.46511627906976744
bag of funct +=/IX +OI/UKB +OMUKB +=/X +512/JC +0f
M/JKB +0f|/JKB +2/JKO +0|AM/JKB +=/IX +2/JKO
+0{l/JKB
# of vp eads 0
fluency Asano et al. (2017) 0.16437636932893357
Geetal. (2018) 0.1491520664089971
unigram LM 5.868943218961787
accuracy not available
target score 70
proficiency level Level 1

Bag of morph = bag of morphemes; # of sent = number of sentences; # of para = number of paragraphs; # of tok = number of tokens; sent
by morph = mean number of morphemes per sentence; wd by morph = mean number of morphemes per word; type/token ratio = ratio of
morpheme types to tokens; bag of funct = bag of functional morphemes; # of vp heads = number of vp heads. The fluency assessment by
Asano et al. (2017) uses f(h) = ww, the fluency assessment by Ge et al. (2018) uses f(h) = where H(x) = — w, and the

A
fluency by the unigram language model uses f(h) = — %.

1
1+HKX)

of sentence by morpheme, mean length of word by morpheme, and morpheme type versus
token ratio. In addition, the table shows statistical complexity features such as the number of
sentences, number of paragraphs, and number of tokens using morphemes. We consider the bag
of functional morphemes as a morpho-syntactic complexity feature and the number of vp heads
as a syntactic complexity feature. We denote both the morpho-syntactic and syntactic complexity
features as syntactic complexity features for convenience, so that they are differentiated from
quantitative complexity features.

3. Baseline statistical automated writing evaluation models

First, we propose the use of a statistical automated writing evaluation system as a baseline sys-
tem. Statistical automated writing evaluation systems use linear and logistic regression models.
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Figure 6. Distribution of learner’s scores between levels.

Thus, we separately implemented two independent systems to predict proficiency levels and scores
instead of using a single integrated system. Figure 5 shows a distribution of criterial features for
each level, including quantitative measures (mean lengths of sentence by morpheme and fluency
by Asano et al. 2017). This figure corresponds to the logistic regression model for classifying profi-
ciency levels. Figure 6 presents a distribution of learners’ scores between levels. Note that there are
22 writing examples for which scores are either not provided or annotated as not specified (NA).

We evaluated scores using 5-fold cross-validation with accuracy for proficiency classification
as in (1) and mean squared error regression loss to assess writing quality as in (2).

correctly classified number of examples

ACC= (1)

total number of examples
1y A
MSE(»3) =~} (i = i) @)
i=1
where n denotes the total number of examples. Table 3 shows the results of the baseline statistical
models. Our experiments using the baseline statistical models followed the experimental settings
suggested in previous work by either predicting a score or classifying the proficiency of a learner,
independently. We obtained rudimentary initial results using the basic statistical models, which
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Table 3. Statistical AWE system results

Task Result

proficiency classification (ACC) 53.64 (+1.41)

assessing writing quality (MSE) 15.30 (£ 4.17)

Average results of 5-fold cross-validation with the standard deviation.

(3) Classification Layer v———{Classiﬁer] {Regressor}-v——@

[ Self-attentive Vector representation rf w ]

(2) Attention Layer

: - 74.‘\’\!’cminn5::ﬂm:-'1"" -‘
@ 0. 6. 6. 6. 6. 6. 6. B}
" ; ) .

1 1) ) ] ] ] )
J(s)_/ e[(fyf tq)_/ ];..-) / m-w_,/’ !w) / ‘ /’ [ / s j-rn /

(w) () _
i i . €; €1 €2 €3 e €5 - ik
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Syntactic Quantitative
[ Complexity ] Flicacy } [ Complexity [ XLM-RoBERTa ]
T T T T T T T T T
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type/token ratio probability of of sentences &= uk ] 2] 44 8} 31 e s T A}2 7] 7}
2. Verb ratio the sentence 2. Meanlength  (However,) (M. Billy,) (Ms. Naoka) (both of them) ~ (a camera)

