An Elementary Proof of Morley's Trisector Theorem

By Nancy Walls.

Morley's theorem states that if $A B C$ be any triangle, and if those trisectors of the angles B and C adjacent to $B C$ meet in L, and M, N be similarly constructed, then the triangle $L M N$ is equilateral.
$L M N$ is in fact one of eighteen equilateral triangles formed by meets of trisectors of the angles of $A B C$, when we consider the angle contained by a given pair of lines to be determined only in the form $\theta+2 n \pi$, where n is an arbitrary integer. This extension has been concisely treated in trigonometrical terms. ${ }^{1}$ To Morley himself is due the most elegant treatment of the subject, in which the sides of the equilateral triangles arise as the locus of centres of cardioids inscribed in $A B C .{ }^{2}$

The following proof requires only a knowledge of elementary geometry as far as Euclid, Book III. Such a proof has already been given, ${ }^{3}$ but it seems unfortunate that in the construction there adopted the symmetry intrinsic to the beauty of the proposition should play no part.

We shall prove the theorem in the equivalent form:If $P_{1} P_{2} P_{3}$ be any equilateral triangle and a_{1}, a_{2}, a_{3} any three angles of sum $\pi / 3$, then a triangle may be constructed having angles, of size $3 a_{1}, 3 a_{2}, 3 a_{3}$, the trisectors of which meet in P_{1}, P_{2}, P_{3}.

The theorem as originally stated follows immediately from this, since if the angles of $A B C$ be taken as $3 a_{1}, 3 a_{2}, 3 a_{3}$ we obtain a figure similar to the original one, whence $L M N$ is equilateral.

[^0]

Construct through P_{j}, P_{k} that circle, S_{i}, at whose circumference $P_{j} P_{k}$ subtends an angle α_{i} on the side opposite to P_{i}, the convention $i j k=123,231$ and 312 being obeyed throughout.

Let Q_{i}, R_{i} be those points of S_{i} distinct from P_{j}, P_{k} such that the chords $Q_{i} P_{k}, P_{j} R_{i}$ are equal in length to $P_{j} P_{k}$. Let $Q_{k} R_{i}, R_{j} Q_{i}$ meet in X_{i}. We shall show that $X_{1} X_{2} X_{3}$ is the required triangle.

It is an immediate consequence of the construction that $Q_{i} \widehat{P}_{k} P_{j}=P_{k} \widehat{P_{j}} R_{i}=\pi-2 a_{i}$. Hence, adding the angles at P_{i} and using $\Sigma a_{i}=\pi / 3$, we have $R_{k} \widehat{P_{i}} Q_{j}=\pi / 3-2 a_{i}$, whence $P_{i} \widehat{Q_{j}} X_{j}=$ $P_{i} \widehat{R_{k}} X_{k}=2 \pi / 3-\alpha_{i}$.

Now the angles of a pentagon have sum 3π, so that $Q_{i} \widehat{X}_{i} R_{i}=3 a_{i}$. But this is the angle subtended at the circumference of S_{i} by $Q_{i} R_{i}$, whence X_{i} lies on S_{i}. It follows that $Q_{i} \widehat{X}_{i} R_{i}$ is trisected by $X_{i} P_{j}$, $\boldsymbol{X}_{i} P_{k}$.

Thus $X_{1} X_{2} X_{3}$ is a triangle having angles, of size $3 a_{1}, 3 a_{2}, 3 a_{3}$, the trisectors of which meet in P_{1}, P_{2}, P_{3}.

[^0]: ${ }^{1}$ H. Lob and H. W. Richmond, Proc. London Math. Soc. (2), 31 (1930), 355-369.
 ${ }^{2}$ F. Morley, American J. of Math., 51 (1929), 465-472 (469).
 ${ }^{3}$ J. M. Child, Math. Gazette, 11 (1923), 171.

