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Heat Kernels and Green Functions on
Metric Measure Spaces
Alexander Grigor’yan and Jiaxin Hu

Abstract. We prove that, in a setting of local Dirichlet forms on metric measure spaces, a two-sided
sub-Gaussian estimate of the heat kernel is equivalent to the conjunction of the volume doubling
property, the elliptic Harnack inequality, and a certain estimate of the capacity between concentric
balls. The main technical tool is the equivalence between the capacity estimate and the estimate of a
mean exit time in a ball that uses two-sided estimates of a Green function in a ball.

1 Introduction

In this paper we are concerned with heat kernel estimates for regular local Dirichlet
forms on metric measure spaces. The heat kernel is a surprising source of many
phenomena in diverse areas of mathematics and science. There is a vast literature
devoted to various aspects of heat kernels; see, for example, [2,6,13–15,17,32–34,36–
39] for Euclidean spaces or Riemannian manifolds, [8, 10, 24, 25] for tori or infinite
graphs, [3, 5, 9, 27] for certain classes of fractals, and [12, 19, 20, 26, 28, 30, 31, 41] for
metric spaces.

The purpose of this paper is to obtain equivalent conditions for two-sided sub-
Gaussian estimates of the heat kernel for the full range of time and space variables.
In the simplest case the sub-Gaussian estimate has the form

pt (x, y) � C

V (x, t1/β)
exp
(
−c
( dβ(x, y)

t

) 1
β−1
)
,

where pt (x, y) is the heat kernel in question, d(x, y) is a metric, V (x, r) is the volume
function of a metric ball, and β > 1 is a parameter that is called the walk dimension.
One of our main results, Theorem 3.14, ensures that under some simple assumptions
about the volume function such an estimate of the heat kernel is equivalent to the
following two conditions: the uniform Harnack inequality for harmonic functions
and the following estimate of the resistance between two concentric balls B = B(x, r)
and KB = B(x,Kr):

(1.1) res(B,KB) ' rβ

V (x, r)
,
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where K is a large fixed constant. On the other hand, such a sub-Gaussian estimate
of the heat kernel is equivalent to a certain two-sided estimate of the Green function.

The main technical result of the paper is Theorem 3.12, which ensures the equiv-
alence of the resistance condition (1.1) to a certain mean exit time estimate from a
metric ball. To obtain Theorem 3.14, we combine Theorem 3.12 with the results of
[20, 26].

In Section 2 we give necessary background material about abstract heat semi-
groups. In Section 3 we state the two above mentioned theorems, and prove Theorem
3.14 using Theorem 3.12. The proof of Theorem 3.12 is postponed to Section 8 after
we develop the necessary tools.

In Section 5 we prove some properties of the Green operator, in particular, the
existence of its kernel, the Green function, under the Harnack inequality. The most
challenging part of this section is obtaining an annulus Harnack inequality for the
Green function without assuming any specific properties of the metric d, unlike pre-
viously known similar results [4], [25] where the geodesic property of the distance
function was used. A desire to have results for a general metric d is motivated by
a number of applications. For example, the proof of the uniqueness of Brownian
motion on Sierpinski carpet in [7] uses Theorem 3.14 (although non-geodesic met-
rics are not required therein). Another possible application could be to self-similar
fractals with a resistance metric.

In Section 6 we prove a representation formula for superharmonic functions via
Riesz measures. This type of result is known in abstract Potential Theory [11], but
in our setting those results are not directly applicable, and so we give an independent
proof based on the heat semigroup.

In Section 7 we prove the pointwise estimates of the Green function using the
Harnack inequality and the resistance estimate. This type of estimate was known
on graphs [25] and on smooth manifolds [17], but the present singular setting im-
poses certain difficulties that we overcome using the potential-theoretic tools from
the previous sections.

In Section 8 we give the proof of Theorem 3.12 using all the machinery developed
in the previous sections.

Appendix A contains some auxiliary properties of capacities and Dirichlet forms.

Notation The sign ' below means that the ratio of the two sides is bounded from
above and below by positive constants. The letters C,C ′, c, c ′ will always refer to
positive constants whose values are unimportant and may change at each occurrence.
The notation U b Ω means that U is precompact and U ⊂ Ω. For any bilinear form
E( f , g), set E( f ) := E( f , f ). If B is a ball of radius r, then λB is the concentric ball
with radius λr.

2 Heat Semigroups

Throughout this paper we assume that (M, d) is a locally compact separable metric
space and that µ is a Radon measure on M with full support. We refer to such a triple
(M, d, µ) as a metric measure space.
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Denote by
B(x, r) =

{
y ∈ M : d(x, y) < r

}
the open metric ball of radius r > 0 centered at x. We always assume that every ball
B(x, r) is precompact. In particular, the volume function

V (x, r) := µ(B(x, r))

is finite and positive for all x ∈ M and r > 0.
Let (E,F) be a Dirichlet form in L2(M, µ). Recall that (E,F) is regular ifF∩C0(M)

is dense both inF and in C0(M), where C0(M) is the space of all continuous functions
with compact support in M, endowed with sup-norm. The form (E,F) is strongly
local if E( f , g) = 0 for any f , g ∈ F with compact supports, such that f ≡ const in
an open neighborhood of supp g.

Let L be the generator of E; that is, L is a self-adjoint and non-positive-definite
operator in L2(M, µ) with the domain dom(L) that is dense in F and such that, for
all f ∈ dom(L) and g ∈ F,

E( f , g) = −(L f , g),

where ( · , · ) is the inner product in L2(M, µ). The associated heat semigroup

Pt = etL, t ≥ 0,

is a family of contractive, strongly continuous, self-adjoint operators in L2(M, µ) that
satisfies the Markovian property (cf. [16]).

Recall that for any f ∈ L2(M, µ), the function t 7→ 1
t ( f − Pt f , f ) is increasing as

t is decreasing, and for any f ∈ F,

lim
t→0+

1

t
( f − Pt f , f ) = E( f ).

The form (E,F) is called conservative if Pt 1 = 1 for every t > 0. Unlike many
other results about heat kernels of Dirichlet forms, ours never assume explicitly the
conservativeness of (E,F), although it may follow from other hypotheses.

A family {pt}t>0 of non-negative µ×µ-measurable functions on M×M is called
the heat kernel of the form (E,F) if pt is the integral kernel of the operator Pt , that is,
for any t > 0 and for any f ∈ L2(M, µ),

Pt f (x) =

∫
M

pt (x, y) f (y)dµ(y)

for µ-almost all x ∈ M.
For a non-empty open Ω ⊂ M, let F(Ω) be the closure of F ∩C0(Ω) in the norm

of F. It is known that if (E,F) is regular, then (E,F(Ω)) is also a regular Dirichlet
form in L2(Ω, µ). Denote by PΩ

t the heat semigroup of (E,F(Ω)), and by LΩ the
generator of (E,F(Ω)).
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Recall that for any regular Dirichlet form (E,F), there is an associated Hunt pro-
cess.1 Denote by Xt , t ≥ 0, the trajectories of a process and by Px, x ∈ M, the proba-
bility measure in the space of trajectories emanating from the point x. Denote by Ex

the expectation of the probability measure Px. Then the relation between the Dirich-
let form and the associated Hunt process is given by the following identity:

Pt f (x) = Ex f (Xt ),

which holds for any bounded Borel function f , for every t > 0, and for µ-almost
all x ∈ M (note that Pt f is a function from L∞ and hence is defined up to a set of
measure zero, whereas Ex f (Xt ) is defined pointwise for all x ∈ M). By [16, Theo-
rem 7.2.1, p. 380], such a process always exists but, in general, is not unique. Let us
fix one such process once and for all. If (E,F) is local, then the Hunt process Xt is a
diffusion; that is, the sample path t 7→ Xt is almost surely continuous.

Example 2.1 Let M be a connected Riemannian manifold, let d be the geodesic
distance on M, and let µ be the Riemannian volume. Define the space

W 1 = { f ∈ L2 : ∇ f ∈ L2},

where L2 = L2(M, µ) and ∇ f is the Riemannian gradient of f understood in the
weak sense. For all f , g ∈W 1, one defines the energy form

E( f , g) =

∫
M

(∇ f ,∇g)dµ.

Let F be the closure of C∞0 (M) in W 1. Then (E,F) is a regular strongly local Dirichlet
form in L2(M, µ). The heat kernel admits (cf. [2]) the two-sided Gaussian bounds

pt (x, y) � C

tn/2
exp
(
−|x − y|2

ct

)
.

Similar bounds also hold on some classes of Riemannian manifolds (see [18, 32]).
Note that in the above examples the Dirichlet form is local, and hence the corre-
sponding Hunt process is a diffusion.

Example 2.2 On some classes of fractals the heat kernel is known to exist and to
satisfy the following sub-Gaussian estimate:

pt (x, y) � C

tα/β
exp
(
−
( d(x, y)

ct1/β

) β/(β−1))
,

for all t > 0 and µ × µ-almost all x, y ∈ M. Here d(x, y) is an appropriate distance
function, and α > 0 and β > 1 are some parameters that characterize the underlying
space in question.

1Loosely speaking, a Hunt process is a strong Markov process whose sample paths are right continuous
and have left limit almost everywhere.
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3 Description of the Results

Definition 3.1 Let Ω be an open subset of M. We say that a function u ∈ F is
harmonic in Ω if

E(u, v) = 0 for any v ∈ F(Ω).

A function u ∈ F is superharmonic in Ω if

E(u, v) ≥ 0 for any nonnegative v ∈ F(Ω),

and is subharmonic in Ω if

E(u, v) ≤ 0 for any nonnegative v ∈ F(Ω).

Definition 3.2 We say that the elliptic Harnack inequality (H) holds on M if there
exist constants CH > 1 and δ ∈ (0, 1) such that for any ball B(x0, r) in M and for
any function u ∈ F that is harmonic and non-negative in B(x0, r), the following
inequality is satisfied:

(H) esup
B(x0,δr)

u ≤ CH einf
B(x0,δr)

u.

Let us emphasize that the constants CH and δ are independent of the ball B(x0, r) and
the function u.

Definition 3.3 We say that the volume doubling property (VD) holds if there exists
a constant CD such that for all x ∈ M and all r > 0,

(VD) V (x, 2r) ≤ CDV (x, r).

It is known that (VD) implies that for all x, y ∈ M and 0 < r ≤ R,

(3.1)
V (x,R)

V (y, r)
≤ CD

( R + d(x, y)

r

)α
,

for some α > 0 (see, for example, [20]).

Definition 3.4 We say that the reverse volume doubling property (RVD) holds if
there exist positive constants α ′ and c such that, for all x ∈ M and 0 < r ≤ R,

(3.2)
V (x,R)

V (x, r)
≥ c
( R

r

)α ′
.

Clearly, (RV D) implies that the space (M, d) is unbounded. On the other hand, if
(M, d) is connected and unbounded, then (V D) implies (RV D) (cf. [20]).

Let F be a continuous increasing bijection of (0,∞) onto itself, such that for all
0 < r ≤ R,

(3.3) C−1
( R

r

) β
≤ F(R)

F(r)
≤ C

( R

r

) β ′
,
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for some constants 1 < β ≤ β ′ and C > 1. Consider the inverse function R = F−1.
Obviously (3.3) implies that

C−1
( T

t

) 1/β ′

≤ R(T)

R(t)
≤ C

( T

t

) 1/β

for all 0 < t ≤ T.
Recall that a cutoff function φ of (A,Ω) means that φ ∈ F ∩ C0(Ω), 0 ≤ φ ≤ 1

in M, and φ = 1 in a neighborhood of A. It is known that if (E,F) is regular, then
for any open set Ω ⊂ M and any set A b Ω, there is a cutoff function of (A,Ω) (see
[16, Lemma 1.4.2(ii), p. 29]).

Definition 3.5 Let Ω be an open set in M and A b Ω be a Borel set. Define the
capacity cap(A,Ω) by

cap(A,Ω) := inf{E(ϕ) : ϕ is a cutoff function of (A,Ω)}.

It follows from the definition that the capacity cap(A,Ω) is increasing in A, and
decreasing in Ω; namely, if A1 ⊂ A2,Ω1 ⊃ Ω2, then cap(A1,Ω1) ≤ cap(A2,Ω2).
Using the latter property, let us extend the definition of capacity as follows.

Definition 3.6 Let Ω be an open set in M and let A ⊂ Ω be a Borel set. Define the
capacity cap(A,Ω) by

(3.4) cap(A,Ω) = lim
n→∞

cap(A ∩ Ωn,Ω),

where {Ωn} is any increasing sequence of precompact open subsets of Ω exhausting
Ω (in particular, A ∩ Ωn b Ω).

Note that by the monotonicity property of the capacity, the limit in the right-
hand side of (3.4) exists (finite or infinite) and is independent of the choice of the
exhausting sequence {Ωn}.

Definition 3.7 A function u in an open set Ω ⊂ M is called cap-quasi-continuous
in Ω if, for every ε > 0, there exists an open set U ⊂ Ω such that u is continuous on
Ω \U , and cap(U ,Ω) < ε.

By Lemma A.1, for any open Ω ⊂ M, any function u ∈ F(Ω) admits a cap-quasi-
continuous version ũ. This result is analogous to [16, Theorems 2.1.3 (p. 71) and
2.1.6 (p. 74)] that deal with another definition of quasi-continuity, related to another
notion of capacity [16, pp. 69,74].

Next, define the resistance res(A,Ω) by

res(A,Ω) =
1

cap(A,Ω)
.
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Definition 3.8 We say that the resistance condition (RF) is satisfied if there exist
constants K,C > 1 such that, for any ball B of radius r > 0,

C−1 F(r)

µ(B)
≤ res(B,KB) ≤ C

F(r)

µ(B)
,

where constants K and C are independent of the ball B. Equivalently, (3.8) can be
written in the form

(RF) res(B,KB) ' F(r)

µ(B)
.

We introduce the notions of the Green operator and the Green function.

Definition 3.9 For an open Ω ⊂ M, a linear operator GΩ : L2(Ω)→ F(Ω) is called
a Green operator if, for any ϕ ∈ F(Ω) and any f ∈ L2(Ω),

E(GΩ f , ϕ) = ( f , ϕ).

If GΩ admits an integral kernel gΩ, that is,

GΩ f (x) =

∫
Ω

gΩ(x, y) f (y)dµ(y) for any f ∈ L2(Ω),

then gΩ is called a Green function.

We will address the existence and properties of the Green operator GΩ in Lemma
5.1. The issue of the Green function gΩ is much more involved and is one of the key
topics in this paper (cf. Lemmas 5.2, 5.3, and 5.7).

For an open set Ω ⊂ M, the function EΩ is defined by

EΩ(x) := GΩ1(x) (x ∈ M),

namely, the function EΩ is a unique weak solution of the Poisson-type equation

(3.5) −LΩEΩ = 1,

provided that λmin(Ω) > 0.
It is known that

(3.6) EΩ(x) = Ex(τΩ) for µ-a.a. x ∈ M,

where τΩ is the first exit time of the Hunt process {{Xt}t≥0, {Px}x∈M} associated with
(E,F); that is,

τΩ = inf{t > 0 : Xt /∈ Ω},
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where Xt /∈ Ω means that either Xt ∈ M \ Ω, or Xt = ∞. Clearly, if the Green
function gΩ exists, then

EΩ(x) = GΩ1(x) =

∫
Ω

gΩ(x, y)dµ(y)

for µ-almost all x ∈ M.

