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ABSTRACT 

The current theoretical understanding of the linear and nonlinear 
evolution of resistive tearing instabilities in sheared magnetic fields 
is reviewed. The physical mechanisms underlying this instability are 
emphasized. Some of the problems which are encountered in developing a 
model of magnetic energy dissipation in coronal loops are discussed and 
possible solutions are suggested. 

I. INTRODUCTION 

The conversion of magnetic to particle energy is a fundamental 
process which underlies such diverse phenomena in nature as disruptions 
in laboratory plasmas,1 magnetic substorms in the magnetosphere of the 
earth,2 and solar flares.3 The development of theoretical models of 
this energy conversion process is therefore of central importance to our 
understanding of these basic phenomena. 

The most simple models of magnetic energy conversion are based on a 
slab equilibrium such as that shown in Fig. 1. A plasma carrying a 
current J Z Q ( X ) generates the magnetic field B Q ( X ) . When a uniform 
guide field B Z Q » B Y Q is included in the configuration the equilibrium 
is unchanged but the magnetic field rotates through a finite angle as 
the region of current carrying plasma is crossed. For B Z Q = 0 the 
magnetic field simply reverses. Only the former case, that of a sheared 
magnetic field, is considered in this paper. 

When collisions are included in this 1-D equilibrium, the resistive 
diffusion of the magnetic field B Y Q dissipates both magnetic energy and 
magnetic flux and the flux annihilation velocity Vg is given by a/r r, 
where T = 4 7 r a 2/nc 2 is the resistive diffusion time based on. the 
resistivity n and equilibrium scale size "a". In most applications the 
resistive diffusion time is far too long to explain the observed energy 
release time scales. 
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Faster rates of magnetic energy dissipation can be achieved by 
considering perturbations of the equilibrium in Fig. 1 which change the 
topology of the magnetic field by forming one or more x-points as shown 
in Figs. 2 and 3a. In Fig. 2 the plasma and magnetic field at x = ±°° 
flow toward a single x-line at x = 0 as indicated by the short arrows. 
The inflowing magnetic field reconnects in the vicinity of the x-line 
and flows out at y = ±°°. In Fig. 3a the magnetic field reconnects to 
form a periodic set of x and 0-points with a flow pattern indicated by 
the thin arrows. In both configurations the flow is driven by the 
release in the tension of the reconnecting magnetic field, which will be 
discussed in more detail later. 

While in the case of magnetic dissipation in the one-dimensional 
model, only one time scale, T , entered the problem, the bending of the 
magnetic field in the x-y plane in Figs. 2 and 3 brings in a second 
fundamental time scale, the shear Alfven time, x̂ y = a/c^ v, where c^y = 
(ByQ/4irm^n)* is the Alfven velocity associated with the magnetic field 
B Q . The ratio of these two times, the Lundquist number S = x / x., is 
a large parameter in high temperature plasma. The existence or this 
second time scale implies that the characteristic time for magnetic 
energy dissipation can be a hybrid of x r and x^ which can be much 
shorter than x r. Note that the compressional Alfven time x̂  = a/c»z 

« x^ v does not enter the problem because the large B Z Q field contains 
no free energy and is simply convected with the fluid. 

A number of steady state models of reconnection have been proposed 
which are based on the single x-line configuration shown in Fig. 2. 
Vasyliunas^ has discussed these models in detail so we only briefly 
mention some essential features of these theories. In the Sweet-Parker^ 
model magnetic reconnection takes place in an elongated l4Yer (the 
region where resistivity is important) of width Ax ~ a/S ' 2 in the x 
direction and the system size in the y direction. The outflow velocity 
is the Alfven speed c ^ and the merging velocity V is given by 

so that the time scale for dissipation of magnetic energy is of order 
^ Tr^ TAy^ I n P e t s c n e k ' s ^ model the reconnection region is much 
smaller, scaling as Ax ~ aS ~*lnS and Ay ~ S"*ln2S in the x and y 
directions, respectively. The outflow velocity is again the Alfven 
speed with the merging velocity 

V/c A y ~ (InS)" 1 , 

much larger than the Sweet-Parker rate. In Petschek's model a set of 
slow shocks form outside the resistive region along the separatrices in 
Fig. 2. These slow shocks link the magnetic fields and flows within the 
outflow region to those in the inflow region. The time development of 
these slow shocks has been observed in numerical simulations^ in which 
the inflow velocity V in Fig. 2 is imposed as a boundary condition. 
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As emphasized very strongly by Vasyliunas, the Petschek solution 
actually represents an upper bound on the reconnection rate and 
therefore neither the steady reconnection models nor simulations of 
forced reconnection where the inflow velocity is imposed externally can 
answer the important question: what is the characteristic magnetic 
energy dissipation rate or time scale which is generated by the 
hydromagnetic forces within the current carrying plasma? In order to 
address this question it is necessary to include all the forces within 
the plasma which are driving the reconnection and follow the time 
development of the system from some appropriate initial conditions. 
Such a calculation essentially reduces to solving for the nonlinear 
development of the tearing instability (or reconnection driven by an 
ideal mode such as the kink) in the geometry of interest. In the 
remainder of this paper, the basic properties of the linear resistive 
tearing instability and our current understanding of the nonlinear 
behavior of these and related instabilities is discussed. Because of 
space limitations, the tearing instability in the collisionless and long 
mean-free path regimes is not discussed. The interested reader is 
referred to Refs. 8 and 9 for a discussion of the linear and nonlinear 
behavior of the instability in these limits. 

