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Generalized Quandle Polynomials

Sam Nelson

Abstract. We define a family of generalizations of the two-variable quandle polynomial. These poly-

nomial invariants generalize in a natural way to eight-variable polynomial invariants of finite biquan-

dles. We use these polynomials to define a family of link invariants that further generalize the quandle

counting invariant.

1 Introduction

A two-variable polynomial invariant of finite quandles, denoted qpQ(s, t), was in-

troduced in [11]. This invariant was shown to distinguish all non-Latin quandles of

order 5 and lower. A slight modification gives an invariant of subquandles embedded

in larger quandles that is capable of distinguishing isomorphic subquandles embed-

ded in different ways. This subquandle polynomial was used to augment the quandle

counting invariant |Hom(Q(L), T)| to obtain a multiset-valued invariant that can

distinguish knots and links with the same quandle counting invariant value.

In this paper we generalize the quandle polynomial in two ways. In Section 2 we

define a family of two-variable polynomial invariants of finite quandles indexed by

pairs of integers, denoted qpm,n(Q), such that qpQ(s, t) = qp1,1(Q). In Section 3 we

extend these generalized quandle polynomials in a natural way to obtain a family of

eight-variable polynomial invariants of finite biquandles indexed by pairs of integers,

denoted bpm,n(B). In Section 4 we define and give examples of link invariants defined

using generalized quandle polynomials. In Section 5 we collect a few questions for

future research.

2 The (m, n) Quandle Polynomial

We begin with a definition from [7].

Definition 2.1 A quandle is a set Q with a binary operation ⊲ : Q×Q → Q satisfying

(i) for every a ∈ Q, a ⊲ a = a,

(ii) for every a, b ∈ Q, there is a unique c ∈ Q such that a = c ⊲ b, and

(iii) for every a, b, c ∈ Q, we have (a ⊲ b) ⊲ c = (a ⊲ c) ⊲ (b ⊲ c).

Axiom (ii) is equivalent to

(ii ′) there is a second operation ⊲−1 : Q × Q → Q such that

(a ⊲ b) ⊲−1 b = a = (a ⊲−1 b) ⊲ b.
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148 S. Nelson

As a useful abbreviation, let us denote the n-times repeated quandle operation as

x ⊲n y = (· · · (x ⊲ y) ⊲ y · · · ) ⊲ y

and

x ⊲−n y = (· · · (x ⊲−1 y) ⊲−1 y · · · ) ⊲−1 y

where, as expected, n is the number of triangles. Note that x ⊲0 y = x for all x, y.

A standard example of a quandle is any group G, which has quandle structures

given by g ⊲h = h−nghn for n ∈ Z and g ⊲h = t(gh−1)h for any t ∈ Aut(G), g, h ∈ G.

The special case of the latter where G is abelian is called an Alexander quandle and may

be regarded as a module over Z[t±1] by thinking of t ∈ Aut(G) as a formal variable.

In additive notation we have x ⊲ y = tx + (1 − t)y.
Another standard example of a quandle structure is any module V over a com-

mutative ring R with an antisymmetric bilinear form1 〈 · , · 〉 : V × V → R with

x ⊲ y = x + 〈x, y〉y. When R is a field and 〈 · , · 〉 is nondegenerate, V is a symplectic

vector space, so this type of quandle is called a symplectic quandle. If 〈 · , · 〉 is instead

a symmetric bilinear form, then the subset S = {x ∈ V : 〈x, x〉 6= 0} ⊂ V is a

quandle under

x ⊲ y = 2
〈x, y〉

〈y, y〉
y − x

called a Coxeter quandle.

Another important example is the knot quandle Q(L) defined in [7], which asso-

ciates a quandle generator to every arc in a link diagram L and a relation at every

crossing. The elements of a knot quandle are equivalence classes of quandle words

in the generators modulo the equivalence relation generated by the quandle axioms

and the relations imposed by the crossings.

Example 2.2 The two-component link pictured below has knot quandle given by

the listed presentation.

Q(L) = 〈x, y, z, w | x ⊲ z = y, z ⊲ y = w, y ⊲ w = x, w ⊲ x = z〉.

1If the characteristic of R is 2, then we require that 〈x, x〉 = 0.
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For symbolic computation, it is convenient to represent a finite quandle Q =

{x1, x2, . . . , xn} with an n × n matrix M that encodes the operation table of Q, i.e.,

Mi j = k, where xk = xi ⊲ x j . For example, the finite Alexander quandle

Q = Z[t±1]/(2, t2 + 1) = {x1 = 0, x2 = 1, x3 = t, x4 = 1 + t}

has quandle operation matrix

MQ =









1 4 4 1

3 2 2 3

2 3 3 2

4 1 1 4









.