Definition 3.10 We say that condition (EF) holds if there exist two constants C > 1
and δ1 ∈ (0, 1) such that, for any ball B of radius r > 0,

esup
B

EB ≤ CF(r),(EF≤)

einf
δ1B

EB ≥ C−1F(r).(EF≥)

Next we introduce condition (GF).

Definition 3.11 We say that condition (GF) holds if, there exist constants K > 1
and Ċ > 0 such that, for any ball B := B(x0,R), the Green kernel gB exists and is
jointly continuous off the diagonal, and satisfies

gB(x0, y) ≤ C

∫ R

K−1d(x0,y)

F(s)ds

sV (x, s)
for all y ∈ B \ {x0},(GF≤)

gB(x0, y) ≥ C−1

∫ R

K−1d(x0,y)

F(s)ds

sV (x, s)
for all y ∈ K−1B \ {x0}.(GF≥)

The following theorem is key.

Theorem 3.12 Let (M, d, µ) be a metric measure space in which all metric balls are
precompact. Assume that (E,F) is a regular strongly local Dirichlet form in L2(M, µ).
If (VD) and (RVD) are satisfied, then the following equivalences take place:

(H) + (RF)⇔ (GF)⇔ (H) + (EF).

Remark 3.13 Condition (RVD) is required only for proving the implication (H) +
(EF)⇒ (RF ≥).

Because the proof of this theorem is quite involved, including numerous lemmas
and propositions, we give the following flowchart of the proof:

L.5.7
↓

L.7.2 ←− L.7.1
↓ ↑

L.7.3 −→ L.7.4 L.6.5
↓ ↙ ↖

T.3.12 L.6.2 and L.6.4
↖ ↙

L.8.2
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Before stating the second theorem of this paper, we introduce more conditions.

(U E) Upper Estimate: the heat kernel pt (x, y) exists, has a Hölder continuous in
x, y ∈ M version, and satisfies the following upper estimate

(U E) pt (x, y) ≤ C

V (x,R(t))
exp
(
−1

2
tΦ
(

c
d(x, y)

t

))
for all t > 0 and all x, y ∈ M. Here c,C are positive constants, R : =F−1, and

Φ(s) := sup
r>0

{ s

r
− 1

F(r)

}
.

(NLE) Near-diagonal Lower Estimate: the heat kernel pt (x, y) exists, has a Hölder
continuous in x, y ∈ M version, and satisfies the lower estimate

(NLE) pt (x, y) ≥ c

V (x,R(t))
,

for all t > 0 and all x, y ∈ M such that d(x, y) ≤ ηR(t), where η > 0 is a sufficiently
small constant.

Denote by (U Eweak) a modification of condition (U E) that is obtained by remov-
ing the Hölder continuity of pt (x, y) and by relaxing inequality (U E) to µ×µ-almost
all x, y ∈ M. In a similar way, we can define condition (NLEweak).

Theorem 3.14 Let (M, d, µ) be a metric measure space, where all metric balls are
precompact. Assume that (E,F) is a regular strongly local Dirichlet form in L2(M, µ).
Assume also that (VD) and (RVD) are satisfied. Then the following sets of conditions are
equivalent:

(H) + (EF)⇐⇒ (GF)⇐⇒ (H) + (RF)

⇐⇒ (U E) + (NLE)

⇐⇒ (U Eweak) + (NLEweak).

Proof The first line of equivalences is contained in Theorem 3.12. Denote by (ẼF)
the following condition:

(ẼF) ExτB(x,r) ' F(r)

for all r > 0 and x ∈ M \N, where N is a properly exceptional set.2 Let us show that
the following implications take place:

(U E) + (NLE)

m
(U Eweak) + (NLEweak)

m ⇑
(H) + (ẼF) ⇒ (H) + (EF)

2A set N ⊂ M is called properly exceptional if it is Borel, µ(N) = 0, and for some t ≥ 0) = 0,
Px(Xt ∈ N or Xt− ∈ N for all x ∈ M \N (see [16, p. 152 and Theorem 4.1.1, p. 155]).
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which contain the remaining equivalences in the statement of Theorem 3.14. Indeed,
by [26, Theorem 7.4] we have the equivalences

(3.7) (H) + (ẼF)⇔ (U Eweak) + (NLEweak)⇔ (U E) + (NLE).

Let us verify that

(3.8) (ẼF)⇒ (EF).

Indeed, let B := B(x0, r) be any metric ball in M. For any x ∈ B \ N we have, using
(ẼF) and B ⊂ B(x, 2r), that

ExτB ≤ ExτB(x,2r) ≤ CF(2r) ≤ C ′F(r).

Hence, it follows from (3.6) that

esup
B

EB = esup
x∈B

ExτB ≤ C ′F(r),

thus proving (EF ≤). On the other hand, for any x ∈ 1
2 B \ N, we have, using (ẼF)

and B(x, r/2) ⊂ B, that

ExτB ≥ ExτB(x,r/2) ≥ C−1F(r/2) ≥ CF(r),

and thus,
einf
B/2

EB = einf
x∈B/2

ExτB ≥ CF(r),

proving (EF ≥) as well as (3.8).
It remains to prove that

(H) + (EF)⇒ (U Eweak) + (NLEweak).

For this we use the proof of [26, (3.7)] and verify that the condition (ẼF) in that proof
can be replaced by an a priori weaker condition (EF). By [26, Theorem 3.11] we have

(H) + (EF)⇒ (FK),

where (FK) denotes a certain Faber–Krahn type inequality (see [26, Definition 3.9]).
It follows from the inequality [22, (6.34)] that (EF) ⇒ (SF), where (SF) stands for a
survival estimate defined by [20, (5.23)]. By [20, Theorem 2.1] we have

(FK) + (SF)⇒ (U Eweak),

which implies
(H) + (EF)⇒ (U Eweak).

Arguing as in [26, Section 5.4], one obtains

(H) + (EF)⇒ (NLEweak),

which finishes the proof.
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4 Maximum Principles

We give three maximum principles; the first two are for a subharmonic function on
one open set, and the third is for a subharmonic function on the difference of two
open sets. All of them will be used later on.

Lemma 4.1 (Maximum principle) Assume that (E,F) is a regular Dirichlet form in
L2(M, µ). Let Ω ⊂ M be open such that λmin(Ω) > 0, and let Ω1 b Ω be open. Assume
that u ≥ 0 in M.

(i) If u is subharmonic in Ω, then (see Fig. 1)

(4.1) esup
Ω

u ≤ esup
M\Ω1

u.

Consequently, if in addition u vanishes outside Ω, then

(4.2) esup
Ω

u = esup
Ω\Ω1

u.

(ii) Assume in addition that (E,F) is strongly local, Ω is precompact, and that u ∈
L∞(M). If u is subharmonic (resp. superharmonic) in Ω, then for any open
Ω2 c Ω,

esup
Ω

u ≤ esup
Ω2\Ω1

u,(4.3)

(
resp. einf

Ω
u ≥ einf

Ω2\Ω1

u
)
.(4.4)

Moreover, if u is continuous in a neighborhood of ∂Ω, the above inequalities can
be replaced by

esup
Ω

u = sup
∂Ω

u,(4.5)

(
resp. einf

Ω
u = inf

∂Ω
u
)
,(4.6)

where ∂Ω = Ω \ Ω, the boundary of Ω.

Proof (i) Assume that esupM\Ω1
u is finite; otherwise, (4.1) is automatically true.

If (4.1) fails, there will be a finite positive number c such that

esup
Ω

u > c > esup
M\Ω1

u.

Since c ≥ 0, the function ϕ := (u − c)+ is a normal contraction of u ([16, p. 5]),
and thus, ϕ ∈ F. Moreover, ϕ ∈ F(Ω), since (u − c)+ = 0 outside Ω1. Using
the subharmonicity of u and the Markov property of (E,F) (cf. [19, Lemma 4.3]), it
follows that

0 ≥ E(u, ϕ) = E
(

u, (u− c)+

)
≥ E((u− c)+) ≥ λmin(Ω)‖(u− c)+‖2

2 > 0,
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Figure 1: Maximum principle

which is a contradiction, thus proving (4.1).
If in addition u = 0 in M \ Ω, we have

esup
M\Ω1

u = esup
Ω\Ω1

u.

Hence, it follows from (4.1) that

esup
Ω\Ω1

u ≤ esup
Ω

u ≤ esup
Ω\Ω1

u,

showing (4.2).
(ii) Let ψ be a cut-off function of (Ω,Ω2). Since u, ψ ∈ F ∩ L∞, we see that

uψ ∈ F ∩ L∞. For any ϕ ∈ F(Ω), observe that the product of the two functions
u(ψ − 1) and ϕ is equal to zero, and so (cf. [40, Prop. 4.1])

E(u(ψ − 1), ϕ) = 0.

We first assume that u is subharmonic in Ω. It follows that

(4.7) E(uψ,ϕ) = E(u, ϕ) + E
(

u(ψ − 1), ϕ
)

= E(u, ϕ) ≤ 0;

namely, the function uψ is also subharmonic in Ω. By (4.1), we have

esup
Ω

u = esup
Ω

(uψ) ≤ esup
M\Ω1

(uψ) ≤ esup
Ω2\Ω1

u,

proving (4.3).
We next assume that u is superharmonic in Ω. Similar to (4.7), the function uψ is

also superharmonic in Ω. To show (4.4), consider the function v := (a− u)ψ, where
a := esupM u. Then v ≥ 0 in M and is subharmonic in Ω, since for any ϕ ∈ F(Ω),
using the strong locality of (E,F),

E(v, ϕ) = aE(ψ,ϕ)− E(uψ,ϕ) = −E(uψ,ϕ) ≤ 0.
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Hence, we see from (4.1) that

esup
Ω

(a− u) = esup
Ω

v ≤ esup
M\Ω1

v ≤ esup
Ω2\Ω1

(a− u),

proving (4.4).
Finally, if u is continuous in a neighborhood of ∂Ω, we have that, letting Ω2 ↓ Ω,

esup
Ω2\Ω1

u→ sup
Ω\Ω1

u.

Similarly, letting Ω1 ↑ Ω, we have

sup
Ω\Ω1

u→ sup
Ω\Ω

u = sup
∂Ω

u.

Therefore, it follows from (4.3) that

esup
Ω

u ≤ sup
∂Ω

u,

which gives (4.5), by using the fact that sup∂Ω u ≤ esupΩ u as ∂Ω ⊂ Ω. The equality
(4.6) can be proved similarly.

The second maximum principle is for a subharmonic function u where we do
not know a priori whether or not u keeps the same sign in the whole domain M,
as required in the first maximum principle, although this function u turns out to
be non-positive hereafter. This maximum principle will be used in the proof of
Lemma 6.4(ii).

For an open U ⊂ M and u, v ∈ F, denote by

u ≤ v modF(U ), (resp. u = v modF(U ))

if there exists some h ∈ F(U ) such that u− v ≤ h in M (resp. u− v = h in M).

Proposition 4.2 Assume that (E,F) is a regular Dirichlet form. Let U be open such
that λmin(U ) > 0. If u is subharmonic in U and u ≤ 0 modF(U ), then u ≤ 0 in U
(and thus also in M).

Proof Since u ≤ 0 modF(U ), we have that u+ ∈ F(U ) (cf. [19, Lemma 4.4,
p. 114]). Since u is subharmonic in U , we have that, for any non-negative ϕ ∈ F(U ),
E(u, ϕ) ≤ 0. Letting ϕ = u+ and noting that

E(u+, u−) = lim
t→0

1

t
(u+ − Pt u+, u−) = − lim

t→0

1

t
(Pt u+, u−) ≤ 0,

we obtain that

0 ≥ E(u, u+) = E(u+)− E(u−, u+) ≥ E(u+) ≥ 0,

and thus, E(u+) = 0. Therefore,

‖u+‖2
L2(U ) ≤

E(u+)

λmin(U )
= 0,

which implies that u ≤ 0 in U .
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Finally, we present a third maximum principle where the domain is the difference
of two open sets. It will be used in the proofs of Lemmas 5.3 and 7.4.

Proposition 4.3 Assume that (E,F) is regular, local. Let Ω be open such that
λmin(Ω) > 0 , and let A ⊂ Ω be compact. Let 0 ≤ u ∈ F(Ω) ∩ L∞, where u is
subharmonic in Ω \ A and continuous in some neighborhood of ∂U for some open U
with A b U b Ω. Then

(4.8) esup
Ω\U

u = sup
∂U

u.

Proof Since we always have that esupΩ\U u ≥ sup∂U u, assume on the contrary that

m := sup
∂U

u < esup
Ω\U

u,

and we will deduce a contradiction.
Choose a small ε > 0 such that

(4.9) esup
Ω\U

u ≥ m + ε.

Choose an open set V such that A ⊂ V ⊂ U , and supU\V u ≤ m + ε/2. Let ϕ be a
cutoff function of (V,U ). Consider the function u∗ := u−uϕ. Clearly, u∗ ∈ F∩L∞,
u∗|V = 0, and

u∗ ≤ u ≤ m + ε/2 in U \V.

Hence, the function v := (u∗ − (m + ε/2))+ satisfies that v|U = 0. Since v ∈ F(Ω),
by Proposition A.3, we have that v ∈ F(Ω \ A).

On the other hand, using the locality of (E,F) and the fact that ϕv = 0, we have
E(uϕ, v) = 0. Therefore, by the subharmonicity of u, we obtain

E(u∗, v) = E(u, v)− E(uϕ, v) ≤ 0.

It follows that

0 ≥ E(u∗, v) ≥ E(v) ≥ λmin(Ω)‖v‖2
L2(Ω\A),

showing that v = 0 in Ω \ A. Hence,

u∗ ≤ m + ε/2 in Ω \ A;

in particular, we have that u∗ ≤ m + ε/2 in Ω \U . But this gives a contradiction by
noting that u∗ = u in Ω \U and using (4.9).
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5 Green Operator and Green Function

5.1 Green Operator

We establish the existence of the Green operator and present its properties.

Lemma 5.1 Let (E,F) be a regular Dirichlet form in L2(M, µ), and let Ω ⊂ M be
open such that λmin(Ω) > 0. Let LΩ be the generator of (E,F(Ω)), and set GΩ =
(−LΩ)−1, the inverse3 of−LΩ. Then the following statements are true:

(i) ‖GΩ‖ ≤ λmin(Ω)−1, that is, for any f ∈ L2(Ω),

(5.1) ‖GΩ f ‖L2(Ω) ≤ λmin(Ω)−1‖ f ‖L2(Ω);

(ii) for any f ∈ L2(Ω), we have that GΩ f ∈ F(Ω), and

(5.2) E(GΩ f , ϕ) = ( f , ϕ) for any ϕ ∈ F(Ω);

(iii) for any f ∈ L2(Ω),

(5.3) GΩ f =

∫ ∞
0

PΩ
s f ds;

(iv) GΩ is non-negative definite: GΩ f ≥ 0 if f ≥ 0.

Proof
(i) This is trivial, since spec(GΩ) ⊂ [0, λmin(Ω)−1], and so ‖GΩ‖ ≤ λmin(Ω)−1.
(ii) Let u = GΩ f . Then u lies in the domain of LΩ, and hence, for any ϕ ∈ F(Ω),

E(GΩ f , ϕ) = E(u, ϕ) = −(LΩu, ϕ) = ( f , ϕ).