II. LINEAR TEARING INSTABILITY 

The tearing instability is the mechanism by which a current 
carrying plasma spontaneously evolves to a lower magnetic energy state. 
The magnetic energy released goes into bulk plasma motion as shown in 
Fig. 3a and into the internal plasma energy by Joule heating. The 
resistive tearing instability is described by the one-fluid 
raagnetohydrodynamic equations, 

pdv/dt = J x B/ c - Vp , (1) 

dp/dt + (y - 1) pV-v = (Y g - D n J 2 , (2) 

V x B = 4TTJ/C , (3) 

V x E + c - 13B/3t = 0 , (4) 

nJ = E + v x B/c , (5) 

V-B = 0 ; V«J = 0 ; d/dt = 9/ 3t + v*V , (6) 

where the mass density p is taken to be a constant, Y g is the ratio of 
specific heats and other notation is standard. The forces driving the 
tearing instability and the fundamental structure of the mode are the 
same in slab and cylindrical geometry. For simplicity, we therefore 
first discuss the instability in the slab geometry of Fig. 1 in detail 
and then extend the results to a cylinder. 

The tearing mode is driven by the relaxation in the tension of the 
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reconnecting magnetic field lines. This can be easily shown by using 
Eqs. (1) and (3) to write the force density F on the local magnetofluid 
as 

F = - V(P+B 2/8TT) + B»VB/4TT . 

Since the time scale associated with the growth of magnetic islands is 
much longer than compressional Alfven time T ^ z , the plasma flow shown in 
Fig. 3a is incompressible (V*v = 0 ) . In this limit the gradient term in 
the force density does not contribute to the energetics of the tearing 
mode. The instability is driven only by the magnetic tension. The 
forces driving the instability are illustrated in Fig. 3a. The force 
density, given by the local magnetic tension, is shown by the thick 
arrows and the flow velocity by the thin arrows. In the region outside 
of the separatrix of the magnetic island the plasma flow opposes the 
magnetic force. In this region the flow stretches the magnetic field 
lines, locally increasing the magnetic energy. Within the magnetic 
island, however, the flow and magnetic forces are aligned so that it is 
the relaxation of the magnetic stress of the reconnecting field lines 
which drives the flow and the magnetic energy is reduced in this 
region. It is quite clear from Fig. 3a that in the absence of 
resistivity, so that reconnection of the magnetic field can not take 
place, all perturbations increase the magnetic energy so there is no 
instability. Moreover, to the extent that the resistivity in a high 
temperature plasma is small (S is large), the tearing instability is a 
slowly growing mode. 

We now simplify the magnetohydrodynamic equations given in Eqs. 
(l)-(6) to study the tearing mode in more detail. For simplicity we 
treat the case where 8/8z = 0. In the low frequency limit 3/8t « T^ Z, 
the plasma motion is nearly incompressible and the velocity can be 
represented by the stream function <f> as 

v = z x V<|> . (7) 

An equation for the stream function is obtained by taking the curl of 
the momentum^equation [Eq. (1)] and then taking the dot product with the 
unit vector z, 

pd(V2<f>)/dt = c^B'VJ . 
~ z 

The magnetic field can similarly be expressed in terms of the z 
component of the vector potential as 

(8) 

5 = B z 0 Z " Z X V A z > (9> 
and an equation for A z follows from the z component of Eq. (3), 

V 2 A z = - 47TJ / c . ( 1 0 ) 

Since 3/8z = 0, the vector potential A z is also a flux function, 
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B*VAZ = 0, so that the flux surfaces are surfaces of constant A . From 
the z component of Ohm's law in Eq. (5), we obtain an equation for J 

nJz = E z - B-V<f)/c . (11) 

The electric field E = - c~18Az/8t follows from Eqs. (9) and (4), so 
that (11) becomes 

nJ z 
= - c X(8A /8t + B»V<f>) . (12) 

Equations (6)-(10) and (12) provide a complete set of equations for both 
the linear and nonlinear tearing mode. In the incompressible limit 
considered here neither the pressure p nor B Z Q enter the equations for 
the tearing mode. Of course, when B Z Q = 0, the electrons and ions are 
demagnetized near x = 0 and the fluid equations can not be used to 
describe the plasma dynamics. The resistivity has been taken to be 
constant in time in Ea. (12) so that neither the rippling 1 0' 1 1 nor the 
thermal instabilities 1 2 > 1 3 are described by these equations. 

In the limit of B Z Q » B Q , the z direction is nearly aligned along 
the magnetic field, A z - Aj(, J z ~ J,j, and Eq. (12) can be interpreted as 
the parallel Ohm's law, 

nJ(( = E(( = - c^OAj/at + B-V$) , (13) 

where the subscript II denotes the component along B. The stream 
function <(> is now the electrostatic potential and the flow in Eq. (7) is 
simply given by the g, x £, drift associated with this potential. In the 
two fluid description of the tearing mode in this limit, Eq. (8) is the 
charge neutrality condition n^ = n e where n^ on the left side of Eq. (8) 
is the divergence of the ion polarization drift and the right side of 
(8) results from the parallel bunching of electrons.8 

To study the linear tearing instability, we linearize the equations 
assuming all perturbed quantities vary as exp(yt + ik yy). The coupled 
second order equations for A z and <t> are 