Quandles have been much studied in recent years; see [1,3,4,7,10,15], etc.. Finite

quandles are of particular interest, since they can be used to define an easily com-

putable invariant of knots and links, the quandle counting invariant |Hom(Q(L), T)|.
Each quandle homomorphism f ∈ Hom(Q(L), T) can be pictured as a coloring of

a link diagram representing the link L with a quandle element f (x) ∈ T attached to

each arc x satisfying the crossing condition pictured above.

It is well known that knot quandles (and hence quandle counting invariants) are

stronger invariants than knot groups (and knot group counting invariants). For ex-

ample, Joyce [7] shows that the square knot and the granny knot have nonisomorphic

knot quandles despite having isomorphic knot groups.2

In [11] we have the following definition.

Definition 2.3 Let Q be a finite quandle. For any element x ∈ Q, let

C(x) = {y ∈ Q : y ⊲ x = y} and R(x) = {y ∈ Q : x ⊲ y = x}

and set r(x) = |R(x)| and c(x) = |C(x)|. Then the quandle polynomial of Q, qpQ(s, t),

is

qpQ(s, t) =
∑

x∈Q

sr(x)t c(x).

An isomorphism φ : Q → Q ′ induces bijections

φr : R(x) → R
(

φ(x)
)

and φc : C(x) → C
(

φ(x)
)

,

so qpQ(Q) = qpQ(Q ′) and qpQ is an invariant of isomorphism type for finite quan-

dles.

We can now make our first new definition.

Definition 2.4 Let Q be a finite quandle. For any element x ∈ Q, let

Cn(x) = {y ∈ Q : y ⊲n x = y} and let Rm(x) = {y ∈ Q : x ⊲m y = x}

2However, there are group counting invariants that do distinguish the granny knot from the square
knot, using generalized knot groups derived from the knot quandle. See [14] and [12].
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and set rm(x) = |Rm(x)| and cn(x) = |Cn(x)|. Then the (m, n)-quandle polynomial of

Q, qpm,n(Q), is

qpm,n(Q) =

∑

x∈Q

srm(x)t cn(x).

An isomorphism φ : Q → Q ′ then induces for each x ∈ Q bijections

φr,m : Rm(x) → Rm

(

φ(x)
)

and ψc,n : Cn(x) → Cn

(

φ(x)
)

.

It follows that qpm,n(Q) = qpm,n(Q ′) and qpQ is an invariant of quandle isomor-

phism for finite quandles.

Example 2.5 From the definition, we have qp0,0(Q) = |Q|s|Q|t |Q| and qp1,1(Q) =

qpQ(Q).

For any element y ∈ Q, the second quandle axiom implies that y acts on Q by

a permutation ρy ∈ S|Q| (where S|Q| is the symmetric group on |Q| letters) given

by the column corresponding to y in the matrix of Q. Let ord(ρ) denote the or-

der of ρ in S|Q|, i.e., the cardinality of the cyclic subgroup of S|Q| generated by ρ.

Then if n ≡ n ′ mod ord(ρy), we have x ⊲n y = x⊲n ′

y. It follows that for any fi-

nite quandle Q, there are at most N2 distinct generalized quandle polynomials where

N = lcm{ord(ρy) : y ∈ Q}. In particular, to find all generalized quandle polynomi-

als it suffices to consider the subset {qpm,n | 0 ≤ m, n ≤ N − 1} of the Z
2-lattice of

generalized quandle polynomials. For ease of comparison, we can write these entries

in an N × N matrix Mqp(Q) whose (i, j) entry is qpi−1, j−1(Q), which we will call

the generalized quandle polynomial matrix of Q. Both the size and the entries of this

matrix are invariants of quandle isomorphism type.

Example 2.6 The Alexander quandle

Q = Z[t±1]/(2, t2 + 1) = {x1 = 0, x2 = 1, x3 = t, x4 = 1 + t}

has ord(ρy) = 2 for all y ∈ Q, so N = 2; we compute the generalized quandle

polynomials qp0,0 = 4s4t4, qp0,1 = 4s2t4, qp1,0 = 4s4t2, and qp1,1 = 4s2t2. Thus, Q

has generalized quandle polynomial matrix

Mqp(Q) =

[

4s4t4 4s2t4

4s4t2 4s2t2

]

.