2. Unigram LM of words.

Figure 7. System structure of the proposed deep learning model. Three linguistic features are applied: syntactic complexity,
fluency, and quantitative complexity, in addition to the sequence of token representations. Each token is transformed into a
vector representation based on XLM-RoBERTa.

have the following limitations. First, it is difficult to determine the effect of each feature. Second,
it has low performance compared to current deep learning-based systems. Third, it requires two
separate systems that predict the score and classify the proficiency level; this makes it difficult to
use these models for general purposes as a complete AWE system. Therefore, we propose a state-
of-the-art neural model for automated writing evaluation which is able to assess proficiency levels
and scores simultaneously, and we aim to introduce a system that can be widely used throughout
Korean language teaching classrooms.

4. Neural automated writing evaluation models

We propose a state-of-the-art neural Korean AWE model and provide a deeper investigation into
each feature proposed in Section 2.2. Our system applies XLM-Roberta to represent word forms as
word representations along with the multitask learning (MTL) approach that trains several tasks
simultaneously (Hashimoto et al. 2017; Lim et al. 2020). The details of the XLM-Roberta feature
representation method and our MTL approach is depicted in Figure 7.

4.1 Representation of words

Machine learning (ML)-based grammar checking (Soni and Thakur 2018) and AWE (Persing,
Davis, and Ng 2010; Taghipour and Ng 2016; Yang, Xia, and Zhao 2019) have been proposed and
widely used in recent years because of their outstanding performance. The main idea behind ML-
based AWE is applying deep learning techniques for automated essay scoring. To compute the
score of writing in terms of machine learning, the system has to learn from a training dataset
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T that comprises a pair of essays x; and scores y;, where (x;, y;) € T. In the deep learning-based
AWE such as in Yang et al. (2019), the sequence of words from the essay x; is represented as a
sequence of vector representations (i.e., word embeddings). Therefore, the essay x; is composed
of m words such that x=(wj1,--- , wim), and the system creates a set of sequences of word
embeddings 62/1’ cee, ezvm. This vector representation of a word e}j} is trained to capture syntac-
tic and semantic meanings of a word in a sentence (Pennington, Socher, and Manning 2014). We
apply a bidirectional encoder representations from transformers (BERT)-like word representation
method that is trained using a masked language model (MLM). Many MLM pre-learning methods
such as BERT (Devlin et al. 2019) perform training by replacing certain input words with [MASK]
and restoring them to the original token by training a deep neural network. For example, let the
input text be I have no clue; then, the system selects tokens randomly and replaces them as I have
[MASK] clue. This process makes the system predict the masked word based on its surrounding
words. During training, the system may struggle to learn the best parameters by comparing its
prediction and the masked word.

BERT is a pre-trained word representation model that is trained with large quantities of
Wikipedia text as input and over 110 million parameters. RoBERTa (Liu et al. 2019) is an
extended version of BERT, which consumes 270 million parameters and a bigger input dataset,
and XLM-RoBERTa (Conneau et al. 2020) is a multilingual model of Roberta trained in 100
different languages. These pre-trained models are effective when transferred to a downstream
NLP task because they capture a deep contextual representation of words. In this study, we apply
the multilingual XLM-Roberta model to transform the Korean text into a sequence of word
representations as

EEW) = XLMRoberta(w;, .., Wim) ®)

where EEW) is a matrix that denotes a set of vector representation of words, and it comprises k

subwords as El(.w) = (eg’”;'), o ,el(,‘;:)), This is because XML-Roberta tokenizes a word into several
subwords to handle character-level subword information.

For example, the word joyful turns into two subwords, joy and ful using XLM-Roberta;
therefore, the number of words m in an essay is always equal to or smaller than the number
of XLM-Roberta representations k. We implement our word representation model using the
pre-trained XLM-Roberta provided by Huggingface.