V 2A z = - 4TTJ Z/C , (14) 

YV 2? = ik-BJz/c + ik yA zJ z Q/c , (15) 

riJz = E„ = " (YAz + ik-B?)/c , (16) 

where the prime denotes d/dx. Because of the x dependence of = k y 

B Q ( X ) and J ZQ( x)> t h e s e equations must be solved as an eigenvalue 
problem subject to the boundary conditions ?>A z> 0 as |x| > °°. Further 
insight into the nature of the tearing mode can be gained by 
constructing an energy integral from Eqs. (14)-(16), 
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i^/dx [ ^ p | V ? | 2
+ ^ | V A z | 2

+ ^ ! ^ | A z | 2 ] 
yO 

JdxnJz(Jz + « A z) . 
yO 

(17) 

The first term on the left side of this equation is the flow kinetic 
energy, the second two terras combine to give the total change in 
magnetic energy, while the resistive term is the rate of dissipation of 
energy by Joule heating. To have instability we require that the 
magnetic energy decrease or1** 

B" 
6 W B = W ^ | V A z | 2 - r ^ | A z | 2 ) < 0 . (18) 

yO 

The first term in the integral, which is positive and therefore 
stabilizing, is the square of the first order fields, B ^ ^ B ) 1 ) , while 
the second comes from the second order field, B^^ByQ. For the 
equilibrium of^Fig. 1, the second term is destabilizing (negative) and 
scales as a~ 2|A z| 2, where "a" is the characteristic length of the 
equilibrium magnetic field, while the first is stabilizing and scales as 
ky 1̂ 1 • For instability we therefore require k ya < 1 so that the 
tearing instability is inherently a long wavelength phenomena. Note 
also that ByQ = J Z Q SO that the instability is driven by the gradient of 
the equilibrium current. 

We now return to discuss the solutions to Eqs. (14)-(16). In high 
temperature plasma where S » 1 the resistivity n in Eq. (16) can be 
neglected throughout most of the plasma so that E ̂  = 0, i.e., the 
parallel induction and electrostatic fields balance. The cancellation 
between these terms occurs because of the high electron mobility along 
B. The bunching of electrons parallel to g, driven by the induction 
field produces an electrostatic field which effectively shorts out the 
induction field. The condition E^ = 0 can be rewritten as 

3A /3t + v 3A /3x = 0 , (19) 
Z X z ' 

so that the rate of change of flux in the frame of the moving fluid is 
zero. In the "ideal" region the plasma and flux are frozen together. 
The inertia term on the left-hand side of Eq. (15) can be neglected in 
the ideal region so the two terms on the right side of the equation 
balance and 

\ - - ( W j ; o • ( 2 o ) 

The plasma displacement Ax can be calculated using Eq. (19) as 
Ax = - A z/ByQ. Thus, the perturbed current in the ideal region simply 
results from the displacement of the equilibrium current J Z Q » Equations 
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(14) and (20) yield a single second order equation for A z valid in the 
ideal region, 

V \ ~ ( W * Z • ° • (2D 
The parallel induction and electrostatic fields balance everywhere 

except where the parallel electrostatic field is zero in the vicinity of 
k»B = 0 [see Eq. (16)], or for the equilibrium of Fig. 1 at x = 0. In 
this region E^ * 0 and since n is small a large parallel current is 
driven. For an ideal mode, where n is taken to be strictly zero, 
A (x=0) = 0 and since B = ik A = 0, no magnetic island is formed. 
z x y c» 

However, for a resistive mode such as the tearing mode, this constraint 
does not apply and Bx(x=0) * 0 allowing a magnetic island to form as in 
Fig. 3a. Because n is small, the region A around x = 0 where E^ * 0 is 
also small (A/a « 1) so that Eq. (21) for A z is valid throughout most 
of the plasma. 

A typical solution of the ideal equation for A z is shown in Fig. 4a 
for a mode with k^a < 1. The^slope of A z is discontinuous across x = 0 
where the ideal equation for A z breaks down. In the region x ~ A 
resistivity must be retained in the equation for A z and the solutions of 
this equation must be matched to the ideal solutions so that the 
complete solution for A z is continuous everywhere. Nevertheless, the 
ideal solution can be characterized by the discontinuity in the slope of 
A z at x = 0 as measured by the quantity 1 0 

A' = [8A (x=0+)/3x - 8A (x=0~)/8x]/A (0) . (22) z z z 
For the Harris equilibrium, B y 0 = B YQ 0tanh(x/a), the parameter A' can be 
calculated analytically as 

A'a = 2(1 - k 2a 2)/|k y|a . (23) 

The parameter A ' is related to the magnetic energy released by the 
tearing mode. This relation can be derived by multiplying Eq. (21) by 
A z and integrating over the region |x| > A. After an integration by 
parts, we find 

A' = - 8TT6W B//dy|A z(x=0)| 2 . (24) 

The tearing mode should be unstable for 6W g < 0 or A' > 0. 