Example 2.7 A quandle is strongly connected or Latin if its operation matrix is a

Latin square, that is, if its rows as well as its columns are permutations (see [6]). In

[11], Maple computations showed that qp1,1(Q) distinguishes all non-Latin quan-

dles of cardinality up to 5, while Latin quandles always have qp1,1(Q) = |Q|st. Our

Maple computations show that of the three Latin quandles with five elements, two

have the same generalized quandle polynomial matrix while one has a different ma-

trix. This shows that the generalized quandle polynomials contain additional infor-

mation about quandle isomorphism type not contained in qpQ(s, t), while still not

determining the quandle’s isomorphism type for Latin quandles. See Table 1.
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Quandle matrix Generalized quandle polynomial matrix













1 5 4 3 2

3 2 1 5 4

5 4 3 2 1

2 1 5 4 3

4 3 2 1 5





















5s5t5 5st5 5st5 5st5

5s5t 5st 5st 5st

5s5t 5st 5st 5st

5s5t 5st 5st 5st





















1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5





















5s5t5 5st5 5st5 5st5

5s5t 5st 5st 5st

5s5t 5st 5st 5st

5s5t 5st 5st 5st





















1 3 5 2 4

5 2 4 1 3

4 1 3 5 2

3 5 2 4 1

2 4 1 3 5













[

5s5t5 5st5

5s5t 5st

]

Table 1: Generalized quandle polynomial matrices of Latin quandles of cardinality 5.

3 Biquandle Polynomials

In this section we define the analog of generalized quandle polynomials for finite

biquandles. We start with the definition of a biquandle, also known as a type of

switch or Yang-Baxter Set; see [8].

Definition 3.1 A biquandle is a set B with four binary operations B × B → B

denoted by (a, b) 7→ ab, ab, ab, and ab, respectively, satisfying the following axioms:

1. For every pair of elements a, b ∈ B, we have

(i) a = abba , (ii) b = b
aab , (iii) a = abba , and (iv) b = baab .

2. Given elements a, b ∈ B, there are unique elements x, y ∈ B such that

(i) x = abx , (ii) a = xb, (iii) b = bxa,

(iv) y = aby , (v) a = yb, (vi) b = bya.

3. For every triple a, b, c ∈ B we have:

(i) abc
= acbbc

, (ii) cba = cabba
, (iii) (ba)c

ab = (bc)acb ,

(iv) abc
= acbbc

, (v) cba = c
abba

, (vi) (ba)
c

ab = (bc)
a

c
b
.
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4. Given an element a ∈ B, there are unique elements x, y ∈ B such that

(i) x = ax, (ii) a = xa, (iii) y = ay , and (iv) a = ya.

The biquandle axioms come from dividing an oriented link diagram into semi-

arcs at every over and under crossing point; then both inbound semiarcs act on each

other at both positive and negative crossings, for a total of four binary operations

(a, b) 7→ ab, ab, ab and ab. The axioms are then the result of transcribing a minimal

set of oriented Reidemeister moves. See [8].

One standard example of a biquandle is any quandle, which is a biquandle under

ab
= a ⊲ b, ab

= a ⊲−1 b, ab = ab = a

as well as under

ab
= a ⊲−1 b, ab

= a ⊲ b, ab = ab = a,

ab = a ⊲ b, ab = a ⊲−1 b, ab
= ab

= a

and

ab = a ⊲−1 b, ab = a ⊲ b, ab
= ab

= a.

Another standard example of a biquandle structure is any module over Z[t±1, s±1]

with

ab
= ta + (1 − st)b, ab

= t−1a + (1 − s−1t−1)b, ab = sa, and ab = s−1b;

biquandles of this type are called Alexander biquandles. For a concrete example, take

B = Zn and let s, t ∈ B be any two invertible elements. See [8] and [9].

Much as with finite quandles, we can represent a finite biquandle B = {x1, . . . , xn}
with a block matrix encoding the operation tables of the four operations:

MB =

[

B1 B2

B3 B4

]

Bk
i j = m, where xm =



















(xi)
(x j ) k = 1

(xi)
(x j ) k = 2

(xi)(x j )
k = 3

(xi)(x j ) k = 4.
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Example 3.2 The Alexander biquandle B = Z4 with s = 3 and t = 1 has biquandle

matrix

MB =

























3 1 3 1 3 1 3 1

4 2 4 2 4 2 4 2

1 3 1 3 1 3 1 3

2 4 2 4 2 4 2 4

3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4

























,

where B = {x1 = 1, x2 = 2, x3 = 3, x4 = 0}.