4.2 Representation of linguistic features

Quantitative complexity, syntactic complexity, and fluency of the learner’s writing are features
that are traditionally important to predict essay scores to assess writing, and they can be trans-

formed into vector representations in ML applications using a simple linear transformation
()

method. First, we concatenate the features in Section 2.2 for each quantitative complexity ¢;"/,

syntactic complexity t}s), and fluency t?f ) Then, we transform each concatenated output based on
a linear model with an activation function Relu as
e,(-q) = G(q)Relu(U(q)tEq)) + 5@ (4)
egs) = G(S)Relu(U(S) tfs)) + bW (5)
elq) = GV Relu(u® ti(f )) + ) (6)

dhttps://github.com/huggingface/transformers.
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where egq), e, and el(f) denote a vector representation of each feature, G and U represent learnable

parameters, ‘and b indicates a bias. We concatenate the representation of features with the vector
representation of words. Finally, we unify the representation between the word and the linguistic
features as

ngl) (e (q), efs), elf), ef”f), e e%)) (7)
where k denotes the number of words in the learner’s writing. The proposed unified representation
is commonly used with BERT-like models. For example, Prakash and Madabushi (2020) designed
an enhanced version of contextual representation based on count-based features (BERT with a
term frequency), and Xue et al. (2019) investigated the effect of relational features with BERT for
the Chinese NER task. To combine pairs of features, a simple concatenation method was applied.
However, the concatenation method may not be the best method in our case because our model
uses diverse features simultaneously. To investigate this issue, we applied an attention-based
method to form unified representations.

4.3 Self-attentive representations

The vector representations for each word (Section 4.1) and linguistic features (Section 4.2) are
independent representations although they are concatenated. Thus, no co-relational information
can be represented between two representations. The self-attention mechanism is adequate to

address this issue. Self-attention involves applying a linear transformation (Cao and Rei 2016)

over the matrix of the unified representation E( ") for which the attention weights a(w)

computed as
afwz) = Softmax(R(Wl)El(-Wl)) (8)

Cl(-Wl) _ al('wl) . E,('Wl) 9)

(wh)

where R®) denotes a learnable parameter. The attention weight a;  corresponds to the most

informative word w; (1 < j < k) in the learner’s writing and linguistic features. The system obtains

a self-attentive vector representation C(Wl) through the dot-product between the attention weight

and unified representation. Intultlvely, the attention weight denotes a probability score that rep-
resents “how much our system focuses on a specific word or linguistic feature that we propose.”
Given an input, when a specific word or expression is important, the system provides more
weight to build a self-attentive representation. The attention weight is discussed in Section 5.3.

4.4 Prediction of a proficiency level and a score

Our final goal is to build a system that can automatically measure the proficiency level and the
score of a learner’s writing. We use a linear classifier to measure the proficiency level of the essay
and use another linear regressor for scoring.

egc) = P(C)Relu(D(C)cl(-Wl)) + b (10)

yflml) = argmax e(c) (11)

340re) — p() Relu (D ") 4 p) (12)

z denotes an index number of levels where level = {Level 1, ..., Level 6}, and P) and P are

learnable parameters. The classification result j/ic) is computed by the selection of the maximum
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Table 4. Hyperparameters

Component Value
Train/Test split ratio 8:2

e,(;.” (XLM-RoBERTa) dim. 768

G, U (parameters) dim. 768

R, P, D (parameters) dim. 400
Dropout 0.3
Learning rate 0.00002
B, B2 0.9,0.99
Epoch 100
Batch size 6
Gradient clipping 5.0
Optimizer AdamW

value of eg’cz). During the training phase, our system learns by backpropagation of the prediction
errors over the entire training dataset T. Because we train two different classification and regres-
sion tasks, we use the individual CrossEntropy objective function for predicting the proficiency
level and the MSE function for assigning the score of the learner’s writing.

loss — Z(xi,yi)e . CrOSSEntropy()A/gleveD , yl(level) ) + MSE()Algscore) ) y(‘score) ) (13)

1

where (x;, y;) € T denotes an element from the training set T, y; denotes a set of gold labels (yll.e"d,

yi€°¢), and y; represents a set of predicted results.