The equations governing the resistive region |x| ~ A « a,ky* are 
obtained from Eqs. (14)-(16) by neglecting J z 0 in (15) and approximating 
V 2 * 8 2/8x 2 and k*B = k yBy Qx, 

A n = (4Try/nc 2)(A + x*/A) , z z 

4>M = ( x / A 3 ) ( A + x < f > / A ) , 
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A/a = ( y x A y / S k 2 a 2 ) 1 / 4 , (27) 

where A is the scale length of the resistive layer and <j) = ik B' A$/y. 
The equations describe the transition from E(| = - Y A Z / C at x - (r to 
E|( * 0 for x » A as illustrated in Fig. 4b. While the resistive layer 
equations can be solved exactly, in the limit 4TTYA 2/TIC 2 « 1, the flux 
perturbation A Z can readily diffuse across the resistive layer A during 
the growth time Y of the mode so that A z(x) is nearly constant in the 
resistive region and can be approximated by A

z(0) on the right side of 
Eqs. (25) and (26). This is the widely invoked "constant ij/f 
approximation.*0 Equation (26) can now be readily inverted to obtain 
<(> and Eq. (25) can then be integrated to obtain the jump in 3Az/ 9x 
across the resistive layer. Matching this jump with that obtained from 
the ideal solution in (23), we obtain the growth rate of the resistive 
tearing mode, 1 0 

YT. = S" 3 / 5[(l - k 2a 2 ) r(l/4 ) / 7 r r(3/4)] 4 / 5(k a ) " 2 / 5 (28) 
Ay y y 

For kya ? 1, A/a ~ S - 2 ^ « 1 so the resistive layer is indeed small. 
The expression for the growth rate in (28) implies that the fastest 
growing modes are those with k^a « 1. The "constant approximation 
breaks down for k ya too small since both A and Y increase with 
decreasing k^. The fastest growing modes are those with k ya ~ S~*' , 
for which 4TTYA 2/TIC 2 ~ 1, i.e., the growth time and diffusion time across 
the resistive layer are comparable. 5 In practical applications where S 
is very large, however, the finite geometry of the system often prevents 
k ya from being as small as S*"*'4. 

In deriving the dispersion relation in Eq. (28), we assumed 
3/3z = ik z - 0 so that k»B = 0 at x = 0 and the magnetic island forms 
symmetrically in this region as shown in Fig. 3a. When k z ± 0, the 
linear tearing mode equations in (14)-(16) are still valid as long as 
B Z Q >> ByQ. Resistivity is again important where 

k-B = kyB y 0(x) + k z B z Q = 0, 

which is now at x = XQ * 0. The magnetic islands form around XQ and are 
driven by the reconnection of the magnetic flux corresponding the 
component of B along k, which reverses sign at k»B = 0. The calculation 
of the growth rate of the nonsymmetric islands is basically unchanged 
from that presented for the symmetric case. The growth rates are 
generally smaller than when k z = 0 because A' is reduced. 

The location and size of the magnetic islands formed can be 
calculated by constructing the flux function defined by 

B• Vip = B 03i|>/3z - z x VÂ -ViJ; = 0 . (29) 
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Such a function can generally only be constructed for 2-D problems in 
which i|> = i|>(x,y+pz), where p is a constant. For this case 3/3z = p3/3y 
and 

* = p B z O x " A
z( x>y+P z) • (30) 

The islands form where the equilibrium flux function, has an 
extremum, or 

3*0/fcc = [pB z 0x - A z Q(x)]' = ( k z B z 0 + k yB y 0)/k y = 0 , (31) 

i.e., where k»B = 0. Note that is the flux associated with the 
component of B along jc. The island size is calculated by including the 
perturbation A z = Az(x)cosky(y+pz) in Eq. (30) and expanding x around 
x0> 

* = B^ 0(x- X ( )) 2/2 + Az(x0)cos[ky(y+pz)] . (32) 

Since ^ is a constant along a given magnetic field line, the structure 
of the magnetic island can be mapped out by calculating the constant \|/ 
surfaces. The island width w is simply 

w = [ 2 X z ( x Q ) / | B y 0 | ] 1 / 2 . (33) 

Before discussing the nonlinear behavior of the tearing 
instability, we will complete our description of the linear mode by 
discussing the case of a cylindrical equilibrium. Consider a plasma 
carrying a current J-o(r) which produces a poloidal field B Q Q ( T ) and is 
periodic in z over the length L. For simplicity, we again consider the 
limit of a large axial magnetic field B Z Q » B Q Q . The pitch of the 
magnetic field line is measured by the quantity 

q = 2 7 r r B z 0 / L B e o ( r ) . (34) 

The parameter q increases monotonically with increasing r for current 
profiles peaked around r = 0. As in the slab geometry, a flux function 
can be defined for the 2-D case where = iKr,6 + 2irpz/L). The flux 
function can be easily calculated as 

* = p B z 0 T r r 2 / 2 - A z(r,6 + 2TT PZ/L) , 

and again reconnection can occur where k #B = 0 . In a cylinder 
periodicity in 9 and z requires k Q = m/r and k z = - 2irn/L, 
where m and n are integers, so that 

k-B = [m-nq(r)]Beo(r)/r , (35) 

and p = - m/n. Tearing modes can therefore only form at discrete 
rational surfaces TQ where q(rg) = m/n. 

https://doi.org/10.1017/S0074180900075513 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900075513


70 
J. F. D R A K E 

The essential physics of tearing in a cylinder is unchanged from 
that in slab geometry and in particular the linearized Eqs. (14)—(16) 
are also valid for the cylinder if kyJ^O * k 9 9 J z Q ^ 9 r a n d k z i s 

neglected compared with k? in the V 2 operators. Because of geometrical 
effects, the magnetohydrodynamic driving energy A' is approximately an 
order of magnitude larger in the cylinder than in the slab. 1 6 