(iii) Using the spectral resolution, we see that

PΩ
s f =

∫ ∞
λmin(Ω)

e−sλdEΩ
λ f ,

and hence,∫ ∞
0

PΩ
s f ds =

∫ ∞
0

(∫ ∞
λmin(Ω)

e−sλdEΩ
λ f
)

ds =

∫ ∞
λmin(Ω)

(∫ ∞
0

e−sλds
)

dEΩ
λ f

=

∫ ∞
λmin(Ω)

λ−1dEΩ
λ f = (−LΩ)−1 f ,

showing (5.3).
(iv) Finally, since PΩ

s f ≥ 0 if f ≥ 0 for any s ≥ 0, we see from (5.3) that GΩ is
non-negative definite.

3Since λ1(Ω) > 0, the operator−LΩ has a bounded inverse in L2(Ω, µ).
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5.2 Harnack’s Inequality and Existence of the Green Function

If condition (H) holds, we will show that the Green function gΩ exists and is jointly
continuous off diagonal.

Lemma 5.2 Assume that (E,F) is strongly local, regular, and that conditions (H) and
(VD) hold. Let Ω ⊂ M be open such that λmin(Ω) > 0. Then there exists a function
gΩ(x, y) defined for (x, y) ∈ Ω× Ω \ diag with the following properties:

(i) GΩ f (x) =
∫

Ω
gΩ(x, z) f (z)dµ(z) for any f ∈ L2(Ω) and a.e. x ∈ Ω;

(ii) gΩ(x, y) = gΩ(y, x) ≥ 0;
(iii) gΩ(x, y) is jointly continuous in (x, y) ∈ Ω× Ω \ diag;
(iv) For any ball B with B ⊂ Ω and any y ∈ Ω \ B,

(5.4) sup
x∈δB

gΩ(x, y) ≤ CH inf
x∈δB

gΩ(x, y),

where constants CH , δ are the same as in condition (H).

Proof The proof is quite long. We first show the existence of gΩ(x, y) for (x, y) ∈
Ω× Ω \ diag.

Fix a point x ∈ Ω, a ball B := B(x,R) b Ω, and set U = Ω \ B. Let f be any
non-negative function in L2(Ω) that vanishes outside U . Then GΩ f is harmonic in B
because for any ϕ ∈ F(B),

E(GΩ f , ϕ) = ( f , ϕ) = 0.

Hence, by condition (H) and (5.1),

esup
δB

GΩ f ≤ CH einf
δB

GΩ f ≤ CH

( 1

µ(δB)

∫
δB

(GΩ f )2dµ
) 1/2

≤ CHµ(δB)−1/2‖GΩ f ‖L2(Ω)

≤ CHµ(δB)−1/2λmin(Ω)−1‖ f ‖L2(Ω) = C1(Ω,B)‖ f ‖L2(U ),

(5.5)

where the constant C1(Ω,B) is given by

C1(Ω,B) =
CH

λmin(Ω)
√
µ(δB)

.

Since (E,F) is strongly local, using (5.5) and the fact that GΩ f ≥ 0, the harmonic
function GΩ f |B satisfies the following oscillation property: for any ball B(z, ρ) ⊂ δB
and any 0 < r ≤ ρ,

Osc
B(z,r)

GΩ f := esup
B(z,r)

GΩ f − einf
B(z,r)

GΩ f ≤ 2
( r

ρ

) θ
Osc
B(z,ρ)

GΩ f

≤ 2
( r

ρ

) θ
esup
δB

GΩ f ≤ 2C1(Ω,B)
( r

ρ

) θ
‖ f ‖L2(U ),(5.6)
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where θ > 0 is a constant depending only on constants CH , δ in condition (H); see
[26, Lemma 5.2]. Thus the function GΩ f admits a Hölder-continuous version in δB
that will also be denoted by GΩ f .

It follows from (5.5) that

GΩ f (x) ≤ C1(Ω,B)‖ f ‖L2(U )

so that the mapping f 7→ GΩ f (x) is a bounded linear functional on L2(U ). By the
Riesz representation theorem, there exists a unique gΩ,U

x ( · ) ∈ L2(U ) that is non-
negative in U and such that

GΩ f (x) =

∫
U

gΩ,U
x (z) f (z)dµ(z) for any f ∈ L2(U ).

Let {Bk}k≥1 be a shrinking sequence of balls centered at x such that
⋂

Bk = {x},
and let Uk = Ω \ Bk. Then we obtain a sequence of the functions gΩ,Uk

x that is con-
sistent in the sense that gΩ,Uk+1

x |Uk = gΩ,Uk
x . This allows us to define a function gΩ

x on
Ω \ {x} by gΩ

x = gΩ,Uk
x on Uk. By construction, gΩ

x ∈ L2
loc(Ω \ {x}) is non-negative in

Ω \ {x} and satisfies

(5.7) GΩ f (x) =

∫
Ω

gΩ
x (z) f (z)dµ(z)

for any f ∈ L2(Uk) and k ≥ 1.
We claim that (5.7) also holds for any f ∈ L2(Ω), that is,

(5.8) GΩ f (x) =

∫
Ω

gΩ
x (z) f (z)dµ(z) for any f ∈ L2(Ω).

Indeed, set fk = f 1Uk for any non-negative f ∈ L2(Ω). Since (5.7) holds for fk,

GΩ fk(x) =

∫
Ω

gΩ
x (z) fk(z)dµ(z).

We let k → ∞ and obtain that GΩ fk → GΩ f in L2(Ω) from the monotone conver-
gence theorem, because

fk

L2(Ω)
−−−→ f

and GΩ is bounded in L2(Ω) by (5.1). This proves our claim.
Observe that for any ball A b U ,

(5.9) ‖GΩ1δA‖L∞(δB) ≤
CH
√
µ(δA)

λmin(Ω)
√
µ(δB)

,

since, taking f = 1δA in (5.5), we see that

‖GΩ1δA‖L∞(δB) ≤ C1(Ω,B)‖1δA‖L2(δA) =
CH

λmin(Ω)
√
µ(δB)

µ(δA)1/2.
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Let us show that GΩ : L1(δA)→ L∞(δB) is bounded; that is, for any f ∈ L1(δA),

(5.10) max
δB

GΩ f ≤ (CH)2

λmin(Ω)
√
µ(δB)µ(δA)

‖ f ‖L1(δA).

Indeed, interchanging the balls A and B in (5.9), we obtain that

‖GΩ1δB‖L∞(δA) ≤
CH
√
µ(δB)

λmin(Ω)
√
µ(δA)

.

Hence, for any non-negative f ∈ L1(δA),

‖GΩ f ‖L1(δB) = (GΩ f , 1δB) = ( f ,GΩ1δB) ≤ ‖ f ‖L1(δA)‖GΩ1δB‖L∞(δA)

≤ CH
√
µ(δB)

λmin(Ω)
√
µ(δA)

‖ f ‖L1(δA).

Therefore, using condition (H),

max
δB

GΩ f ≤ CH min
δB

GΩ f ≤ CH(
1

µ(δB)
‖GΩ f ‖L1(δB))

≤ (CH)2

λmin(Ω)
√
µ(δB)µ(δA)

‖ f ‖L1(δA),

proving (5.10).
Now for y ∈ U , let {εn}n≥1 be a decreasing sequence of positive numbers shrink-

ing to 0 such that A := B(y, ε1) ⊂ U ; see Figure 2.

Figure 2: Domains A and B

Let un,y := GΩ fn,y , where

fn,y =
1

µ(B(y, εn))
1B(y,εn),
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such that fn,y ⇀ δy weakly in C0(M) as n→∞, where δy is the usual Dirac function
concentrated at point y. It follows from (5.6) and (5.10) that for B(z, ρ) ⊂ δB and
0 < r < ρ,

Osc
B(z,r)

un,y ≤ 2
( r

ρ

) θ
esup
δB

un,y ≤ 2
( r

ρ

) θ (CH)2

λmin(Ω)
√
µ(δB)µ(δA)

‖ fn,y‖L1(δA)

= 2
( r

ρ

) θ (CH)2

λmin(Ω)
√
µ(δB)µ(δA)

.

(5.11)

Therefore, the sequence {un,y} is uniformly bounded and equicontinuous in δB. By
the Arzelà–Ascoli theorem, there exists a subsequence {unk,y} that is uniformly con-
vergent in δB. In fact, the limit is gΩ

y , that is,

(5.12) gΩ
y (z) = lim

k→∞
GΩ fnk,y(z) uniformly for z ∈ δB,

because, for any ϕ ∈ C0(δB), using (5.8),

(unk,y , ϕ) = (GΩ fnk,y , ϕ) = ( fnk,y ,G
Ωϕ)

→ GΩϕ(y) = (gΩ
y , ϕ),

and hence
unk,y ⇀ gΩ

y weakly in C0(δB) as k→∞.

We now define the function gΩ(y, x) by

gΩ(y, x) := gΩ
y (x) = lim

k→∞
GΩ fnk,y(x) ≥ 0

for almost all (x, y) ∈ Ω× Ω \ diag.
We next show that such gΩ(y, x) satisfies properties (i)–(iv).
Indeed, property (i) is clear by (5.8). Property (ii) follows by using (5.8),

gΩ(y, x) = lim
k→∞

GΩ fnk,y(x) = lim
k→∞

∫
Ω

gΩ
x (z) fnk,y(z)dµ(z)

= gΩ
x (y) = gΩ(x, y).

To show property (iii), we have from (5.11) that, for any 0 < r < δR,

Osc
B(x,r)

GΩ fnk,y ≤ 2
( r

δR

) θ (CH)2

λmin(Ω)
√
µ(δB)µ(δA)

,

and hence, passing to the limit as k→∞,

Osc
B(x,r)

gΩ(y, · ) ≤ 2(
r

δR
)θ

(CH)2

λmin(Ω)
√
µ(δB)µ(δA)

.

https://doi.org/10.4153/CJM-2012-061-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-061-5


660 A. Grigor’yan and J. Hu

It follows that gΩ( · , y) is Hölder-continuous in δB locally uniformly for y ∈ U , and
thus, the function gΩ is jointly continuous away from the diagonal.

More precisely, for any x1, y1 ∈ Ω and any r1, r2 > 0 such that B(x1, r1) ∩
B(y1, r2) = ∅, and B(x1, r1) ⊂ Ω,B(y1, r2) ⊂ Ω, we have that

|gΩ(x1, y1)− gΩ(x2, y2)| ≤

2δ−θ(CH)2

λmin(Ω)
√

V (x1, δr1)V (y1, δr2)

[( d(x1, x2)

r1

) θ
+
( d(y1, y2)

r2

) θ]
,

where x2 ∈ B(x1, δr1) and y2 ∈ B(y1, δr2).
Finally, to show property (iv), let B be an arbitrary ball with B ⊂ Ω, and let y ∈ Bc.

Note that un,y satisfies condition (H) in δB uniformly for n ≥ 1; that is,

max
δB

GΩ fnk,y ≤ CH min
δB

GΩ fnk,y .

Passing to the limit as k→∞, we obtain (5.4).

Next we establish the maximum-minimum principle for the Green function
gΩ(x0, · ). Since we do not know whether or not the function gΩ(x0, · ) belongs to
F, making it harmonic in Ω \ {x0}, we are not able to apply directly the maximum
principles established before, as one can when M is a graph or a manifold.

Lemma 5.3 Assume that all the hypotheses of Lemma 5.2 hold. If x0 ∈ U b Ω, then

inf
U\{x0}

gΩ(x0, · ) = inf
∂U

gΩ(x0, · ),(5.13)

sup
Ω\U

gΩ(x0, · ) = sup
∂U

gΩ(x0, · ).(5.14)

Proof Let Ωn ↑ Ω such that Ωn is precompact open, Ωn ⊃ U for each n. Let Uk ↓
{x0} such that each Uk is open, and U1 b U . Let uk := GΩ fk,x0 , where fk,x0 ⇀ δx0

weakly in C(M) as k → ∞, for example fk,x0 = 1/(µ(Uk)) 1Uk . By the proof of
Lemma 5.2, the sequence {uk}∞k=1 converges uniformly to gΩ(x0, · ) on each compact
subset of Ω \ {x0}, as k→∞.

We first prove (5.13). To do this, note that each uk = GΩ fk,x0 is superharmonic in
Ω (and in particular in U ), since for any non-negative ϕ ∈ F(Ω),

E(uk, ϕ) = ( fk,x0 , ϕ) ≥ 0.

As U is precompact, we have from (4.6) that, for each k,

(5.15) einf
U

uk = inf
∂U

uk.

Clearly, for each n, we have that ∂U ⊂ U \Un ⊂ U , and thus

einf
U

uk ≤ einf
U\Un

uk ≤ inf
∂U

uk
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for each k. Combining this with (5.15), we see that einfU\Un
uk = inf∂U uk. Letting

k→∞, we obtain that

inf
U\Un

gΩ(x0, · ) = inf
∂U

gΩ(x0, · ),

and then letting n→∞, we conclude that (5.13) holds.
We next show (5.14). In fact, since each uk is harmonic in Ω \U1, it follows from

Proposition 4.3 that supΩn\U uk = sup∂U uk for each n. Letting k→∞, we have that

sup
Ωn\U

gΩ(x0, · ) = sup
∂U

gΩ(x0, · ),

and then letting n → ∞ and using the continuity of gΩ(x0, · ) off diagonal, we con-
clude that (5.14) holds.

It is not hard to see that (5.4) is equivalent to the following: if

d(z1, z2) < δ
[

d(x0, z1) ∧ d(x0, z2)
]

for any points x0, z1, z2 ∈ Ω, then gΩ(x0, z1) ' gΩ(x0, z2); that is,

(5.16) C−1gΩ(x0, z2) ≤ gΩ(x0, z1) ≤ CgΩ(x0, z2)

for some C > 0.
We introduce the Harnack inequality for the Green function gΩ.

Definition 5.4 We say that the Green function gΩ satisfies the Harnack inequality
if gΩ is jointly continuous off diagonal, and if there exist some (large) constants K,C
such that for any ball B = B(x0,R) and for any precompact open set Ω ⊃ KB,

(HG) sup
∂B

gΩ(x0, · ) ≤ C inf
∂B

gΩ(x0, · ),

where C may depend on K, but both K and C are independent of the ball B and the
set Ω.

We will show that (HG) is true if conditions (H) and (VD) hold. In order to do
this, we need the relatively connected property of balls.

Definition 5.5 For constants ε ∈ (0, 1) and K > 1, a metric space (M, d) is rela-
tively (ε,K)-ball-connected if there exists an integer N = N(ε,K) such that for any
ball B(x0,KR) and for any two points x, y ∈ B(x0,R), there is a chain of balls {Bi}N

i=0

of the same radius εR inside B(x0,KR) connecting x and y, that is,

x ∈ B0 ∼ B1 ∼ B2 ∼ · · · ∼ BN 3 y,

where Bi ∼ B j means that Bi ∩ B j 6= ∅; see Figure 3.
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Figure 3: Balls {Bi}N
i=0 connecting two points x and y.

We give a sufficient condition for ball-connectedness.

Proposition 5.6 Assume that (E,F) is a strongly local, regular Dirichlet form, and
that conditions (H) and (VD) hold. Then (M, d) is relatively (ε,K)-ball-connected for
any ε ∈ (0, 1) and any K > δ−1, with the same δ as in condition (H).