5. Results of neural AWE models and discussion
5.1 Experiment setup

As presented in Section 4, we evaluate the scores using 5-fold cross-validation with the proposed
regression loss to assess writing quality and the prediction accuracy for its proficiency level. Table 4
lists our hyperparameter settings. We apply 768 dimensions for parameters U and Q in (4) and
set 400 dimensions for P and D in (10). We run through 80% of the training dataset during the
learning phase using an epoch with a batch size of 6 randomly selected sentences. The remaining
20% is used as the test dataset. We report the best performance on the test dataset within 100
epochs over five times for the 5-fold cross-validation.

5.2 Experiment results

Table 5 summarizes our results on how we use different linguistic information to improve AWE
results using XLM-RoBERTa. The linguistic features are syntactic complexity features (S), fluency
features (F), quantitative features (Q), and self-attention mechanism (A). To investigate the effect
of LMs on AWE performance, we compare results between multilingual BERT (M) and XLM-
RoBERTa (X). Besides word representation methods, we also evaluate performance that is solely
based on linguistic features without the pre-trained language model. For the models without self-
attention, we applied a weighted average of the BERT word representations and linguistic features
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Table 5. Experiment results

Model ACC MSE
) 95.83 (+ 0.66) 12.11 (4 0.52)
(X) B 9515(io4g) SR 1246(i046)
(X) +(A) B 55_1‘4'(;0;5‘15 e 1198(i070)
(x)+(s) B 9535&091) e 114&062)
(X) +(F) e éé,(»)‘e.(;o!z;sj e 1201&078)
.(.X) +(Q) B 56,451(;0:1”7)‘ e 1243&073)
09+ @) +(5)+ () + Q)  ee7TL030)  1196(:049
(A)+(S) + (F) + (Q) 50.98 (+ 1.27) 13.02 (£ 1.02)

Accuracy for predicting a proficiency level and MSE for assigning a score for the learner’s writing: (M) multi-
lingual BERT only, (X) XLM-RoBERTa only, (X) + (A) XLM-RoBERTa and attention, (X) + (S) XLM-RoBERTa and
syntactic complexity features, (X) 4 (F) XLM-RoBERTa and fluency features, (X) + (Q) XLM-RoBERTa and quanti-
tative complexity features, (X) + (A) + (S) + (F) + (Q) XLM-RoBERTa and all features, and (A) + (S) + (F) + (Q)
w/o pre-trained LMs.

as cl(.Wl) = ﬁ (el(-q) + el(-s) + egf )+ Zjlle e}w)). Note that the dimension of linguistic features is

identical to that of the BERT embedding.

Overall observations. XLM-RoBERTa and syntactic complexity features outperform other
experimental settings for in terms of predicting both the proficiency level and the score. The fea-
tures described in Section 2.2 only narrowly impact the overall results, and linguistic features
without the pre-trained language model result in a severely limited performance.

Effect of different BERT-like pre-trained language models. The model based on XLM-Roberta
naturally outperforms the multilingual BERT system, wherein the former was empirically eval-
uated for result gains including the trade-offs between positive transfer and capacity dilution
(Conneau et al. 2020).

Effect of linguistic features for AWE We observed a meaningful improvement in the results
when using linguistic features compared to that between only XLM-RoBERTa and XLM-RoBERTA
and all other features, as listed in Table 5. Among the three different linguistic features, syntactic
complexity is found to be the most impactful factor in both assessing the proficiency level and the
score. Furthermore, we found that quantitative complexity features have a positive effect on our
empirical experiment; however, fluency features lead to performance degradation of about -0.1
points.

Effect of self-attention. In practice, there are no result gains from using self-attention: A -
0.02 accuracy for predicting a proficiency level (a negative result) and -0.48 MSE for assigning
a score (a positive result) were observed. This may be attributed to the multi-head self-attention,
which computes several attentions simultaneously (Vaswani et al. 2017), being already applied in
the XLM-RoBERTa model; therefore, our attention representation is relatively less effective than
expected.