The most significant new feature in a cylinder is the existence of 
the m=l kink mode. 1 7" 1 9 For the slab tearing mode it was previously 
shown (Fig. 3) that the stretching of the magnetic field in the region 
outside of the magnetic island was stabilizing. This argument does not 
apply to the kink mode as can be seen in Fig. 5. The inner region of 
the plasma, where q < n -* is displaced uniformly while the outer region, 
where q > n~**, remains stationary. Large poloidal flows emanating from 
the region of the x-line enable the flow to remain nearly 
incompressible. A uniform displacement of the plasma does not cause any 
distortion of the magnetic field lines so there is no restoring force 
from magnetic tension as in the slab or as with cylindrical modes with 
m*l. Indeed, the magnetic forces in the ideal region are destabilizing 
where q(r) < n~* and the kink mode is unstable when q(0) < n~* even in 
the ideal limit. 1 7> 1 8 

A detailed calculation of the stability of the kink tearing mode 
has been carried out previously 1 9 and we do not repeat the details 
here. The procedure is basically the same as that used to calculate the 
growth rate of tearing modes in slab geometry. The ideal equations are 
solved away from the rational surface and the discontinuity in the ideal 
solutions across the rational surface is bridged with the solutions of 
the resistive equations similar to those in Eqs. (25) and (26). The 
result is that the growth rate of the kink-tearing mode is the larger of 
the ideal, 1 8 

r0 

Y T A 6 - 2

T O (Jl) 2 J drB2
0(l - nq)(3nq + 1) 

~ ( 2 7 r r 0 / L ) 2 , (36) 

and resistive, 

Y T A 6 = < V T r ) 1 / 3 ( « ' r 0 n ) " 4 / 3 • < 3 7> 
growth rates where T A q is Alfven time based on Bg (TQ) and the length 
TQ and T R is the resistive time based on TQ. It should be emphasized 
that the "constant if>" approximation does not apply to the m=l mode. In 
fact, the dispersion relation of the kink tearing mode in Eq. (37) can 
be expressed as 

47TYA 2/nc 2 - 1 , (38) 
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III. NONLINEAR TEARING INSTABILITIES 

When the width w of the magnetic island of the tearing mode becomes 
comparable to the width of dissipation region A, the magnetic structure 
of the dissipation region is strongly modified. Since the growth rate 
of the tearing mode is sensitive to the plasma dynamics in this 
resistive region, the evolution of the mode should be strongly affected 
once 
w > A. 

For simplicity, we consider the slab geometry tearing mode of 
Fig. 3 with d/dz = 0. Equations (7)-(10) and (12) describe the 
nonlinear behavior of the 2-D structure of the mode in the x-y plane. 
When A < w « a, the dominant nonlinear behavior of the tearing mode is 

where 

(A/rQ) = ( Y T ^ / T ^ r J ) 1 / * ( 3 9 ) 

is the resistive layer thickness [from Eqs. (15) and (16)]. The growth 
time of the resistive kink mode is therefore given by the flux diffusion 
time across the resistive layer. 

When the kink mode is discussed in the literature, the ideal 
external kink, in which q(r) < n throughout the entire plasma and the 
rational surface falls in the vacuum region, 1 2 and the ideal internal 
kink in which q(0) < n" 1 but the rational surface lies within the 
plasma, 1 7* 1 8 are often treated as entirely separate instabilities. The 
growth rate of the external kink is of order T ~, which is much larger 
than that of the internal mode given in Eq. (3oJ. A vacuum can be 
considered as the limit of a very resistive plasma, so when resistivity 
is included there is a continuous transition between these two modes. 
When the rational surface falls in the region of high conductivity, the 
growth rate is given in Eq. (36). As the rational surface moves towards 
larger r, where n is larger, the growth rate increases until T^Q ~ T 
when y ~ T~Q. At this point, of course, A is no longer small so that 
the matching procedure which leads to the growth rates in Eqs. (36) and 
(37) is invalid and inertia must be retained through the entire plasma. 

An important point which is often overlooked in invoking the 
tearing mode to explain physical phenomena is that the linear treatment 
of this instability mode is valid only when the width of the magnetic 
island w is smaller than the resistive layer thickness A. When w ~ A, 
the island structure strongly modifies the magnetic geometry of the 
dissipation region. Since A « a, for a high temperature plasma the 
linear theory only applies when w is extremely small. As a consequence, 
the linear growth time of the mode has no relation with the time 
required to dissipate a significant fraction of the magnetic free energy 
in a current carrying plasma. The nonlinear development of the tearing 
mode must be studied to address this problem. 
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produced by the B*V operators in Eqs. (8) and (12) in the resistive 
layer. We therefore first focus on this region where V 2 « 8 2/9x 2 and 
equilibrium currents can be neglected. In the linear phase the left and 
right sides of Eq. (8) are comparable. When the island width w exceeds 
the tearing width the scale size of the resistive region increases so 
that the inertia term scales as PY ?/w2 and is therefore^ reduced. By 
contrast, the right side of (8) should scale as c~*ByQwJz, which 
increases with w. To lowest order, the inertia in Eq. (8) can therefore 
be neglected, leaving 2 0 