Proof Fix ε ∈ (0, 1) and K > δ−1, and let B := B(x0,R). For the ball B(x0,KR), by
condition (VD), there exists a finite number of balls {Bi}N

i=0 of the same radius εR
that covers B(x0,KR), where N depends only on K, ε (cf. [29, Theorem 1.16, p. 8]).
It suffices to show that if X1,X2 ∈ {Bi} and X j ∩ B 6= ∅ ( j = 1, 2), then X1 and X2

can be connected by a chain of balls from {Bi}.
To see this, denote by Ω the union of all the balls in {Bi} that can be connected to

X1. Clearly, the set Ω is open. We claim that Ω is also closed in B(x0,KR).
Indeed, for any point y ∈ B(x0,KR) \ Ω, there exists a ball X in {Bi} such that

y ∈ X. If X intersects one of the balls in Ω, then X ⊂ Ω, which contradicts the fact
that y /∈ Ω. Thus, X does not intersect any ball from Ω; that is, Ω ∩ X = ∅, and y
has an open neighborhood X∩ B(x0,KR) outside Ω. Therefore, the set B(x0,KR) \Ω
is open, showing that Ω is closed in B(x0,KR).

Let Y := B(x0, δ
−1R) so that B ⊂ Y ⊂ B(x0,KR), and let

A = Ω ∩ Y = Ω ∩ Y .

Then A is compact. Let u be a cut-off function of (A,Ω). We will show that u is
harmonic in Y . In fact, for any ϕ ∈ F ∩C0(Y ), we have that supp(uϕ) ⊂ Ω∩Y = A
whilst u ≡ 1 in a neighborhood of A; see Figure 4.

Hence by using the strong locality, we have that E(u, uϕ) = 0. Similarly,
E(u, ϕ(1− u)) = 0 because supp(ϕ(1− u)) ⊂ Y ∩ Ac ⊂ Y ∩ Ωc whilst u = 0 in Ωc.
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Figure 4: Function u and domains A,Y .

Therefore,
E(u, ϕ) = E(u, uϕ) + E

(
u, ϕ(1− u)

)
= 0,

proving that u is harmonic in Y .
Hence, we can apply condition (H) for the non-negative harmonic function u for

the pair (B,Y ).
Let x ∈ X1 ∩ B ⊂ Ω ∩ Y = A. For any y ∈ X2 ∩ B, we obtain

1 = u(x) ≤ CHu(y),

which gives that u(y) > 0. Thus, y ∈ Ω, since u is a cut-off function of (A,Ω) and
u = 0 in Ωc. Hence, X2 ∩ B ⊂ Ω, showing that X2 can be connected to X1 by a chain
of balls in {Bi}. The proof is complete.

The last part of the above proof was motivated by [26, Theorem 7.3(a)].
We next show that condition (HG) holds.

Lemma 5.7 Assume that all the hypotheses in Lemma 5.2 are satisfied, then condition
(HG) is true where K̇ > δ−1. Consequently, for any ball KB ⊂ Ω with center x0,

sup
Ω\B

gΩ(x0, · ) ≤ C inf
B

gΩ(x0, · )

for some C > 0 independent of the ball B and Ω.

Proof First observe that (M, d) is relatively ball-connected by using Proposition 5.6.
Fix a ball B := B(x0,R), and let Ω be open such that B(x0,KR) ⊂ Ω. Since gΩ(x0, · )
is continuous on ∂B, let x and y be two points on ∂B such that

gΩ(x0, x) = sup
∂B

gΩ(x0, · ), gΩ(x0, y) = inf
∂B

gΩ(x0, · ).
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We need to show that

(5.17) gΩ(x0, x) ≤ CgΩ(x0, y).

Clearly, if d(x, y) < δR, then (5.17) with C = CH follows from (5.4). In the sequel,
we assume that d(x, y) ≥ δR.

Let ε = δ3/4, and let {Bi}N
i=0 be any fixed chain of balls with the same radius εR

in B(x0,KR) connecting x and y. Denote by Bi := B(ξi , εR), and note that

x ∈ B0 ∼ B1 ∼ B2 ∼ · · · ∼ BN 3 y.

We will prove (5.17) according to the location of the centers {ξ0, ξ1, ξ2, · · · , ξN} of
the balls {Bi}N

i=0. We distinguish two cases.

Case 1: d(x0, ξi) > δR for each i (see Figure 5).

Figure 5: The point x0 lies outside each of the balls B(ξi , δR).

Consider the function gΩ(x0, · ). For i = 0, . . . ,N − 1, note that

d(ξi , ξi+1) < 2εR = δ3R/2 < δ(δR) < δmin{d(x0, ξi), d(x0, ξi+1)}.

Applying (5.16), we obtain that gΩ(x0, ξi) ' gΩ(x0, ξi+1), and thus,

gΩ(x0, ξ0) ' gΩ(x0, ξN ).

Also we have

gΩ(x0, x) ' gΩ(x0, ξ0), gΩ(x0, ξN ) ' gΩ(x0, y).

Therefore, we conclude that gΩ(x0, x) ' gΩ(x0, y), proving (5.17).

https://doi.org/10.4153/CJM-2012-061-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-061-5


Heat Kernels and Green Functions on Metric Measure Spaces 665

Figure 6: The points x ′, x ′′ and y ′, y ′′.

Case 2: d(x0, ξi) ≤ δR for some i.
Let x ′ := ξk be the point from {ξ0, ξ1, . . . , ξN} such that all the centers

ξ0, ξ1, ξ2, . . . , ξk lie outside B(x0, δR) whilst the next center ξk+1 lies inside B(x0, δR).
Denote by x ′ ′ := ξk+1 (see Fig. 6).

At the same time, let y ′ := ξ j be the point from {ξ0, ξ1, . . . , ξN} such that ξ j−1

lies inside B(x0, δR) whilst all the next centers ξ j , ξ j+1, . . . , ξN lie outside B(x0, δR).
Denote by y ′ ′ := ξ j−1. At this stage, we do not care about any ball with center in
{ξk+2, ξk+3, . . . , ξ j−2}.

We further distinguish three subcases.

Subcase 2(a): There exists a point η from {y ′, ξ j+1, . . . , ξN} such that

d(x ′, η) ≤ 2δ2

3
R.

(See Fig 7).
By Case 1, we have already proved that

(5.18) gΩ(x0, x
′) ' gΩ(x0, x), gΩ(x0, η) ' gΩ(x0, y).

On the other hand, consider the function gΩ(x0, · ). Since

d(x ′, η) ≤ 2δ2

3
R < δ2R < δmin{d(x0, x

′), d(x0, η)},

we see by (5.16) that gΩ(x0, x ′) ' gΩ(x0, η),which combines with (5.18) to show that
(5.17) also holds.
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Figure 7: Case 2a: The points x ′ and η are close.

Subcase 2(b): There exists a point ξ from {ξ0, ξ1, ξ2, . . . , ξk−1, x ′} such that

d(y ′, ξ) ≤ 2δ2

3
R.

In this case, we can similarly prove that (5.17) holds, as we did in Case 2(a).

Subcase 2(c): d(x ′, z) > 2δ2

3 R for all z ∈ {y ′, ξ j+1, · · · , ξN}, and d(y ′, z) > 2δ2

3 R for
all z ∈ {ξ0, ξ1, ξ2, · · · , ξk−1, x ′} (see Fig. 6).

Consider the function gΩ(x ′, · ). For each k = j, j + 1, . . . ,N − 1, we see that

d(ξk, ξk+1) ≤ 2εR =
δ3R

2
< δ
( 2δ2

3
R
)
< δmin

{
d(x ′, ξk), d(x ′, ξk+1)

}
.

Applying (5.16), we have that gΩ(x ′, ξk) ' gΩ(x ′, ξk+1), and so

(5.19) gΩ(x ′, y ′) ' gΩ(x ′, y).

On the other hand, consider the function gΩ(y, · ). Since

d(y, x ′ ′) > d(y, x0)− d(x0, x
′ ′) > R− δR > δ2R,

d(y, x ′) > d(y, x0)− d(x0, x
′ ′)− d(x ′ ′, x ′) > R− δR− 2εR > δ2R,

we see that

d(x ′ ′, x ′) < 2εR =
δ3R

2
< δ(δ2R) < δmin

{
d(y, x ′), d(y, x ′ ′)

}
.

Thus, we have by (5.16) that gΩ(y, x ′) ' gΩ(y, x ′ ′). Also noting that d(x ′ ′, x0) < δR,
and d(y, x0) = R, we apply (5.4) to obtain that

(5.20) gΩ(y, x ′ ′) ' gΩ(y, x0).

Therefore, as gΩ(x ′, y) = gΩ(y, x ′), it follows from (5.19) and (5.20) that

gΩ(x ′, y ′) ' gΩ(y, x0).

Similarly, we obtain that gΩ(x ′, y ′) ' gΩ(x, x0). Therefore, we conclude that
(5.17) also holds.
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6 Some Potential Theory

6.1 Riesz Measures Associated with Superharmonic Functions

For any open Ω ⊂ M, we show that any non-negative superharmonic function f ∈
F(Ω) admits a regular Borel measure ν f such that f can be expressed as an integral
of the Green function gΩ with respect to ν f . This measure ν f is called a Riesz measure
associated with f . Recall that for the classical case, F. Riesz proved the following
theorem, now called the Riesz decomposition theorem (cf. [1, T.4.4.1, p. 105, and
Def. 4.3.4, p. 102]).

Lemma 6.1 Assume that (E,F) is a regular Dirichlet form. Let Ω ⊂ M be non-empty
open, and let f ∈ F in M.

(i) If f is superharmonic in Ω and if one of the following two conditions is satisfied:

(a) f ≥ 0 in M;
(b) f ∈ F(Ω) ( f being not necessarily non-negative in M);

then PΩ
t f ≤ f in Ω for all t > 0.

(ii) If PΩ
t f ≤ f in Ω for all t > 0 and f ∈ F(Ω), then f is superharmonic in Ω.

Consequently, when Ω = M, any non-negative function f is superharmonic in M if
and only if Pt f ≤ f for all t > 0.

Proof (i) The function u(t, · ) := PΩ
t f − f is a weak subsolution of the heat equation

in R+ × Ω (cf. [19, Example 4.10, p. 117]), and satisfies the initial condition

u+(t, · )
L2(Ω)
−→ 0 as t → 0.

We need to verify the boundary condition

(6.1) u+(t, · ) ∈ F(Ω).

If f ≥ 0 in M, then u(t, · ) = PΩ
t f − f ≤ PΩ

t f in M, and thus, by [19, Lemma 4.4],
condition (6.1) is true. If f ∈ F(Ω), so is u(t, · ), and (6.1) is also true. In both cases,
using the parabolic maximum principle (see [19, Prop. 4.11, p.117]), we obtain that
u ≤ 0 in (0,∞)× Ω, that is, PΩ

t f ≤ f in Ω for all t > 0.
(ii) Assume now that PΩ

t f ≤ f ∈ F(Ω). Then, for any non-negative function
ϕ ∈ F(Ω),

E( f , ϕ) = lim
t→0

( f − PΩ
t f

t
, ϕ
)
≥ 0,

which means that f is superharmonic in Ω.

We will show that the Riesz measure exists for any non-negative superharmonic
function.

Lemma 6.2 Assume that (E,F) is a regular Dirichlet form, and let Ω ⊂ M be an
open set. Let f ∈ F(Ω) be a non-negative superharmonic function in Ω.
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(i) Then there is a regular Borel measure ν f on Ω such that

(6.2)
f − PΩ

t f

t
⇀ ν f as t → 0,

where the convergence is weak in C0(Ω). Moreover, measure ν f does not charge
any open set where f is harmonic.

(ii) Assume further that λmin(Ω) > 0 and that the Green function gΩ exists and is
jointly continuous off diagonal. Assume in addition that the function f is bounded
in Ω and harmonic in U = Ω \ S where S ⊂ Ω is a compact set. Then

(6.3) f (x) =

∫
S

gΩ(x, y)dν f (y)

for µ-a.a. x ∈ Ω.

It follows from (6.2) that, for any ϕ ∈ F ∩C0(Ω),

(6.4) E( f , ϕ) =

∫
Ω

ϕdν f .

Recall that if f ∈ domLΩ, then E( f , ϕ) = (−LΩ f , ϕ). Hence, identity (6.4) allows
us to define−LΩ f := ν f for any non-negative superharmonic function f ∈ F(Ω).

Proof (i) For any t > 0 and ϕ ∈ C0(Ω), set

Et ( f , ϕ) :=
( f − PΩ

t f

t
, ϕ
)

so thatϕ 7→ Et ( f , ϕ) is a linear functional in C0(Ω). Let us show that limt→0 Et ( f , ϕ)
exists for all ϕ ∈ C0(Ω). Fixing a precompact open set V ⊂ Ω, we shall prove that
limt→0 Et ( f , ϕ) exists for all ϕ ∈ C0(V ) (which will imply the same for all ϕ ∈
C0(Ω)). Let ψ be a cutoff function of (V ,Ω). Then, as t → 0,

∥∥∥ f − PΩ
t f

t

∥∥∥
L1(V )

≤
∫

Ω

f − PΩ
t f

t
ψdµ = Et ( f , ψ)→ E( f , ψ).

It follows that, for sufficiently small t > 0 and for all ϕ ∈ C0(V ),

|Et ( f , ϕ)| ≤
∥∥∥ f − PΩ

t f

t

∥∥∥
L1(V )

sup |ϕ| ≤ [E( f , ψ) + 1] sup |ϕ|;

that is, Et ( f , ϕ) is a bounded linear functional of ϕ ∈ C0(V ), and the norm of this
functional is bounded uniformly in t . Since limt→0 Et ( f , ϕ) exists (and is equal to
E( f , ϕ)) for all ϕ ∈ F, in particular, for ϕ ∈ F ∩ C0(V ), and the latter set is dense
in C0(V ) by the regularity of (E,F), it follows that limt→0 Et ( f , ϕ) exists for all ϕ ∈
C0(V ).
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Since Et ( f , ϕ) ≥ 0 for non-negative ϕ, the limt→0 Et ( f , ϕ) is a non-negative
linear functional on C0(Ω). By the Riesz representation theorem, the functional
limt→0 Et ( f , ϕ) determines a regular Borel measure ν f on Ω, so that

lim
t→0

Et ( f , ϕ) =

∫
Ω

ϕdν f for all ϕ ∈ C0(Ω).

If f is harmonic in an open set U , then E( f , ϕ) = 0 for all ϕ ∈ F(U ). It follows that
Et ( f , ϕ) → 0 as t → 0 for all ϕ ∈ F ∩ C0(U ), and hence,

∫
U ϕdν f = 0 for all such

ϕ. Since F ∩C0(U ) is dense in C0(U ), we conclude that ν f = 0 on U .
(ii) Since gΩ is jointly continuous off diagonal and measure µ is non-atomic, we

see that gΩ(x, y) is measurable with respect to dν f (y)dµ(x), as the measure of the
diagonal is zero. Then the integral∫

M

∫
M

gΩ(x, y)ϕ(x)dν f (y)dµ(x)

is defined for all ϕ ∈ C0(M), and hence, by Fubini’s theorem, the integral∫
M

[∫
M

gΩ(x, y)ϕ(x)dµ(x)
]

dν f (y)

is also defined. Therefore, the function

GΩϕ =

∫
M

gΩ(x, y)ϕ(x)dµ(x)

is ν f -measurable.
Let us prove that, for any fixed non-negative ϕ ∈ C0(Ω),

(6.5) E( f ,GΩϕ) =

∫
S

GΩϕ dν f .

Observe first that

‖GΩ f ‖∞ ≤
1

λmin(Ω)
‖ f ‖∞;

that is, GΩ is a bounded operator in L∞(Ω) (see (8.17) or [26, Lemma 3.2]). Hence,
the function u := GΩϕ is a non-negative bounded function on Ω. Recall that, by
(5.2),

(6.6) E( f , u) = E( f ,GΩϕ) = ( f , ϕ).