5.3 Analysis

In the previous section, we showed the performance of our model using different feature selection
scenarios. Among the proposed features, syntactic complexity features are relatively more impor-
tant than other features. However, these observations are based on empirical experiments, and
thus, one cannot explain why the neural model makes such a decision. To gain a better under-
standing of the decision making process of the system, we conduct additional experiments to
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Figure 8. Visualization of the attention score proposed in Eq (8).

visualize the attention score added on the top of feature representations. The visualization of the
attention score is the most powerful explainable AT (XAI) method where the results of the solution
are understood by humans (Park et al. 2016).

During the training, the attention score of the i-th learner’s writing—a(.Wl) in (8)—is com-

k+3 (wl)

puted as a probability distribution where Z =1, k denotes the number of subtokens, and

three different types of linguistic features—syntactlc complexity, quantitative complexity, and flu-
ency features—are proposed. Intuitively, the attention score, therefore, represents the importance
assigned by our system to each linguistic feature and the word to yield results for predicting a
proficiency level and for assigning a score in a learner’s writing.

Attention results on all features. Visualization results in Figure 8 show the attention score on
the learner’s writing number 1. In the figure, the darker the color, the more attention points of
the element are assigned. Figure 8a shows the result of applying three different linguistic fea-
tures as well as words. We find two interesting observations in Figure 8a compared to those in
Figure 8b, where there is attention only with words. First, we observe that the system focuses on
[S-COMPLEXITY] (syntactic complexity features). This result is in line with the result reported in
Table 5, where the accuracy of our system was improved by 0.69 points when syntactic complexity
features were introduced. Second, the system lacks interest in focusing on misspelled words. In
this ﬁgure, there are several misspelled words such as ©]& (ibun) instead of o]®¥ (ibeon, ‘this
time’), A|F5F (jejudu) instead of A|FI. (jejudo, Jeju Island’); ZFo](gapi) instead of Zro] (gati,
‘together’); H]ﬁg‘ﬂ' (bipingbab) instead of BV|®]¥} (bibimbab); and A3 7 (jacheonggeo) instead
of A A (jajeongeo, ‘bicycle’). Since we do not use accuracy features provided by human anno-
tation, our system can be considered to be sound for the following reasons: (1) The attention
mechanism focuses on the proposed linguistic features based on automatic metrics, and (2) a pre-
trained large language model can be associated with more proper words instead of spelling errors
to yield classification and predicting results.

Attention results on only words. As reported, our system tends to focus on syntactic complex-
ity features when all linguistic features are available. Then, what happens if the system can only
see words? Figure 8b presents the results when we apply only words as the (X) + (A) model in
Table 5. We found that the higher attention score is assigned to verbs such as XYt} (gabnida,
“be going”). However, the distribution of attention scores on words varies based on the input
dataset. Therefore, it is difficult to find a specific word or an expression that can directly affect the
score of the learner’s writing.

Attention results on only linguistic features. Table 5 shows that our system predicts a score and
a proficiency level of the learner’s writing only with the proposed linguistic features. We are inter-
ested in linguistic features that are the most important. Figure 9 presents attention scores of the
(A) + (S) + (F) + (Q) model in Table 5 for three sample instances in the dataset. This model does
not have any word information, that is, it is without the pre-trained language model. By observing
the graph on Essay Number 1andEssay Number 2,thesyntactic complexity is found to be the
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Figure 9. Visualization of the attention scores proposed in (8): [S-COMPLEXITY], [FLUENCY], and [Q-COMPLEXITY] for
syntactic complexity, fluency, and qualitative complexity features, respectively.
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Figure 10. The usage of verbal endings based on its proficiency levels.

most significant feature. For 82.7% of essays in the test dataset, the mean attention score of syn-
tactic complexity features is more than 0.8 out of 1. However, we also observe that the quantitative
complexity is a more crucial feature for decision-making for some essays such as Essay Number
273. We assume that the attention mechanism attempts to capture quantitative complexity fea-
tures if it fails to utilize syntactic complexity features. However, in any case, the fluency weight
does not exceed 6.7% or more of its attention score. Thus, we can assume that fluency is relatively
the least important property for AWE when the system have other complexity information.