B*V? z = 0 , (40) 

where £ = j$q + B is the total field. Nonlinearly, d z is a constant 
along the magnetic field line and Eq. (12) can therefore be averaged 
over a field line, 

nJ = n < T > = - c~l<& /3t> , (41) z z z ' 7 

where < > denotes^the average over one period of the tearing mode and 
<B#V4>> = 0 since <\> is periodic. Combining Eq. (41) with Ampere's law, 
we obtain a nonlinear equation for A z, 

Az
f = - (47r/nc 2)<3A z/8t> , (42) 

Note that although <f> does not appear in Eq. (42), <t> is certainly not 
negligible. In fact, the parallel bunching of electrons along B by 
3Az/8t produces the potential $ which forces Ej( to be constant along 
If we represent A z bŷ  a single harmonic cos k yy and invoke the "constant 
i|/f approximation, OA z/3t> - (3A z(0)/3 t)<cos k y>. It is easily seen 
by comparing Figs. 3a and 3b that <cos k yy> ~ 1 within the magnetic 
island and is zero outside. Nonlinearly, the resistive layer width is 
therefore given by the width of the magnetic island. Integrating Eq. 
(42) across the island and matching to the outer ideal solution as in 
the linear theory, we obtain the Rutherford expression for the rate of 
increase of the magnetic island, 2 0 

d(w/a)/dt ~ A'a/i^ . (43) 

The island width w grows linearly in time. Most significantly, w 
becomes of order "a" on the resistive time scale T r so that the standard 
tearing mode does not lead to a significant enhancement in the rate of 
dissipation of magnetic flux. It is clear from Eq. (43) that inertia 
does not play any role in the nonlinear growth of the mode. Consequent­
ly, the tearing mode simply represents the diffusive evolution of the 
initial state to a more complex equilibrium. The expression for dw/dt 
in (43) has been extended to include the quasilinear modification of the 
equilibrium current profile, the result being that A'(0) in (43) is 
replaced by A'(w), the discontinuity in the slope of the ideal solution 
across the width of the island. 2 1 As can be seen in Fig. 4, A'(w) = 0 
for large enough w so the magnetic island eventually saturates. The 
nonlinear evolution of slab modes with k z ± 0 and cylindrical modes is 
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basically unchanged from that of the symmetric slab mode. 

The previous calculation of the nonlinear evolution of tearing 
modes does not apply to modes which violate the "constant 
approximation since the induction field 8Az/8t may be very nonuniform 
within the magnetic island. Such modes include the very long wavelength 
tearing modes, the kink-tearing mode, the double tearing mode, and the 
coalescence instability. The double tearing mode occurs when k»B = 0 at 
two locations which are close enough so that the flows associated with 
the reconnection at the two reversal layers drive each other. 2 2 This 
instability is stable when n = 0 but has a structure and growth rate 
which is similar to the kink-tearing mode for n not too small. The 
coalescence instability is driven by the attraction of the current 
filaments of adjacent magnetic islands in an existing island chain. 2 3 

This is an ideal instability which, like the kink tearing mode, also 
drives reconnection when n * 0. The nonlinear behavior of the long 
wavelength and double tearing modes is currently not well understood. 

The coalescence instability and the kink-tearing mode are the most 
likely candidates for producing fast reconnection since they are both 
ideally unstable and the flows are therefore strongly internally 
driven. Computer simulations of both of these instabilities have been 
performed and the qualitative features of the reconnection process are 
the same for both instabilities. During the initial ideal phase of the 
coalescence instability as shown in Fig. 6, two adjacent magnetic 
islands accelerate together and form a quasineutral layer at the 
location of the original x-point between the two. 2 i + Similarly in the 
cylinder the central region of current carrying plasma kinks and forms a 
quasineutral around the x-line shown in Fig. 5 . 2 5 * 2 6 At this point the 
flow towards the quasineutral layer in both instabilities begins to 
force the reversed magnetic flux to reconnect. In both cases the 
reconnection velocity is roughly given by v ~ a/(xAx r ) * ' ^ and the 
vertical scale size of the quasineutral layer is independent of n, in 
agreement with the Sweet-Parker model. However, the dynamics of the 
process are much more complex than in the Sweet-Parker model. The 
neutral layer tends to break up into multiple magnetic islands and 
reconnection of the reversed flux occurs in bursts. It should also be 
emphasized that the boundaries in both simulations are far from the 
region of plasma flow and therefore do not inhibit the rate of 
reconnection. The clear conclusion from these simulations is that 
reconnection of magnetic flux does not typically occur at Petschek's 
rate but much slower. Of course, one can not eliminate the possibility 
that under some very special conditions faster reconnection may be 
possible. 