Let ψ1 be a cutoff function of S in some small neighborhood of S. Let V be a pre-
compact open neighborhood of suppψ1. By Lemma A.1, the function u is cap-quasi-
continuous in Ω, and, hence, in V . That is, for any ε > 0 there is an open set E ⊂ V
such that cap(E,V ) < ε/2, and u is continuous in V \E. By the properties of capacity
we also have cap(E,Ω) < ε/2. Since E b Ω, there exists a cutoff functionψ2 of (E,Ω)
such that E(ψ2) < ε (see Fig. 8).
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U= \ S

S

E

V

W { 1 }

supp 1

supp 2 2 = 1

= 1

Figure 8: Functions ψ1 and ψ2

Since u ∈ F ∩ L∞, we see that the following three functions are also in F ∩ L∞:

u1 := uψ1(1− ψ2), , u2 = uψ1ψ2, u3 = u(1− ψ1).

Note that u1 + u2 + u3 = u in M. Let us investigate the terms in (6.5) separately for
each of the functions ui .

By construction, u1 has compact support and is continuous in Ω. Indeed, u1 van-
ishes on the sets {ψ1 = 0} and {ψ2 = 1}, while on {ψ1 > 0} ∩ {ψ2 < 1} the
function u is continuous. By (6.4), we have

E( f , u1) =

∫
Ω

u1dν f =

∫
S

u(1− ψ2)dν f ,

where we have used the fact that ν f (Sc) = 0 and ψ1 ≡ 1 on S. It follows that

|E( f , u1)−
∫

S
udν f | ≤ ‖u‖∞

∫
S
ψ2dν f = ‖u‖∞E( f , ψ2).

Next we have

|E( f , u2)| = lim
t→0

( f − PΩ
t f

t
, uψ1ψ2

)
≤ ‖u‖∞ lim

t→0

( f − PΩ
t f

t
, ψ2

)
= ‖u∞‖E( f , ψ2).

The function u3 vanishes in an open neighborhood W of S (where ψ1 = 1); we
have that u3 ∈ F(U ) by using Proposition A.3. Since f is harmonic in U , we obtain
E( f , u3) = 0. Adding up the above estimates of E( f , ui) and using the fact that

E( f , ψ2) ≤ E( f )1/2E(ψ2)1/2 ≤ E( f )1/2ε1/2,
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we obtain ∣∣∣E( f , u)−
∫

S
udν f | ≤ 2‖u∞

∥∥∥E( f )1/2ε1/2.

Since ε > 0 is arbitrary, we conclude that (6.5) holds.
Finally, for any 0 ≤ ϕ ∈ C0(Ω), we have that, using (6.6) and (6.5),∫

Ω

f (x)ϕ(x)dµ(x) = E( f , u) =

∫
S

GΩϕ(y)dν f (y)

=

∫
S

(∫
Ω

gΩ(y, x)ϕ(x)dµ(x)
)

dν f (y)

=

∫
Ω

(∫
S

gΩ(x, y)dν f (y)
)
ϕ(x)dµ(x),

showing that (6.3) holds for µ-a.a. x ∈ Ω.

The following example says that for some superharmonic function f , the associ-
ated Riesz measure ν f may coincide with the measure µ; that is, ν f = µ.

Example 6.3 Let f = EΩ1Ω be the weak solution of (3.5). Then 0 ≤ f ∈ F(Ω) and
f is superharmonic in Ω, since for any 0 ≤ ϕ ∈ F(Ω),

E( f , ϕ) = E(EΩ1Ω, ϕ) =

∫
Ω

ϕdµ ≥ 0.

Hence, this function admits a Riesz measure ν f , which is actually equal to µ, since
for any ϕ ∈ F ∩C0(Ω), ∫

Ω

ϕdµ = E( f , ϕ) =

∫
Ω

ϕdν f ,

and then use the fact that the space F ∩C0(Ω) is dense in C0(Ω).

6.2 Reduced Function

We introduce a reduced function û of u ∈ ∈ F ∩ L∞ with respect to (A,Ω). Roughly
speaking, a reduced function û of (A,Ω) is one that is obtained by cutting off u such
that û = u in A, û is harmonic in Ω\A, and û ∈ F(Ω) (so that û vanishes outside Ω).

Lemma 6.4 Assume that (E,F) is regular and let Ω ⊂ M be precompact with
λmin(Ω) > 0. Let A be a compact subset of Ω and set U = Ω \ A. Fix a function
u ∈ F ∩ L∞, fix a cutoff function ψ of (A,Ω), and let f ∈ F be the solution to the
following weak Dirichlet problem in U :

(6.7)

{
f is harmonic in U ,

f = uψ modF(U ).
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Define the function û on M by

û =

{
u in A,

f in Ac

(see Fig. 9).

(i) Then û ∈ F(Ω).
(ii) If in addition u ≥ 0 in M and u is superharmonic in Ω, then û is also superhar-

monic in Ω, and 0 ≤ û ≤ u in M.

The above function û is called a reduced function of u with respect to (A,Ω). For
example, the capacitory potential of (A,Ω) is a reduced function of any cutoff func-
tion of (Ω,M); see Proposition A.2.

u

A

= fû

û= u

= \A

Figure 9: Functions u and û

Proof (i) We have uψ ∈ F∩L∞, and the Dirichlet problem (6.7) has a unique weak
solution (cf. [26, Lemma 7.1]). It follows from (6.7) that v := uψ − f ∈ F(U ). Let
us verify that û = f in M, that is,

(6.8) û = uψ − v in M.

Indeed, in A we have û = u = uψ − v, because ψ ≡ 1 and v ≡ 0 in A, and in Ac we
have û = f = uψ−v by the definition of v. Since uψ ∈ F(Ω) and v ∈ F(U ) ⊂ F(Ω),
it follows from (6.8) that û ∈ F(Ω).

(ii) Since uψ ≥ 0 and λmin(U ) ≥ λmin(Ω) > 0, we have by the maximum
principle (cf. Proposition 4.2) that f ≥ 0 in M, and hence û ≥ 0 in M. The function
f − u is obviously subharmonic in U . Since f − u ≤ f − uψ in M and f − uψ =
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0 modF(U ), we have f − u ≤ 0 modF(U ). Hence, using the maximum principle
again, we obtain that f − u ≤ 0 in M. Therefore, û ≤ u in M.

It remains to show that û is superharmonic in Ω. By Lemma 6.1(ii), we need to
show that

(6.9) PΩ
t û ≤ û for any t > 0.

Indeed, we have that in A, PΩ
t û ≤ PΩ

t u ≤ u = û. To prove (6.9) in U , observe that
w(t, · ) := PΩ

t û− û obviously is a weak subsolution of the heat equation in R+ ×U ,
and satisfies the initial condition

w+(t, · )
L2(U )
−→ 0 as t → 0.

We claim that the boundary condition

(6.10) w+(t, · ) ∈ F(U )

also holds. To see this, note that, using part (i) and (6.8),

(6.11) PΩ
t û− û ≤ PΩ

t u− û ≤ u− (uψ − v) = (1− ψ)u + v in M.

The function h := (1 − ψ)u vanishes in an open neighborhood of A, and thus, by
Proposition A.3, we see that h ∈ F(U ). As v ∈ F(U ), it follows from (6.11) that

w(t, · ) ≤ h + v ∈ F(U ),

thus proving our claim (6.10) by using [19, Lemma 4.4].
Finally, using the parabolic maximum principle (see [19, Prop. 4.11, p. 117]), we

conclude that w ≤ 0 in R+ ×U . This finishes the proof.

6.3 Capacitory Measure

We prove here some properties of the capacitory measure (also called the equilibrium
measure).

Lemma 6.5 Assume that (E,F) is a strongly local regular Dirichlet form. Let Ω,U be
precompact open subset of M such that U b Ω. Assume that λmin(Ω) > 0 and that the
Green function gΩ exists and is jointly continuous off diagonal. Let up be the capacitory
potential of (U ,Ω). Then there exists a regular Borel measure νp supported on ∂U such
that

νp(∂U ) = cap(U ,Ω)(6.12)

and

up(x) =

∫
∂U

gΩ(x, y)dνp(y) for all x ∈ Ω \ ∂U .(6.13)

In particular, we have

(6.14)

∫
∂U

gΩ(x, y)dνp(y) = 1 for all x ∈ U .
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Proof The capacitory potential satisfies the following properties: up ∈ F(Ω), 0 ≤
up ≤ 1 in Ω, up|U = 1,

(6.15) E(up) = cap(U ,Ω),

and up is harmonic in Ω\U .Note that up is a reduced function of any cutoff function
of (Ω,M), and is superharmonic in Ω (cf. Proposition A.2).

We claim that for any two precompact open subsets U1,U2 of Ω with U1 b U b
U2, the potential function up is harmonic in Ω \ S, where S := U2 \U1.

Indeed, for any 0 ≤ ϕ ∈ F(Ω \ S), by Proposition A.4, we can decompose ϕ =
ϕ1 + ϕ2, where ϕ1 ∈ F(U ), ϕ2 ∈ F(Ω \U ). Therefore, as up is harmonic in Ω \U
and (E,F) is strongly local, it follows that

E(up, ϕ) = E(up, ϕ1 + ϕ2) = E(up, ϕ1) + E(up, ϕ2) = E(up, ϕ1) = 0,

thus proving our claim.
Therefore, by Lemma 6.2, there exists a regular Borel measure νp associated with

up as in (6.2), and νp is supported on S = U2 \U1 for any U1 b U b U2.
On the other hand, let {uk}∞k=1 be a minimizing sequence of up, that is, each uk is

a cutoff function of (U ,Ω), and E(uk)→ E(up). By (6.4),

E(up, uk) =

∫
S

ukdνp.

Since uk = 1 in a neighborhood of U , and 0 ≤ up ≤ 1 in M, we see that

νp(∂U ) ≤ νp(U \U1) ≤
∫

S
ukdνp ≤ νp(U 2 \U1),

and hence, νp(∂U ) ≤ E(up, uk) ≤ νp(U 2 \ U1). Letting k → ∞ and then using
(6.15), it follows that, for any U1 b U b U2,

νp(∂U ) ≤ cap(U ,Ω) ≤ νp(U 2 \U1).

By the regularity of νp, the measure νp(U 2\U1)→ νp(∂U ) as U1 ↑ U and U2 ↓ U .
Therefore, we conclude that

cap(U ,Ω) = E(up) = νp(∂U ),

thus proving (6.12).
Finally, if gΩ exists and is jointly continuous off diagonal, then (6.13) follows di-

rectly from (6.3).

For any point x0 ∈ Ω and any c > 0, consider the set

(6.16) Ac(x0) := {y ∈ Ω : gΩ(x0, y) > c}.

We look at the capacity cap(Ac(x0),Ω).
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Proposition 6.6 Assume that (E,F) is regular and strongly local, and let Ω ⊂ M be
precompact open such that λmin(Ω) > 0. Assume that the Green function gΩ exists and
is jointly continuous off diagonal. For any c > 0, if x0 ∈ Ac(x0) and if Ac(x0) b Ω, then

cap
(

Ac(x0),Ω
)

=
1

c
.

Proof Since gΩ is jointly continuous off diagonal, the set U := Ac(x0) is an open
subset of Ω, and the boundary

∂U = ∂Ac(x0) =
{

y ∈ Ω : gΩ(x0, y) = c
}
.

As x0 ∈ U , it follows from (6.14) that

1 =

∫
∂U

gΩ(x0, y)dνp(y) = cνp(∂U ).

Combining this with (6.12), we obtain cap(U ,Ω) = νp(∂U ) = 1
c . This finishes the

proof.

7 Resistance

7.1 Green Function and Resistance

The following lemma gives a two-sided estimate of the resistance res(U ,Ω) in terms
of the values of the Green function gΩ on the boundary ∂U .

Lemma 7.1 Assume that (E,F) is regular and strongly local, and that conditions (H)
and (VD) hold. Let Ω ⊂ M be open such that λmin(Ω) > 0. If x0 ∈ U b Ω, we have
that

(7.1) inf
∂U

gΩ(x0, · ) ≤ res(U ,Ω) ≤ sup
∂U

gΩ(x0, · ).

Proof Let Ac(x0) be defined as in (6.16), and let

a := sup
∂U

gΩ(x0, · ), b := inf
∂U

gΩ(x0, · ).

Since gΩ(x0, · ) is non-negative and jointly continuous off diagonal, we see that

0 ≤ b ≤ a <∞.

Note that a > 0; otherwise, gΩ(x0, · ) ≡ 0 on ∂U , and thus, using (6.14), we have

1 =

∫
∂U

gΩ(x0, y)dνp(y) = 0,

where νp is the capacitory measure for cap(U ,Ω), leading to a contradiction.
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Note that if b = 0, the first inequality in (7.1) is clear, and the second one can be
proved in a similar way as below. In the sequel, assume that b > 0. Let ε > 0 be
arbitrarily small.

We first show that

(7.2) inf
∂U

gΩ(x0, · ) ≤ res(U ,Ω).

Indeed, by Lemma 5.3, we see that

inf
U

gΩ(x0, · ) = inf
∂U

gΩ(x0, · ) = b > b− ε > 0,

and thus U ⊂ Ab−ε(x0). Since gΩ(x0, · ) is continuous in Ω \ {x0}, we can choose an
open set U1 such that U ⊂ U1 b Ω, and

gΩ(x0, x) ≥ b− ε for any x ∈, ∂U1

where ∂U1 is contained in a neighborhood of ∂U . Let

A ′b−ε(x0) = U1 ∩ Ab−ε(x0).

Then we see that x0 ∈ U ⊂ A ′b−ε(x0) b Ω, and for any y ∈ ∂(A ′b−ε(x0)),

gΩ(x0, y) ≥ b− ε.

It follows from (6.14) and (6.12) that

1 =

∫
∂(A ′b−ε(x0))

gΩ(x0, y)dνb(y)

≥ (b− ε)νb

(
∂
(

A ′b−ε(x0)
))

= (b− ε) cap
(

A ′b−ε(x0),Ω
)
,

where νb is the capacitory measure for cap(A ′b−ε(x0),Ω). Therefore,

cap(U ,Ω) ≤ cap
(

A ′b−ε(x0),Ω
)
≤ 1

b− ε
;

that is, b− ε ≤ res(U ,Ω), proving (7.2).
We next show the second inequality in (7.1), namely,

(7.3) res(U ,Ω) ≤ sup
∂U

gΩ(x0, · ).

Indeed, by Lemma 5.3, we see that

sup
Ω\U

gΩ(x0, · ) = sup
∂U

gΩ(x0, · ) = a,
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and thus Aa(x0) ⊂ U and cap(Aa(x0),Ω) ≤ cap(U ,Ω). If x0 ∈ Aa(x0) ⊂ U b Ω,
using Proposition 6.6, we havecap(Aa(x0),Ω) = 1

a , thus proving (7.3).
If x0 /∈ Aa(x0), by the definition of Aa(x0), we have that gΩ(x0, x0) ≤ a < a + ε.

Using the continuity of gΩ(x0, · ), we can choose a neighborhood Nx0 of x0 such that
Nx0 ⊂ U , and

gΩ(x0, x) ≤ a + ε for any x ∈ Nx0 .

Denote by A ′a(x0) the set Aa(x0)∪Nx0 . Then we see that x0 ∈ Nx0 ⊂ A ′a(x0) ⊂ U b Ω,
and for any y ∈ ∂A ′a(x0),

gΩ(x0, y) ≤ a + ε.