The most frequent and important words based on proficiency level. In most Korean textbooks,
polite verbal ending @ (yo) is introduced first because it is the most commonly used ending in
everyday context. Then, deferential ending <51t} (seubnida) is introduced in the upper beginner
level, followed by plain ending T} (da) in the intermediate level. Accordingly, Figure 10 shows the
distributions of verbal endings based on learners’ proficiency levels.

Discussion of the usage of Korean monolingual BERT. Table 5 shows that XLM-RoBERTa outper-
forms the multilingual BERT. However, the proposed multilingual BERT and the XLM-RoBERTa
models are designed for multilingual purposes. There are several publicly available Korean mono-
lingual BERT models, such as KLUE-RoBERTa,® KoBERT,! DistilBERT,$ and KoELECTRA.?
Because these models have been trained with different amounts of training data, their parameters

¢https://github.com/KLUE-benchmark/KLUE.

fhttps://github.com/SKTBrain/KoBERT.
Shttps://github.com/monologg/DistilKoBERT.
Phttps://github.com/monologg/KoELECTRA.
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Table 6. Result comparison using different Korean monolingual BERTs

Model ACC Model size Training data
Multilingual BERT (base) 95.83 641MB -
XLM-RoBERTa (base) 96.16 1.2GB -
KLUE-RoBERTa (base) 96.06 110MB 63GB
KoBERT (base) 95.94 351MB 10GB
DistilKoBERT 95.72 108MB 10GB
KoELECTRA (small-v2) 96.06 255MB 14GB
KoELECTRA (small-V3) 96.02 255MB 34GB

We evaluated the model using only the BERT model (i.e., we did not apply the proposed linguistic features). Training
Data denotes the size of the Korean corpus used for training BERT.

also vary. We additionally investigate the performance of Korean AWE using these monolingual
BERT models for following reasons. First, we are interested in whether monolingual Korean BERT
models perform better than multilingual BERTS. Second, we must determine the importance of the
different hyperparameters in the monolingual BERT models, as well as the optimally cost-effective
BERT model size. Table 6 provides data from the ablation study on multilingual and Korean
monolingual BERT models. Overall, we did not observe performance improvement by using the
monolingual BERTS. Instead, we observed that the model size is more important for monolingual
BERT models when comparing KoBERT and DistilKoBERT. One interesting result of the experi-
ment is that comparing KoOELECTRA small-V2 and small-V3 shows almost identical results, even
with different sizes of training data. Among the monolingual models, KLUE-RoBERTa (Park et al.
2021) showed the best performance regardless of their model sizes.

Feature comparison with previous work. We compare our linguistic features with others previ-
ously proposed and utilized. Most previous work focused on complexity features by our criteria
such as statistical features (e.g., length and n-gram)) or style-based features (e.g., part-of-speech
labels, sentence structure, and other lexical patterns) (Ramesh and Sanampudi 2021). There are
also content-based features (e.g., similarities between sentences and prompt overlapping), in
which the similarity metric is introduced: for example, Sakaguchi, Heilman, and Madnani (2015)
used BLEU, Word2vec similarity and WordNet similarity for their reference-based approach, and
Dong and Zhang (2016) counted the number of words and their synonyms in the essay appear-
ing in the prompt. Due to the availability of spell checker for English, spelling, punctuation, and
capitalization errors could also be utilized as accuracy features (Persing and Ng 2013; Sakaguchi
et al. 2015; Dong and Zhang 2016; Cummins, Zhang, and Briscoe 2016; Dong, Zhang, and Yang
2017). Table 7 shows a summary of handcrafted features in previous work. We used more detailed
quantitative measures (token ratio; length of morphemes, words, and sentences for lexical diver-
sity) and linguistic features by POS tagging and syntactic parsing. We also introduced fluency
measures, which no previous work has considered. As we mentioned, in future work we are plan-
ning to include a grammar error correction system where we can obtain accuracy features beyond
simple spelling errors.