The discussion of nonlinear tearing instabilities up to this point 
is valid for 2-D systems where the magnetohydrodynamic variables depend 
only on x and y+pz in the slab and r and 9 - 2imz/mL in a cylinder. 
While in the 2-D case the tearing mode grows rather slowly and then 
saturates in a rather benign manner, the evolution of the instability in 
3-D can be much more violent. In 3-D simulations of the tearing mode in 
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a cylinder, the magnetic island of the m/n = 2/1 tearing mode can reach 
large amplitude, w/a ~ .4 - .5, when the initial current profile is 
fairly flat. When the magnetic island of the 2/1 mode approaches the q 
= 3/2 and 5/3 rational surfaces, the m/n = 3/2 and 5/3 modes are 
strongly destabilized. These modes subsequently destabilize even higher 
mode numbers, the entire process culminating in a broad spectrum of 
magnetic turbulence.27 The destruction of the magnetic surfaces 
associated with the formation of the turbulent bath and the associated 
loss of particle and energy confinement has been correlated with the 
major disruptions in tokamak discharges. In detailed studies of the 
properties of this magnetic turbulence it has been shown that the 
dissipation of magnetic energy is dominated by the short wavelength 
component of the spectrum and that the effective resistivity, given by 

neff = ^&V^I\^V^\ > 
where n n is the spatial averaged value of n(r), is nearly independent of 
n 2 8 U 

The physical mechanism behind the destabilization of the short 
wavelength tearing modes has recently been investigated in some detail 
by examining the linear stability of a cylindrical equilibrium 
containing a large amplitude m/n = 2/1 magnetic island. 2 9 The 2/1 
tearing mode grows by feeding off the current gradient in region r < 
TQ, where TQ is the location of the 2/1 rational surface. As a 
consequence, the growth of the 2/1 mode actually steepens the current 
profile as shown in Fig. 7. The solid (dashed) line is the current 
profile after (before) the 2/1 mode reaches large amplitude. The arrows 
mark the position of inside and outside separatrices of the 2/1 magnetic 
island. In a 2-D simulation all modes have rational surfaces at the q=2 
surface so no modes can be driven by the steep gradient in Fig. 7. In 
3-D simulations other modes, such as the 3/2 and 5/3 modes, have 
rational surfaces in the region of large current gradient produced by 
the 2/1 mode. These modes are strongly destabilized with growth rates 
which are nearly independent of the resistivity.29 It is also 
interesting to observe that this calculation of the onset of 3-D 
magnetic turbulence in the cylinder is quite similar to that of 
Poiseuille flow in fluids. 3 0 

IV. PROBLEMS IN UNDERSTANDING RECONNECTION IN SPACE AND ASTROPHYSICAL 
PLASMAS 

Until recently, much of the linear and especially nonlinear work on 
tearing modes has been carried out for laboratory applications. 
Applications to space and astrophysical plasmas are complicated by 
generally more complex geometries and extremely large values of the 
Lundquist number S = T R / T A . A S a specific example, we discuss efforts 
to understand magnetic energy dissipation in coronal loops. The 
structure and nonlinear evolution of collisionless and collisional 
tearing modes in the Earth's magnetosphere are also being studied. 3 1' 3 3 
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The dissipation of magnetic energy in coronal loops was proposed as 
a flare model a number of years ago. 3^ Loops such as that shown in Fig. 
8 are observed to be stable for many Alfven times and then to release 
large amounts of energy ranging from l()28-io30 ergs on a time scale of 
order 10^ sec. The major radius of the loop is of order 10$ C m and 
minor radius 10^ cm. At the top of the loop in the corona (T ~ 100 ev, 
n ~ 10 9/cm 3, B ~ 200 G) T Q ~ 0.7 sec and T R - 1.3 x 10*2 s e c while at 
tne base in the photosphere (T ~ 1 ev, n e ~ 10 1 3/cnr\ n n ~ 10l6/cra3 and 
B ~ 10^G) - 14 sec with T ~ 10 7 sec. The flare time scale is 
therefore intermediate between the Alfven and resistive time scales. 

The equilibrium of a loop such as shown in Fig. 8 is fully 3-D and 
therefore the equilibrium and ideal stability of the loop must be 
studied concurrently, i.e., no equilibrium can be found if the loop is 
unstable to an ideal MHD mode. The computation of an equilibrium is 
further complicated by the strong variation of the plasma parameters 
with altitude. It is not obvious that flux surfaces even exist for such 
a configuration. Sakurai has attempted to numerically solve for a 3-D 
force free equilibrium for a loop by specifying the normal magnetic flux 
at the photosphere.35 He shows that the loop twists and expands upwards 
with increasing field aligned current. Greater resolution would improve 
these computations. Xue and Chen show than an axisymmetric equilibrium 
requires the pressure outside the loop to be greater than that inside to 
prevent the hoop force from causing the loop to expand. 3 6 A much more 
concerted effort will be required before the equilibrium of these loops 
is understood. 

In the absence of a proper 3-D equilibrium the stability of coronal 
loops has been investigated by approximating the loop as a cylinder and 
applying boundary conditions at the ends to mock-up the effect of the 
photosphere. For ideal modes since T ^(corona) « T (photosphere), the 
appropriate boundary condition at the ends of the cylinder are v = 0. 
This constraint has a stabilizing influence on the ideal kink mode.3'' 
For resistive modes this boundary condition does not seem appropriate. 
The growth time of the tearing mode based on photospheric parameters is 
M05 sec, which is shorter than the M 0 7 sec. time scale for the corona. 