It follows from (6.14) and (6.12) that

1 =

∫
∂A ′a (x0)

gΩ(x0, y)dνa(y)

≤ (a + ε)νa

(
∂A ′a(x0)

)
= (a + ε) cap

(
A ′a(x0),Ω

)
,

where νa is the capacitory measure for cap(A ′a(x0),Ω). Therefore,

cap(U ,Ω) = cap(U ,Ω) ≥ cap(A ′a(x0),Ω) ≥ 1

a + ε
;

that is, a + ε ≥ res(U ,Ω), thus proving (7.3).
Finally, combining (7.2) and (7.3), we finish the proof.

As a consequence of Lemma 7.1, we have the following lemma.

Lemma 7.2 Assume that (E,F) is regular and strongly local, and that conditions (H)
and (VD) hold. If Ω is a precompact open set containing a ball KB, where B = B(x0,R)
and K > δ−1, and such that λmin(Ω) > 0, then

(7.4) inf
∂B

gΩ(x0, · ) ' res(B,Ω) ' sup
∂B

gΩ(x0, · ).

Proof Since condition (HG) holds, we see that

inf
∂B

gΩ(x0, · ) ' sup
∂B

gΩ(x0, · ).

Using (7.1), we obtain the desired result.

We next estimate the sum of a finite number of resistances. For this we need the
following lemma.

Lemma 7.3 Assume that (E,F) is regular. For any two open sets Ω1,Ω2 in M such
that Ω1 b Ω2 and λmin(Ω1) > 0, and for any non-negative f ∈ L2(Ω2), we have

(7.5) esup
Ω2

(GΩ2 f − GΩ1 f ) ≤ esup
Ω2\U

GΩ2 f ,

where U is any open subset with U b Ω1. If GΩ2 f is continuous in a neighborhood of
∂Ω1, then

(7.6) esup
Ω2

(GΩ2 f − GΩ1 f ) = esup
Ω2\Ω1

GΩ2 f .
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Proof Let u := GΩ2 f −GΩ1 f . Then u ≥ 0 in M and is harmonic in Ω1, since for any
ϕ ∈ F(Ω1),

E(u, ϕ) = E(GΩ2 f − GΩ1 f , ϕ) = ( f , ϕ)− ( f , ϕ) = 0.

Therefore, for any U b Ω1, by the maximum principle (4.1), we have

esup
Ω1

u ≤ esup
M\U

u = esup
Ω2\U

u.

As u ≤ GΩ2 f in M, we see that esupΩ2\U u ≤ esupΩ2\U GΩ2 f . Hence, it follows

thatesupΩ1
u ≤ esupΩ2\U GΩ2 f , which implies that, using the fact that Ω2 \ Ω1 ⊂

Ω2 \U ,

esup
Ω2

u = esup
Ω1

u ∨ esup
Ω2\Ω1

u = esup
Ω1

u ∨ esup
Ω2\Ω1

GΩ2 f

≤ esup
Ω2\U

GΩ2 f ∨ esup
Ω2\Ω1

GΩ2 f = esup
Ω2\U

GΩ2 f ,

proving (7.5).
If GΩ2 f is continuous in a neighborhood of ∂Ω1, we let U ↑ Ω1 in (7.5) and obtain

esup
Ω2

u ≤ esup
Ω2\Ω1

GΩ2 f .

On the other hand, it is obvious that

esup
Ω2

u ≥ esup
Ω2\Ω1

u = esup
Ω2\Ω1

GΩ2 f .

Thus, we conclude that (7.6) holds.

Lemma 7.4 Assume that (E,F) is regular and strongly local, and that conditions (H)
and (VD) hold. Fix a ball B(x0,R) and set Bn = KnB for n = 0, 1, 2, . . . , where
K > δ−1. For all n > m ≥ 0, if λmin(Bn) > 0, then

(7.7) sup
∂Bm

gBn (x0, · ) '
n−1∑
k=m

res(Bk,Bk+1) ' inf
∂Bm

gBn (x0, · ).

Proof For each k ≥ 0, let us show that for any y ∈ M \ {x0},

(7.8) gBk+1 (x0, y)− gBk (x0, y) ≤ sup
Bk+1\Bk

gBk+1 (x0, · ).

Indeed, note that (7.8) trivially holds for any y /∈ Bk. We will prove (7.8) for any
y ∈ Bk \ {x0}.
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To do this, we have from (7.5) that, for any concentric ball B ′ b Bk,

esup
Bk+1

(GBk+1 f − GBk f ) ≤ esup
Bk+1\B ′

GBk+1 f ,

and thus for any fixed point y ∈ Bk \ {x0},

(7.9) GBk+1 f (y)− GBk f (y) ≤ esup
Bk+1\B ′

GBk+1 f .

Choose f = fn,x0 ⇀ δx0 weakly in C(M) as n → ∞. The function GBk+1 fn,x0 is
harmonic in Bk+1 \ B ′, since fn,x0 vanishes in a small neighborhood of x0. Hence,
using the maximum principle (4.8),

esup
Bk+1\B ′

GBk+1 fn,x0 = esup
∂B ′

GBk+1 fn,x0 .

As GBk+1 fn,x0 is continuous in Bk+1 \ B ′, letting B ′ ↑ Bk, we obtain from (7.9) that

(7.10) GBk+1 fn,x0 (y)− GBk fn,x0 (y) ≤ sup
∂Bk

GBk+1 fn,x0 .

By (5.12), we have already shown that, as n→∞,

GBk fn,x0 (y)→ gBk (x0, y), GBk+1 fn,x0 (y)→ gBk+1 (x0, y),

and at the same time,
GBk+1 fn,x0 ( · )→ gBk+1 (x0, · )

uniformly in the compact subset ∂Bk.
Therefore, passing to the limit as n→∞ in (7.10), we obtain that

gBk+1 (x0, y)− gBk (x0, y) ≤ sup
∂Bk

gBk+1 (x0, · ) ≤ sup
Bk+1\Bk

gBk+1 (x0, · ),

thus showing that (7.8) holds for any y ∈ Bk \ {x0}.
It follows from (7.8) that, using (5.14) and (7.4),

gBk+1 (x0, y)− gBk (x0, y) ≤ sup
Bk+1\Bk

gBk+1 (x0, · )

= sup
∂Bk

gBk+1 (x0, · ) ≤ C1 res(Bk,Bk+1),

for some C1 > 0. Adding up k from m+1 to n−1, we obtain that for all y ∈ M\{x0},

(7.11) gBn (x0, y)− gBm+1 (x0, y) ≤ C1

n−1∑
k=m+1

res(Bk,Bk+1).
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On the other hand, using (7.4) again, we have

(7.12) sup
∂Bm

gBm+1 (x0, · ) ' res(Bm,Bm+1).

Therefore, combining (7.11) and (7.12), we conclude that

(7.13) sup
∂Bm

gBn (x0, · ) ≤ C1

n−1∑
k=m

res(Bk,Bk+1).

We next show that

(7.14)
n−1∑
k=m

res(Bk,Bk+1) ≤ C2 inf
∂Bm

gBn (x0, · ),

for some C2 > 0. Indeed, since (E,F) is strongly local, we have (cf. [23, Lemma 2.5,
p.157]) that

n−1∑
k=m

res(Bk,Bk+1) ≤ res(Bm,Bn).

Using (7.4), we have
res(Bm,Bn) ' inf

∂Bm

gBn (x0, · ).

Therefore, we obtain (7.14).
Finally, combining (7.13) and (7.14), we obtain (7.7).

7.2 Estimates of the Green Function

We give an upper estimate of the Green function under conditions (H) and (EF ≤).

Theorem 7.5 Assume that (E,F) is regular and strongly local, and that conditions
(H), (VD) and (EF ≤) all hold. Then for any ball B := B(x0,R), the Green kernel gB

exists and satisfies the following estimate: for all y ∈ B \ {x0},

(GF ≤) gB(x0, y) ≤ C

∫ R

r/4

F(s)ds

sV (x0, s)
,

where r = d(x0, y) and constant C > 0 is independent of the ball B.

Proof Fix a point y ∈ B \ {x0}. Let r := d(x0, y), and let n be an integer such that

2−nR ≤ r < 2−(n−1)R.

For k = 0, 1, . . . , n, let

rk := 2−kR and Bk := B(x0, rk).
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Let 0 ≤ f ∈ L2. Note that for U ⊂ Ω,

einf
U

GΩ f ≤ 1

µ(U )

∫
U

GΩ f dµ

=
1

µ(U )

∫
U

(∫
Ω

gΩ(x, y) f (y)dµ(y)
)

dµ(x)

=
1

µ(U )

∫
Ω

(∫
U

gΩ(x, y)dµ(x)
)

f (y)dµ(y)

≤ ‖E
Ω‖L∞(Ω)

µ(U )
‖ f ‖L1(Ω).

(7.15)

Since the function GBk f −GBk+1 f is harmonic in Bk+1 for each k, we have by (H) that
it is Hölder-continuous in δBk+1 and, using (7.15), (VD), and (EF ≤),

sup
δBk+1

(GBk f − GBk+1 f ) ≤ CH inf
δBk+1

(GBk f − GBk+1 f ) ≤ CH inf
δBk+1

GBk f

≤ CH
‖EBk‖L∞(Bk)

µ(δBk+1)
‖ f ‖1 ≤ C

F(rk)

µ(Bk)
‖ f ‖1.

Therefore, for k = 0, 1, . . . , n,

GBk f (x0)− GBk+1 f (x0) ≤ C
F(rk)

µ(Bk)
‖ f ‖1.

Choosing f = fn,y → δy weakly in C0(M), and using the facts that GBn+1 fn,y ≡ 0 and
‖ fn,y‖1 = 1, we obtain that

GB fn,y(x0) =

n∑
k=0

[
GBk fn,y(x0)− GBk+1 fn,y(x0)

]
≤ C

n∑
k=0

F(rk)

µ(Bk)
.

Hence, letting n→∞ and using (5.12), we have

(7.16) gB(x0, y) ≤ C
n∑

k=0

F(rk)

µ(Bk)
.

On the other hand, as both F and V (x0, · ) are non-decreasing and r/4 < 2−(n+1)R =
rn+1, we have∫ R

r/4

F(s)ds

sV (x0, s)
≥

n∑
k=0

∫ rk

rk+1

F(s)ds

sV (x0, s)

≥
n∑

k=0

F(rk+1)

V (x0, rk)

∫ rk

rk+1

ds

s
= ln 2

n∑
k=0

F(rk+1)

V (x0, rk)
(7.17)

≥ C ′
n∑

k=0

F(rk)

V (x0, rk)
(using (3.3) ).(7.18)

Combining (7.16) and (7.18), we obtain (GF ≤).
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7.3 Continuity of GΩ f

We investigate the continuity of the function GΩ f . Before doing this, we need the
following general result.

Proposition 7.6 Assume that conditions (3.3) and (VD) hold, and let 0 < λ, λ1 ≤ 1,
and B := B(x0,R). For any t ≥ 0, let

f (t) :=

∫ R

λt

F(s)ds

sV (x0, s)
.

Then we have

(7.19) C1F(R) ≤
∫
λ1B

f
(

d(x0, y)
)

dµ(y) ≤ C2F(R),

where constants C1,C2 are independent of the ball B, but may depend on λ, λ1. If further
condition (3.2) holds, then

(7.20)

∫
λ1B

f
(

d(x0, y)
)

dµ(y) ≤ C(λ)
[
λα
′

1 ln
1

λ1
+ λα

′

1 + λ1
β
]

F(R),

where C(λ) is independent of λ1 and R.

Proof Since f is non-increasing, we have that

(7.21)

∫
λ1B

f
(

d(x0, y)
)

dµ(y) ≥ f (λ1R)V (x0, λ1R).

As the functions F and V (x0, · ) are non-decreasing, we see that, using (3.3),

(7.22) f (λ1R) =

∫ R

λλ1R

F(s)ds

sV (x0, s)
≥ F(λλ1R)

V (x0,R)

∫ R

λλ1R

ds

s
≥ C ′(λ, λ1)

F(R)

V (x0,R)
.

Therefore, it follows from (7.21) and (7.22) that, using (VD) again,∫
λ1B

f
(

d(x0, y)
)

dµ(y) ≥ f (λ1R)V (x0, λ1R)

≥ C ′(λ, λ1)
V (x0, λ1R)F(R)

V (x0,R)
≥ C−1F(R),

thus proving the first inequality in (7.19).
We next show the second inequality in (7.19). Indeed, we have that∫

λ1B
f (d(x0, y))dµ(y) =

∫ λ1R

0
f (t)dV (x0, t)

= f (t)V (x0, t)|λ1R
0 −

∫ λ1R

0
V (x0, t) f ′(t)dt

≤ f (λ1R)V (x0, λ1R)−
∫ λ1R

0
V (x0, t) f ′(t)dt.

(7.23)
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By (3.1), we see that

1

V (x0, λλ1R)
=

1

V (x0,R)

V (x0,R)

V (x0, λλ1R)
≤ CD(

1

λλ1
)α

1

V (x0,R)
,

and hence,

f (λ1R) =

∫ R

λλ1R

F(s)ds

sV (x0, s)
≤ F(R)

V (x0, λλ1R)

∫ R

λλ1R

ds

s

=
F(R)

V (x0, λλ1R)
ln

1

λλ1
≤ CD(

1

λλ1
)α(ln

1

λλ1
)

F(R)

V (x0,R)
.

(7.24)

On the other hand, using (3.1) and (3.3),

0 ≤ −
∫ λ1R

0
V (x0, t) f ′(t)dt =

∫ λ1R

0
V (x0, t)

F(λt)

tV (x0, λt)
dt

≤ C(λ)

∫ λ1R

0

F(λt)

t
dt = C(λ)F(R)

∫ λ1R

0

F(λt)

F(R)

dt

t

≤ C ′(λ)F(R)

∫ λ1R

0

( λt

R

) β dt

t
= C(λ)λβ1 F(R).

(7.25)

Therefore, it follows from (7.23), (7.24), and (7.25) that∫
λ1B

f
(

d(x0, y)
)

dµ(y) ≤ CD

( 1

λλ1

)α(
ln

1

λλ1

)V (x0, λ1R)F(R)

V (x0,R)
+ C(λ)λβ1 F(R)

≤ C(λ, λ1)F(R).

Finally, it remains to show (7.20). Note that

f (λ1R)V (x0, λ1R) = V (x0, λ1R)

∫ R

λλ1R

F(s)ds

sV (x0, s)

= V (x0, λ1R)
{∫ λ1R

λλ1R

F(s)ds

sV (x0, s)
+

∫ R

λ1R

F(s)ds

sV (x0, s)

}
.

(7.26)

By the monotonicity of F and V (x0, · ), the first term

V (x0, λ1R)

∫ λ1R

λλ1R

F(s)ds

sV (x0, s)
≤ F(λ1R)

V (x0, λ1R)

V (x0, λλ1R)

∫ λ1R

λλ1R

ds

s

≤ C(λ)F(λ1R) = C(λ)F(R)
F(λ1R)

F(R)

≤ C ′(λ)F(R)(λ1)β (using (3.3) ).

(7.27)
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Similarly, using (3.3) and (3.2), the second term

V (x0, λ1R)

∫ R

λ1R

F(s)ds

sV (x0, s)
= F(R)

∫ R

λ1R

F(s)

F(R)

V (x0, λ1R)

V (x0, s)

ds

s

≤ cF(R)

∫ R

λ1R

( s

R

) β( λ1R

s

)α ′ ds

s

= cF(R)(λ1)α
′
∫ 1

λ1

sβ−α
′−1ds.