6. Conclusion

In this paper, we explored several types of linguistic features in the learner corpus: quantitative
complexity, syntactic complexity, and fluency. These features can be used for learner corpus-
related applications that make use of machine learning techniques in addition to pre-trained
language models for the neural system.
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Table 7. Features utilized in previous work

Reference Features

complexity accuracy
PN13 keywords, POS, n-gram, FrameNet roles spelling errors
SH15 length, n-gram, dependency relation, PropBank roles character-based spelling error
DZ16 length, POS spell corrected bag of words
CZ16 length, parse tree, cohesion between sentences error rate by tri-grams
DE18 POS, dependency relation, ratio, cohesion between -

sentences, psychological categories
UE20 length, POS, n-gram, readability spelling errors

RE21 POS -

PN13 (Persing and Ng 2013), SH15 (Sakaguchi et al. 2015), DZ16 (Dong and Zhang 2016), CZ16 (Cummins et al. 2016), DE18 (Dasgupta
etal. 2018), UE20 (Uto et al. 2020), RE21 (Ridley et al. 2021).

We used various metrics that were automatically measured for these features. Therefore, these
metrics could be evaluated without any human intervention to assess the proficiency and holis-
tic score of writing automatically. The proposed neural-based state-of-the-art system applied the
transformer-based multilingual masked language model and XLM-RoBERTa. In addition, based
on the proposed attention mechanism score, we observed how the proposed linguistic features
benefit AWE in a complementary manner for neural systems, and we analyzed which sequence of
words and expression can be focused on in the neural system.

Because our AWE system could provide a reliable holistic score while simultaneously detecting
students’ proficiency levels, it could offer potential solutions for Korean language instructors who
might be struggling with the workload. Furthermore, it can be used as a resource for grading
student essays in large classes or placement tests that need to be graded accurately and promptly.
Furthermore, the AWE system can benefit Korean language learners in their writing practice.
Learners can use the AWE system to self-grade their essays before submission and learn how their
scores change as they change vocabulary, syntactic structure, etc. in their writing.

Although the proposed neural AWE engine can judge the grammaticality of the learner’s writ-
ing using linguistic features and a pre-trained neural language model, the current AWE tool has
several limitations. One is that it does not “read” students’ essays. That is, the program can detect
syntactic complexity and fluency, but does not make judgment on its content whether it is written
according to the given writing topic. Similarity between the content and the topic can be esti-
mated by defining the distance between words in the content and the concept of the topic. While
previous work has proposed content-based features to calculate similarities with the prompt or
reference text (Sakaguchi et al. 2015; Dong and Zhang 2016), we have left this for future work.
Another limitation is that our approach can possibly show biased performance on limited topics
that are included in the training data set. However, we observed that this issue can be mitigated by
utilizing the pre-trained neural language model. Lastly, the current model does not provide spe-
cific error feedback to students. Although learners could check their scores and proficiency level
with the AWE tool, they cannot check their errors, thus making it hard for them to learn from
their errors.

Given that adding error types to the learner corpus has been presented for multiple grammat-
ical (either morphological or syntactic) levels and for several languages (Ramos et al. 2010; Boyd
2010; Han et al. 2010; Seo et al. 2012; Dickinson and Ledbetter 2012), our next goal is to add error
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annotations in the Korean learner corpus to broaden the usage of our AWE system. As the cur-
rent NLP systems used for feature extraction are developed for the standard Korean language, it is
expected that the automatic processing system may produce errors. This error-annotated learner
corpus can lead to grammatical error correction (GEC) as a preprocessing step for learner corpus
applications. We hope that the additional GEC task will improve learner corpus applications. It is
important that the writing be relevant to the given subject, which is an aspect we cannot deal with
using the proposed system. To the best of the authors’ knowledge, this has not been presented
in previous literature on leaner corpus applications, and we will consider this problem for future
work.
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