12 
Because of the very large Lundquist number, S ~ 10 , for the 

corona, numerical calculations of the evolution of resistive modes with 
realistic parameters are not possible and the magnetic energy 
dissipation time scale for the corona must be extrapolated from the 
scaling of the dissipation rate in simulations at smaller values of S. 
The dissipation times of order x for the standard tearing mode are far 
too long to explain the flare time scale. The Sweet-Parker scaling of 
reconnection rate for the kink-tearing mode or coalescence mode yields 
time scales of order 1 sec. which are much closer to the observed 
energy release times. Moreover, since the current density J near the 
neutral layer of the Sweet-Parker model scales as n"*/^ w nich is very 
large for small n, nonclassical processes may limit J, thereby producing 
an anomalous resistivity and faster reconnection. In the standard 
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Fig. 3 Reconnection at multiple x-lines: 
the tearing instability 

Fig. A Mode structure of tearing instability from ideal 
equation (a) and resistive equations (b) 
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Fig. 5 Kink-tearing instability 
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Fig. 7 Current profile at t = 0 
(dashed) and after saturation 
(solid) of m/n = 2/1 tearing 
instability 

Fig. 6 Coalescence instability 
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Fig. 8 Magnetic loop in the 
sun's corona 
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DISCUSSION 
Wu: Did you consider gravitational effects in these studies? If not, 

would you care to comment on the effects of gravity on those coronal 
loops? 

Drake: I have not considered the effect of gravity. Gravity is 
probably important. Otherwise how can one find an equilibrium in which 
the density at the bottom of the loop is 10 6 times larger than at the 
top? 

Migliuolo: The density scale height becomes small near the photo­
sphere. What are the effects of this inhomogeneity on the tearing mode? 

Drake: The e f f ec t s of density and temperature gradients along B are 
comple te ly unknown. 
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Birn: I would like to point out again that an asymmetry of the 
current sheet in the direction parallel to it can also change the pos­
sible saturation of a tearing mode. Whereas in a plane current sheet 
with periodic boundary conditions the location of the center of magnetic 
islands is fixed in space, an asymmetric situation could produce moving 
islands being pushed out from the diffusion region as shown in magneto-
tail simulations. This can lead to larger energization than possible in 
a slab geometry with periodic boundary conditions. 

Drake: I agree with your observation. In the magneto-tail, the 
magnetic fields can act like a slingshot in ejecting plasma and flux away 
from the earth. 

I would also note, more generally, that the magnetic configuration may 
strongly affect the nonlinear behavior of the reconnection process. It 
is therefore important to carry out careful simulations of the particular 
configuation of interest. 

Kundu: I just wanted to alert you to the fact that there exist at 
present values of temperature, density and magnetic field as a function 
of height in a 3-D coronal loop. This is possible due to measurements 
made in the radio (microwave) domain with the Very Large Array (VLA) at 
several frequencies, which really explore different layers of the loop. 
Also, there are soft x-ray measurements of coronal loops. 

Drake: More detailed measurements will certainly help in building 
models of energy dissipation in coronal loops. 

Priest: What is the effect of the growth of the m = 2 mode on the 
m = 1 mode and on the basic current profile? 

Drake: The m = 2 mode does not strongly affect the m = 1 mode because 
the rational surface of the m = 1 mode is rather far away from the mag­
netic island of the m = 2 mode. 

The current profile before and after the m = 2 mode has reached large 
amplitude is shown in Fig. 7 (more details can be found in Ref. 29). The 
m = 2 mode basically dissipates most of the current in the vicinity of 
its magnetic island, leaving an elliptically shaped current pedestal. 

Sturrock: What conditions are required to lead to the mode inter­
action process investigated by Carreras and others? Are these conditions 
likely to be met in coronal loops? 

Drake: All that is required is a current profile which is somewhat 
flat near the center with the q = 2 surface just outside of the steep 
gradient (see dashed curve in Fig. 7). This current profile is not in 
any sense unusual and therefore could very possibly be present in coronal 
loops. 

Van Hoven: i) I disagree with your statement that the tearing rate 
is not anomalous. • Tearing self-consistently generates a narrow enough 
layer to be diffusive. However, it is anomalous on the global scale, 
ii) I believe that very long wavelength modes can be added to your list 
of m = 1 and double tearing modes as good nonlinear-release candidates. 
We have done nonlinear calculations which show this. 

Drake: The standard "constant i//1 tearing mode evolves to large 
amplitude on the resistive time, and, is therefore not in any sense 
anomalous. 

The nonlinear behavior of very long wavelength modes is currently not 
well understood. I think it is an important area of research. 
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Mahajan: If the minimum of current is formed in the plasma, then 
there is a possibility of exciting large growth rate double tearing modes 
discussed by Mahajan and Hazeltine, typically 10^ times larger. Have 
those been considered? 

Drake: The standard double tearing mode has been previously consider­
ed by D. Spicer. The mode which you refer to has not been considered. I 
would emphasize again that the linear growth rate does not really give 
the time scale for the release of magnetic energy. It is essential to 
carry out a nonlinear calculation to find the energy dissipation rate. 

Henriksen: Would there be any difference in the enhanced growth rates 
if the magnetic islands were formed by collision and coalescence of pre­
viously existing flux tubes? 

Drake: The coalescence instability is an ideal mode and the recon­
nection time scales as (x r T A ) V 2 , which is much faster than the standard 
tearing mode. 

D. Smith: Van Hoven and one of his students showed that when you 
consider line tying, only the m = 1 mode is linearly unstable. How 
would this affect the possibility of 3-D magnetic turbulence? 

Drake: As I have mentioned, the growth time of the tearing mode based 
on the parameters of the photosphere is actually shorter than the growth 
time based on the parameters of the corona. So it is not obvious to me 
that line tying boundary conditions at the photosphere are appropriate 
for resistive modes. Line tying conditions are appropriate for ideal 
modes. 
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