If β = α ′, we have
∫ 1
λ1

sβ−α
′−1ds = ln 1

λ1
, and if β 6= α ′, we have∫ 1

λ1

sβ−α
′−1ds =

1

β − α ′
(

1− (λ1)β−α
′)
.

Hence, the second term

(7.28) V (x0, λ1R)

∫ R

λ1R

F(s)ds

sV (x0, s)
≤ cF(R)

(
λα
′

1 ln
1

λ1
+ λα

′

1 + λ1
β
)
.

Therefore, it follows from (7.26), (7.27), and (7.28) that

(7.29) f (λ1R)V (x0, λ1R) ≤ C ′(λ)F(R)
(
λα
′

1 ln
1

λ1
+ λα

′

1 + λ1
β
)
.

Combining (7.23), (7.29), and (7.25), we arrive at (7.20).

Lemma 7.7 Assume that (E,F) is regular and strongly local, and that conditions
(H), (VD), (RVD), and (EF ≤) all hold. Let Ω be a bounded open subset of M with
λmin(Ω) > 0 , and let f ∈ L∞(Ω). Then the function

GΩ f (x) =

∫
Ω

gΩ(x, y) f (y)dµ(y)

is continuous for x ∈ Ω. In particular, the function EΩ = GΩ1Ω is continuous in Ω.

Proof Without loss of generality, assume that ‖ f ‖∞ ≤ 1. Fix a point x0 ∈ Ω, and
let R > 0, ρ ≥ 1 such that

B := B(x0,R) b Ω ⊂ B(x0, ρR).

Let {xk}∞k=1 ⊂ B such that xk → x0 as k→∞. Let η > 0 be small, and let d(xk, x0) <
δ(ηR) for any k ≥ 1, where δ is the same as in (H). Then∣∣GΩ f (xk)− GΩ f (x0)

∣∣ =
∣∣∣∫

Ω

gΩ(xk, y) f (y)dµ(y)−
∫

Ω

gΩ(x0, y) f (y)dµ(y)
∣∣∣

≤
∫

B(x0,ηR)
gΩ(xk, y)dµ(y) +

∫
B(x0,ηR)

gΩ(x0, y)dµ(y)(7.30)

+

∫
Ω\B(x0,ηR)

∣∣gΩ(xk, y)− gΩ(x0, y)
∣∣dµ(y).
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We claim that

lim
k→∞

∫
Ω\B(x0,ηR)

|gΩ(xk, y)− gΩ(x0, y)|dµ(y) = 0.

Indeed, as gΩ is jointly continuous off diagonal, we have that, for any y ∈ Ω \
B(x0, ηR),

lim
k→∞

gΩ(xk, y) = gΩ(x0, y).

Noting that xk ∈ B(x0, δ(ηR)) for all k ≥ 1, it follows from (5.4) that, for any y ∈
Ω \ B(x0, ηR),

gΩ(xk, y) ≤ CHgΩ(x0, y).

By condition (EF ≤), the function gΩ(x0, · ) is integrable in Ω; that is,∫
Ω

gΩ(x0, y)dµ(y) = EΩ(x0) ≤ CF(R).

Therefore, applying the dominated convergence theorem,

lim
k→∞

∫
Ω\B(x0,ηR)

gΩ(xk, y)dµ(y) =

∫
Ω\B(x0,ηR)

gΩ(x0, y)dµ(y),

proving our claim.
We next estimate the two terms in (7.30). It is enough to consider the first term,

as the second one is treated similarly. Now fix k ≥ 1, and let

f (t) =

∫ 2ρR

t/4

F(s)ds

sV (xk, s)
.

By Theorem 7.5,we have that, using that fact that Ω ⊂ B(x0, ρR) ⊂ B1 := B(xk, 2ρR),∫
B(x0,ηR)

gΩ(xk, y)dµ(y) ≤
∫

B(xk,2ηR)
gB1 (xk, y)dµ(y)

≤ C

∫
B(xk,2ηR)

f
(

d(xk, y)
)

dµ(y).

Using (7.20) with λ1 = η/ρ, λ = 1
4 and with R, x0 being replaced by 2ρR, xk respec-

tively, we obtain that

(7.31)

∫
B(xk,2ηR)

f
(

d(xk, y)
)

dµ(y) ≤ C
(
ηα
′

ln
1

η
+ ηα

′
+ ηβ

)
F(2ρR) = o(η).

Therefore, it follows from (7.30)–(7.31) that

lim
k→∞

|GΩ f (xk)− GΩ f (x0)| ≤ 2o(η),

thus proving the continuity of GΩ f .

Remark 7.8 Under the hypotheses of Lemma 7.7, the essential supremum and es-
sential infimum in conditions (EF ≤) and (EF ≥) in Definition 3.10 can be replaced
by supremum and infimum, respectively.
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8 Proof of Theorem 3.12

8.1 Implication (H) + (RF)⇒ (GF)

Proof Let B := B(x0,R) and choose K > 4 ∨ δ−1. We split the proof into two steps.

Step 1. We prove the lower bound (GF ≥). There exists some C > 0 such that for all
y ∈ K−1B \ {x0},

(GF ≥) gB(x0, y) ≥ C−1

∫ R

K−1r

F(s)ds

sV (x0, s)
, r = d(x0, y).

Indeed, choose the integer n > 1 such that

(8.1) K−n−1R ≤ r < K−nR,

and for i ≥ 0, set

(8.2) ri := K−iR and Bi := B(x0, ri).

As K−1r ≥ K−n−2R, similar to (7.17), we have that∫ R

K−1r

F(s)ds

sV (x0, s)
≤

n+1∑
i=0

∫ ri

ri+1

F(s)ds

sV (x0, s)
≤ ln K

n+1∑
i=0

F(ri)

V (x0, ri+1)

≤ C
n+1∑
i=0

F(ri+1)

V (x0, ri+1)
(by (3.3) ).

(8.3)

The last two terms for i = n and i = n + 1 in the sum can be bounded by the term
F(rn)

V (x0,rn) , since we have that, using (3.3) and (VD),

F(rn+1)

V (x0, rn+1)
=

F(rn)

V (x0, rn)
· F(rn+1)

F(rn)
· V (x0, rn)

V (x0, rn+1)
≤ C

F(rn)

V (x0, rn)
,

and a similar bound for the other term:

F(rn+2)

V (x0, rn+2)
≤ C

F(rn)

V (x0, rn)
.

Hence, it follows from (8.3) that∫ R

K−1r

F(s)ds

sV (x0, s)
≤ C ′

n−1∑
i=0

F(ri+1)

V (x0, ri+1)

≤ C ′
n−1∑
i=0

res(Bi+1,Bi) (by condition (RF ≥))

≤ C ′ ′ inf
∂Bn

gB(x0, · ) (by (7.7) ).

(8.4)
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On the other hand, using the fact that y ∈ Bn \ Bn+1, we have from (5.13) that

gB(x0, y) ≥ inf
Bn

gB(x0, · ) = inf
∂Bn

gB(x0, · ).

This combines with (8.4) to prove that (GF ≥) holds.

Step 2. We prove the upper bound (GF ≤). There exists some C > 0 such that for all
y ∈ B \ {x0},

(GF ≤) gB(x0, y) ≤ C

∫ R

K−1r

F(s)ds

sV (x0, s)
, r = d(x0, y).

Fix y ∈ B \ {x0}, and set r = d(x0, y) as before.

Case (a) when y ∈ K−1B \ {x0}. Let n, ri and Bi be respectively defined as in (8.1)
and (8.2). It follows that

gB(x0, y) ≤ sup
B\Bn+1

gB(x0, · ) = sup
∂Bn+1

gB(x0, · ) (by (5.14))

≤ C
n∑

i=0

res(Bi+1,Bi) (by (7.7) )

≤ C ′
n∑

i=0

F(ri+1)

V (x0, ri+1)
(by condition (RF ≤)).

Therefore, using (7.17), we obtain (GF ≤).

Case (b) when y ∈ B \ K−1B. We want to derive (EF ≤). If so, we are done using
Theorem 7.5.

Let x ∈ B. We see that B ⊂ B(x, 2R) := B ′. It follows that, using (5.14),

EB(x) =

∫
B

gB(x, y) dµ(y) ≤
∫

B ′
gB ′(x, y) dµ(y)

=

∫
δB ′

gB ′(x, y) dµ(y) +

∫
B ′\δB ′

gB ′(x, y) dµ(y)

≤
∫
δB ′

gB ′(x, y) dµ(y) + sup
∂(δB ′)

gB ′(x, · )µ(B ′).

(8.5)

By (7.4) and (3.3),

sup
∂(δB ′)

gB ′(x, · ) ' res(δB ′,B ′) ≤ C
F(2δR)

µ(δB ′)
≤ C ′

F(R)

µ(B ′)
,

and hence,

(8.6) sup
∂(δB ′)

gB ′(x, · )µ(B ′) ≤ C ′F(R).
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It remains to estimate the integral on the right-hand side of (8.5). Indeed, by Case
(a), we have that for y ∈ δB ′,

gB ′(x, y) ≤ C

∫ 2R

K−1r

F(s)ds

sV (x, s)
.

Therefore, by Proposition 7.6 where f (t) =
∫ 2R

K−1r
F(s)ds
sV (x,s) , we obtain∫

δB ′
gB ′(x, y) dµ(y) ≤ C

∫
δB ′

f
(

d(x, y)
)

dµ(y)

≤ C ′F(2R) ≤ CF(R).

(8.7)

Finally, adding (8.7) and (8.6), we prove that condition (EF ≤) holds.
This finishes the proof.

8.2 Equivalence (HG ′)⇔ (H)

We introduce an alternative Harnack inequality, denoted by (HG ′), for the Green
function gB on a ball B, and will show that (HG ′) ⇔ (H) by using Lemmas 6.4
and 6.2.

Definition 8.1 (Condition (HG ′)) We say that condition (HG ′) holds if, for any
ball B in M, the Green function gB exists and is jointly continuous off diagonal, and
for any y ∈ B1 \ B2 with some balls B1 = ρ1B,B2 = ρ2B (0 < ρ2 < ρ1 < 1),

(HG ′) esup
δ ′B2

gB( · , y) ≤ C ′H einf
δ ′B2

gB( · , y),

where C ′H ≥ 1 and δ ′ ∈ (0, 1) are independent of B and y, but δ ′ may depend on
ρ2, ρ1, and C ′H on δ ′, ρ2, ρ1.

We now show the implication (HG ′)⇔ (H).

Lemma 8.2 Assume that (E,F) is a local, regular Dirichlet form, and that λmin(B) >
0 for any ball B in M. Then (HG ′) ⇒ (H). If in addition (E,F) is strongly local and
(VD) holds, then

(8.8) (HG ′)⇐⇒ (H).

Proof Fix a ball B in M, and let u ∈ L∞(M) be non-negative in B and be harmonic
in B. We need to show that

(8.9) esup
δB

u ≤ CH einf
δB

u

for some constants CH ≥ 1 and δ ∈ (0, 1), which will imply condition (H). It suffices
to prove (8.9) assuming in addition that u ∈ L∞(M), because then the Harnack
inequality for arbitrary u follows by the proof of [26, p. 1280, Theorem 7.4)].
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Assuming in the sequel that u ∈ L∞, we split the proof into four steps. Let B1 and
B2 be the same as in condition (HG ′).

Step 1 We cut off the function u such that it becomes non-negative globally in M, but
still in F. For this purpose, let φ be a cutoff function of (B1,B). Let u1 := uφ. This
function u1 will do. Indeed, it is easy to see that u1 ≥ 0 in M (noting that u1 vanishes
outside B), and u1 ∈ F ∩ L∞.

Let us further show that u1 is harmonic in B1. Indeed, let ϕ ∈ F(B1).We have that
E(u, ϕ) = 0 by the harmonicity of u. Noting that u(φ − 1) ≡ 0 in a neighborhood
of B1, we see that E(u(φ− 1), ϕ) = 0 by the locality of (E,F). Hence,

E(u1, ϕ) = E
(

uφ, ϕ
)

= E(u(φ− 1), ϕ) + E(u, ϕ) = 0,

showing that u1 is harmonic in B1.

Step 2 Let û1 be a reduced function of u1 with respect to (B2,B1), as defined in
Lemma 6.4; that is, 

û1 ∈ F(B1),

û1 is superharmonic in B1,

û1 = u1 in B2.

Let us show that û1 is harmonic in B2. Indeed, let ϕ ∈ F(B2). By Step 1, the function
u1 is harmonic in B1, and thus, E(u1, ϕ) = 0. Since the function û1 − u1 vanishes in
B2, by the locality of (E,F), E(û1 − u1, ϕ) = 0. Hence, we conclude that

E(û1, ϕ) = E(u1, ϕ) + E(û1 − u1, ϕ) = 0,

proving that û1 is harmonic in B2.

Step 3 Let S = B1 \ B2. By Step 2, the function û1 is harmonic in B2 = B1 \ S. Since
λmin(B1) > 0, it follows by Lemma 6.2 that

û1(x) =

∫
S

gB1 (x, y)dν(y) for µ-a.a. all x ∈ B2,

where ν := νû1
is a regular Borel measure determined as in (6.2) whose support is

contained in S. By condition (GH ′), for any x1, x2 ∈ δ ′B2 and for any y ∈ B1\B2 = S,

gB1 (x1, y) ≤ C ′H gB1 (x2, y).

Therefore, we conclude that, for almost all x1, x2 ∈ δ ′B2,

u(x1) = û1(x1) =

∫
S

gB1 (x1, y)dν(y)

≤ C ′H

∫
S

gB1 (x2, y)dν(y) = C ′H û1(x2) = C ′H u(x2).
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Setting CH = C ′H and choosing δ > 0 such that δB = δ ′B2, that is, δ = ρ2δ
′, we

obtain (8.9).
Finally, by Lemma 5.2, the opposite implication (H) ⇒ (HG ′) is clear. Indeed,

we may choose ρ1 = 3
4 , ρ2 = 1

2 and δ ′ = δ,C ′H = CH , and then apply (5.4). Hence,
the equivalence (8.8) holds. This finishes the proof of (8.9) for bounded u and hence
the entire proof.

8.3 The Implication (GF)⇒ (H) + (EF)

Proof Fix a ball B := B(x0,R). Let K be the same as in condition (GF). We split the
proof into three steps.

Step 1 (GF) ⇒ (H). By Lemma 8.2, it suffices to prove that (GF) ⇒ (HG ′). Choose
δ ′ = 3

4 and
B1 := (4K)−1B and B2 := (6K)−1B.

We need to show that there exists a constant C = C(K) > 0 such that, for all x1, x2 ∈
δ ′B2 = (8K)−1B and all y ∈ B1 \ B2,

(8.10) C−1gB(x1, y) ≤ gB(x2, y) ≤ CgB(x1, y).

Let us prove the first inequality in (8.10).
For i = 1, 2, we have that

d(y, xi) ≤ d(y, x0) + d(x0, xi) < (4K)−1R + (8K)−1R = 3(8K)−1R,

and that

d(y, xi) ≥ d(y, x0)− d(x0, xi) > (6K)−1R− (8K)−1R = (24K)−1R.

As B ⊂ B(y, 2R), we have by (GF ≤) that

gB(x1, y) ≤ gB(y,2R)(x1, y) = gB(y,2R)(y, x1) ≤ C1

∫ 2R

K−1d(y,x1)

F(s)ds

sV (y, s)

≤ C1

∫ 2R

K−1(24K)−1R

F(s)ds

sV (y, s)
≤ C2

F(R)

V (y,R)
(similar to (7.24)).