In what follows, we will find it convenient to use the notation

op1(x, y) = xy , op2(x, y) = xy , op3(x, y) = xy and op4(x, y) = xy ,

and as before opn
i (x, y) = opi(. . . opi(opi(x, y), y) . . . y), where n is the number of

“opi”s.

We can extend the generalized quandle polynomials in the obvious way to obtain

an invariant of biquandles up to isomorphism.

Definition 3.3 Let B be a finite biquandle. For every x ∈ B, define

C i
n(x) = {y ∈ B | opn

i (y, x) = y} and Ri
m(x) = {y ∈ B | opm

i (x, y) = x}

where m, n ∈ Z. Let ci
n(x) = |C i

n(x)| and ri
m(x) = |Ri

m(x)| for i = 1, . . . , 4. Then the

(m, n) biquandle polynomial of B is

bpm,n(B) =

∑

x∈B

s
r1

m(x)
1 s

r2
m(x)

2 s
r3

m(x)
3 s

r4
m(x)

4 t
c1

n(x)
1 t

c2
n(x)

2 t
c3

n(x)
3 t

c4
n(x)

4 .

Example 3.4 As in the quandle case, we have

bp0,0(B) = |B|s
|B|
1 t

|B|
1 s

|B|
2 t

|B|
2 s

|B|
3 t

|B|
3 s

|B|
4 t

|B|
4

for every finite biquandle. Also as in the quandle case, specializing si = ti = 1 for all

i = 1, . . . , 4 yields |B| for all m, n ∈ Z.

Example 3.5 Every quandle Q is a biquandle with ab
= a ⊲ b, ab

= a ⊲−1 b and

ab = ab = a. Specializing s2 = s, t2 = t , and si = ti = 1 for i = 1, 3, 4 in bpm,n(Q)

yields qpm,n(Q).

Example 3.6 The Alexander biquandle B = Z3 with s = 2, t = 1 has biquandle

matrix

MB =

















3 2 1 3 2 1

1 3 2 1 3 2

2 1 3 2 1 3

2 2 2 2 2 2

1 1 1 1 1 1

3 3 3 3 3 3

















.
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We can compute bp1,1(B) by counting the number of times a row number appears

in each column and row in each of the operation block matrices. Here we see that

bp1,1(B) = 2s1s2t3t4 + s1t3
1 s2t3

2 s3
3t3s3

4t4.

As before, a biquandle isomorphism φ : B → B ′ induces bijections φi,n : C i
n(x) →

C i
n(φ(x)) and ψi,m : Ri

m(x) → Ri
m(φ(x)) for each i = 1, . . . , 4, and n, m ∈ Z, so

B ∼= B ′ implies bpm,n(B) = bpm,n(B ′) and each bpm,n(B) is an invariant of biquandle

isomorphism.

The columns in a finite biquandle matrix, like those in a quandle matrix, are per-

mutations of {1, 2, . . . , |B|}. Let ρ1(y) ∈ S|B|, ρ2(y) ∈ S|B|, ρ3(y) ∈ S|B|, and

ρ4(y) ∈ S|B| be the permutations corresponding to the actions of y on B given by

opi( , y) : B → B. Then as in the quandle case, the fact that n ≡ n ′ mod ord(ρi(y))

implies opn
i (x, y) = opn ′

i (x, y) then implies that bpm,n(B) = bpm ′,n ′(B) if n ≡
n ′modN and m ≡ m ′modN, where N = lcm{ord(ρi(y)) : y ∈ B, i = 1, . . . , 4}.
Hence, as before, there are at most N2 distinct biquandle polynomials for a biquandle

B.

Thus, for every finite biquandle B, the biquandle polynomial matrix of B is the

N × N matrix whose m, n entry is bpm,n(B). Continuing with Example 3.5, if a bi-

quandle B is a quandle with a⊲b = ab, a⊲−1b = ab and ab = ab = a, then specializing

s1 = t1 = s3 = t3 = s4 = t4 = 1 and s2 = s, t2 = t in the biquandle polynomial

matrix of B yields the generalized quandle polynomial matrix Mqp(B).