(8.11)

On the other hand, as B(y,R/2) ⊂ B, we have by (GF ≥) that, using the fact that
d(y, x2) ≤ 3(8K)−1R < K−1(R/2),

gB(x2, y) ≥ gB(y,R/2)(x2, y) = gB(y,R/2)(y, x2) ≥ C3

∫ R/2

K−1d(y,x2)

F(s)ds

sV (y, s)

≥ C3

∫ R/2

K−2R/2

F(s)ds

sV (y, s)
≥ C4

F(R)

V (y,R)
(similar to (7.22)).

(8.12)

Combining (8.11) and (8.12), we obtain the the first inequality in (8.10).
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The second inequality also holds by interchanging x1 and x2. Hence, condition
(HG ′) holds.

Step 2. (GF)⇒ (EF). We first show that, for some C2 > 0,

(8.13) sup
x∈B

EB(x) ≤ C2F(R).

Indeed, for x ∈ B, we have that B ⊂ B(x, 2R), and thus

EB(x) =

∫
B

gB(x, y)dµ(y) ≤
∫

B
gB(x,2R)(x, y)dµ(y)

≤
∫

B

[
C

∫ 2R

K−1d(x,y)

F(s)ds

sV (x, s)

]
dµ(y) (using (GF ≤))

≤ C2F(R) (using (7.19)),

thus proving (8.13).
We next show the opposite inequality, that is, for some C1 > 0,

(8.14) inf
x∈δB

EB(x) ≥ C1F(R),

where δ = K−1. Indeed, fix x ∈ δB, and let B ′ := B(x, (1− δ)R). Then B ′ ⊂ B, and
thus

EB(x) =

∫
B

gB(x, y)dµ(y) ≥
∫

B
gB ′(x, y)dµ(y)

≥
∫

K−1B ′

[
C−1

∫ (1−δ)R

K−1d(x,y)

F(s)ds

sV (x, s)

]
dµ(y) (using (GF ≥))

≥ C1F(R) (using (7.19)),

thus proving (8.14).

8.4 Implication (H) + (EF)⇒ (H) + (RF)

We need the following two lemmas.

Lemma 8.3 Assume that (E,F) is regular. Then for any two open subsets U b Ω of
M such that λmin(Ω) > 0, we have

(8.15) res(U ,Ω) ≤ ‖E
Ω‖∞
µ(U )

.

Proof Let up be the capacitory potential of (U ,Ω), that is, up ∈ F(Ω), up|U = 1,
and

E(up) = cap(U ,Ω).
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It follows that ‖up‖2
2 ≥ µ(U ) and

λmin(Ω) ≤
E(up)

‖up‖2
2

≤ cap(U ,Ω)

µ(U )
,

showing that

(8.16) res(U ,Ω) ≤ 1

µ(U )λmin(Ω)
.

On the other hand, we claim that

(8.17)
1

λmin(Ω)
≤ ‖EΩ‖∞.

Let ue be a non-negative minimizing function for the first eigenvalue

λmin(Ω) = inf
u∈F(Ω)\{0}

E(u)

‖u‖2
2

,

(such a function ue exists since λmin(Ω) > 0), that is, 0 ≤ ue ∈ F(Ω) and

E(ue, ϕ) = λmin(Ω)

∫
Ω

ueϕdµ for any ϕ ∈ F(Ω).

In particular, taking ϕ = GΩ1Ω = EΩ, we have

E(ue,G
Ω1Ω) = λmin(Ω)

∫
Ω

ue(GΩ1Ω)dµ.

Observing that E(ue,GΩ1Ω) =
∫

Ω
uedµ, it follows that

λmin(Ω) =

∫
Ω

uedµ∫
Ω

ue(GΩ1Ω)dµ
≥

∫
Ω

uedµ

‖GΩ1Ω‖∞
∫

Ω
uedµ

=
1

‖GΩ1Ω‖∞
,

proving our claim.
Finally, combining (8.16) and (8.17), we finish the proof.

Lemma 8.4 Assume that (E,F) is regular and strongly local. Let Ω ⊂ M be open with
λmin(Ω) > 0, and assume that the Green function gΩ exists and is jointly continuous off
diagonal. Then, for any open set U b Ω ,

(8.18) res(U ,Ω) ≥ (inf∂U EΩ)2

µ(Ω)‖EΩ‖∞
.
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Proof Let up be the capacitory potential of (U ,Ω). By (8.4),

λmin(Ω) ≤ cap(U ,Ω)

‖up‖2
2

.

We see that, using the Cauchy–Schwarz inequality,

‖up‖2
2 =

∫
Ω

u2
pdµ ≥

(
∫

Ω
updµ)2

µ(Ω)
.

Note that by Lemma 6.5, for all x ∈ Ω \ ∂U ,

up(x) =

∫
∂U

gΩ(x, y)dνp(y),

where νp is the equilibrium measure of (U ,Ω) supported on ∂U . Hence,∫
Ω

up(x)dµ(x) =

∫
∂U

∫
Ω

gΩ(x, y)dµ(x)dνp(y)

=

∫
∂U

EΩ(y)dνp(y) ≥ νp(∂U ) inf
∂U

EΩ = cap(U ,Ω) inf
∂U

EΩ,

whence, it follows that

λmin(Ω) ≤ cap(U ,Ω)µ(Ω)

[cap(U ,Ω) inf∂U EΩ]2
=

res(U ,Ω)µ(Ω)

(inf∂U EΩ)2
.

Substituting (8.17) into this inequality, we obtain (8.18).

We now turn to the proof.

Proof of (H) + (EF)⇒ (H) + (RF) Fix a ball B := B(x0,R). We split the proof into
two steps.

Step 1. (H) + (EF)⇒ (RF ≤).
Indeed, this easily follows from (8.15): for any δ ∈ (0, 1),

res(δB,B) ≤ ‖E
B‖∞

µ(δB)
≤ C

F(R)

µ(B)
.

Step 2. (H) + (EF)⇒ (RF ≥).
Let 0 < δ < δ1, where δ1 is the same as in condition (EF ≥), and let

U = δB and Ω = B.

Note that by Lemma 7.7, the function EB is continuous in B. Hence, by condition
(EF ≥), we have that

inf
∂U

EΩ ≥ inf
U

EΩ = einf
U

EΩ ≥ C−1F(R).

Therefore, using (8.18) and condition (EF ≤), we conclude that

res(δB,B) ≥ (inf∂U EΩ)2

µ(U )‖EΩ‖∞
≥ [C−1F(R)]2

µ(U )[CF(R)]
≥ C ′

F(R)

µ(B)
,

thus proving condition (RF ≥), as desired.
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A Appendix

A.1 Capacity

Recall that the capacity cap(A,Ω) as well as the notion of a cap-quasi-continuous
function are defined in Section 3. It easily follows from Definition 3.5 that, for any
two Borel sets A,B b Ω,

(A.1) cap(A ∪ B,Ω) ≤ cap(A,Ω) + cap(B,Ω).

It follows from (A.1) and (3.4) that, for any sequence {Ai}∞i=1 of precompact open
subsets of Ω,

cap
( ∞⋃

n=1
Ai ,Ω

)
= lim

k→∞
cap
( k⋃

n=1
Ai ,Ω

)
≤
∞∑
i=1

cap(Ai ,Ω).

Lemma A.1 Assume that (E,F) is a regular Dirichlet form and that Ω is an open
subset of M. Then each function u ∈ F(Ω) admits a cap-quasi-continuous version.

Proof We adapt the proof of [16, Thm 2.1.3 (p. 71)] to our capacity. We first show
that, for each u ∈ F ∩C0(Ω) and each λ > 0,

(A.2) cap(G,Ω) ≤ 4

λ2
E(u),

where G := {x ∈ Ω : |u(x)| > λ}. Indeed, let

G ′ :=
{

x ∈ Ω : |u(x)| > λ

2

}
.

Then both G and G ′ are open and precompact in Ω, because u is continuous in Ω
with compact support. Also, we have

G = {x ∈ Ω : |u(x)| ≥ λ} ⊂ G ′.

Set ϕ := u
λ/2 ∧ 1. Clearly, ϕ ∈ F ∩ C0(Ω), and ϕ = 1 on G ′, and hence, it is a test

function for cap(G,Ω), that is

cap(G,Ω) ≤ E(ϕ) ≤ 4

λ2
E(u),

thus proving (A.2).
For each u ∈ F(Ω), by the regularity of (E,F), there exists a sequence {un}∞n=1 ⊂

F ∩ C0(Ω) such that un
F→u as n → ∞. Without loss of generality, we can assume

that, for any l ≥ 1,

(A.3) E(ul+1 − ul) ≤ 2−3l.
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Set

Gl = {x ∈ Ω : |ul+1(x)− ul(x)| > 2−l},

Fk = Ω \
( ∞⋃

l=k
Gl

)
=
∞⋂
l=k

(Ω \ Gl).

Note that each Gl is a precompact open subset of Ω. Fix some k ≥ 1. For any x ∈ Fk

and any l ≥ k, we have |ul+1(x) − ul(x)| ≤ 2−l. It follows that the sequence {ul(x)}
is Cauchy in C(Fk), and hence it converges uniformly to a continuous function on
Fk. Let ũ(x) = liml→∞ ul(x). Then ũ is defined on ∪∞k=1Fk, and ũ|Fk is continuous for
each k ≥ 1. Moreover, using (A.1), (A.2), and (A.3), we obtain

cap(Ω \ Fk,Ω) ≤
∞∑
l=k

cap(Gl,Ω) ≤
∞∑
l=k

4

2−2l
E(ul+1 − ul)

≤
∞∑
l=k

4

2−2l
· 2−3l = 8 · 2−k.

We conclude that ũ is continuous on Fk, the set Ω \ Fk = Fk
c is open, and

cap(Ω \ Fk,Ω) ≤ 8 · 2−k. Since ũ = u µ-a.e., it follows that ũ is a cap-quasi-
continuous version of u in Ω.

The next proposition shows that the capacitory potential up of (A,Ω) exists for
any compact subset A. In the classical potential theory, this issue is called the equilib-
rium problem or the Robin problem (cf. [35, p. 189]). It turns out that the capacitory
potential up of (A,Ω) is a reduced function of any cutoff function of (Ω,M) for any
precompact open Ω with λmin(Ω) > 0.

Proposition A.2 Assume that (E,F) is a regular Dirichlet form. Let Ω ⊂ M be
precompact open such that λmin(Ω) > 0, and let ψ be any cutoff function of (Ω,M) and
let A be a compact subset of Ω. Then the capacitory potential up of (A,Ω) is a reduced
function of ψ with respect to (A,Ω). If in addition (E,F) is strongly local, then up is
superharmonic in Ω.

Proof Let up be the capacitory potential of (A,Ω). By the standard approach, there
exists a minimizing sequence {uk}∞k=1 of cutoff functions of (A,Ω) such that uk

F→up

as k → ∞, and E(up) = cap(A,Ω), and moreover, the function up ∈ F(Ω), 0 ≤
up ≤ 1 in Ω, and up|A = 1. Note that this potential up is unique. Also, up is
harmonic in U = Ω \ A, since for any ϕ ∈ F ∩ C0(U ) and any number a, each
function uk + aϕ for k ≥ 1 is a cutoff function of (A,Ω), and thus

cap(A,Ω) ≤ E(uk + aϕ) = E(uk) + 2aE(uk, ϕ) + a2E(ϕ)

→ E(up) + 2aE(up, ϕ) + a2E(ϕ),

which implies that 2aE(up, ϕ) + a2E(ϕ) ≥ 0, showing that E(up, ϕ) = 0.
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Since ψ is a cutoff function of (Ω,M), it is straightforward to verify that up is a
reduced function of ψ.

Finally, if (E,F) is strongly local, the cutoff function ψ is harmonic (in particular
superharmonic) in Ω. Therefore, we obtain from Lemma 6.4 that up is superhar-
monic in Ω.

A.2 Functions in F(Ω \ A)

The following gives a sufficient condition for a function to belong to the space
F(Ω \ A), and it can be viewed as a supplement of [21, Proposition 2.8].

Proposition A.3 Assume that (E,F) is a regular Dirichlet form. Let Ω ⊂ M be open,
and let S ⊂ Ω be compact. If v ∈ F(Ω) vanishes in a neighborhood V of A, then
v ∈ F(Ω \ A).

Proof Note that v = v+ − v−, and v+ = v− = 0 in V , and that v+, v− ∈ F. It
suffices to assume that v ≥ 0 in Ω. We can also assume that v is bounded, because
otherwise consider a sequence vk := v ∧ k that tends to v in F-norm as k → ∞
by [16, Theorem 1.4.2(iii), p. 28]; if we already know that vk ∈ F(Ω \ A), then we
can conclude that also v ∈ F(Ω \ A). Hence, we can assume in the sequel that v is
non-negative and bounded in M, say 0 ≤ v ≤ 1.

Let ϕ be a cut-off function of (A,V ). Let {vk}∞k=1 be a sequence of functions from
F ∩ C0(Ω) such that vk

F→v as k → ∞. Consider uk := vk − vk ∧ ϕ. Note that each
uk ∈ F∩C0(Ω), uk = 0 in A, and hence, the support of uk is outside a neighborhood
of A, that is,

uk ∈ F ∩C0(Ω \ A).

We claim that {uk} converges to v weakly in F:

uk
F
⇀ v as k→∞.

Indeed, as v ≥ 0 and vk
F→ v,we have by [16, Theorem 1.4.2(v), p. 28] that |vk − ϕ|

F
⇀

|v − ϕ|, as k→∞. It follows that

vk ∧ ϕ =
1

2

[
vk + ϕ− |vk − ϕ|

]
F
⇀

1

2

[
v + ϕ− |v − ϕ|

]
= v ∧ ϕ,

and hence, uk = vk − vk ∧ ϕ
F
⇀ v − v ∧ ϕ = v, proving our claim.

Since uk ∈ F ∩C0(Ω \ A), we conclude that v ∈ F(Ω \ A).

As a conclusion of this subsection, we will give a decomposition of a function
u = u1 + u2 ∈ F(U ∪ V ) such that u1 ∈ F(U1), u2 ∈ F(V1) for any disjoint
neighborhoods U1,V1 of U ,V respectively.
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Proposition A.4 Assume that (E,F) is a regular Dirichlet form. Let U ,V be two pre-
compact open subsets of M such that their closures U ,V are disjoint. If u ∈ F(U ∪V )∩
L∞(M), we can decompose u = u1 + u2, where u1 ∈ F(U1), u2 ∈ F(V1), and where
U1,V1 are any respective neighborhoods of U ,V with disjoint closures U1,V1.

Proof Let φ be a cutoff function of (U ,U1). Since u ∈ F ∩ L∞, we also see that
u1 := uφ ∈ F ∩ L∞. We show that u1 ∈ F(U1). In fact, the support of u1 is
contained in the set

supp(u) ∩ supp(φ) j U ∪V ∩U1 = U ⊂ U1.

Hence, as U is precompact, we obtain by [21, Prop. 2.8, p. 2620] that u1 ∈ F(U1).
To show that u2 := (1− φ)u ∈ F(V1), observe that the support of u2 is contained

in the set
supp(u) ∩ supp(1− φ) j U ∪V ∩M \U = V ⊂ V1.

Hence, using [21, Prop. 2.8, p. 2620] again, we have that u2 ∈ F(V1).
Finally, note that

u = uφ + (1− φ)u = u1 + u2.

We finish the proof.
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