Example 3.7 The Alexander biquandle in example 3.2 has biquandle polynomial

matrix




4s4
1t4

1 s4
2t4

2 s4
3t4

3 s4
4t4

4 2s2
1t4

1 s2
2t4

2t4
3t4

4 + 2s2
1t4

1 s2
2t4

2 s4
3t4

3 s4
4t4

4

2s4
1s4

2s4
3t2

3 s4
4t2

4 + 2s4
1t4

1 s4
2t4

2 s4
3t2

3 s4
4t2

4 2s2
1s2

2t2
3t2

4 + 2s2
1t4

1 s2
2t4

2 s4
3t2

3 s4
4t2

4





according to our Maple computations.

Maple code for computing quandle and biquandle polynomials is available for

download at www.esotericka.org/quandles. Computations with this code reveal that

all isomorphism classes of biquandles with up to four elements are distinguished by

bp1,1(B) alone, using the list of biquandle isomorphism classes from [13].3

4 Link Invariants from Generalized Quandle Polynomials

In this section we extend the subquandle polynomial defined in [11] to the qpm,n(Q)

and bpm,n(B) settings and exhibit some examples of the resulting link invariants.

Definition 4.1 Let Q be a finite quandle and S ⊂ Q a subquandle. Then for any

m, n ∈ Z, the generalized subquandle polynomial is

sqpm,n(S ⊂ Q) =

∑

x∈S

srm(x)t cn(x).

3Note that the published list contains a few small typographical errors, but one can regenerate the
correct list with the Maple code.
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Similarly, for any finite biquandle B with subbiquandle S ⊂ B and m, n ∈ Z the

subbiquandle polynomial is

sbpm,n(S ⊂ B) =

∑

x∈S

s
r1

m(x)
1 s

r2
m(x)

2 s
r3

m(x)
3 s

r4
m(x)

4 t
c1

n(x)
1 t

c2
n(x)

2 t
c3

n(x)
3 t

c4
n(x)

4 .

Thus, the subquandle and subbiquandle polynomials are the contributions to the

quandle and biquandle polynomials coming from the subquandle or subbiquandle

in question. The (1, 1) subquandle polynomial was shown in [11] to encode infor-

mation about how the subquandle S is embedded in Q; indeed, sqp1,1 can distinguish

isomorphic subquandles embedded in different ways.

Since the image of a homomorphism of a knot quandle into a target quandle T is a

subquandle of T, we can modify the quandle counting invariant to obtain a multiset-

valued link invariant by counting the subquandle polynomial of Im( f ) for each f ∈
Hom(Q(L), T). The cardinality of this multiset is then the usual counting invariant.

This generalizes the specialized subquandle polynomial invariant that was shown in

[11] to distinguish some links that have the same quandle counting invariant.

Definition 4.2 Let L be a link, T a finite quandle and m, n ∈ Z. Then the multiset

Φsqpm,n
(L, T) = {sqpm,n(Im( f ) ⊂ T) : f ∈ Hom(Q(L), T)}

is the (m, n)-subquandle polynomial invariant of L with respect to T. We can rewrite

the multiset in a polynomial-style form by converting the multiset elements to expo-

nents of a dummy variable q and converting their multiplicities to coefficients:

φsqpm,n
(L, T) =

∑

f∈Hom(Q(L),T)

qsqpm,n(Im( f )⊂T).

If T is a finite biquandle, we similarly define the (m, n)-subbiquandle polynomial

invariant to be the multiset

Φsbpm,n
(L, T) = {sbpm,n(Im( f ) ⊂ T) : f ∈ Hom(B(L), T)}

or in polynomial form

φsbpm,n
(L, T) =

∑

f∈Hom(B(L),T)

qsbpm,n(Im( f )⊂T).

Collecting all of the subquandle or subbiquandle polynomial invariants into an

N × N matrix whose (m, n) entry is sqpm,n(Im( f ) ⊂ T) or sbpm,n(Im( f ) ⊂ T)

yields an invariant of links that includes information from all of the subquandle or

subbiquandle polynomials. Specializing si = ti = 0 for i = 1, . . . , 4 or specializing

q = 1 in any entry of the matrix yields the appropriate counting invariant.
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Example 4.3

MT =

















1 1 1 1 1 1

3 2 2 3 2 2

2 3 3 2 3 3

1 1 1 1 1 1

3 2 2 3 2 2

2 3 3 2 3 3

















The Hopf link L has nine biquandle colorings by the three-element biquandle

T below. In particular, the pictured coloring has image subbiquandle Im( f ) =

{2, 3} ⊂ T. The element 2 ∈ T has ri
1 = 2 and ci

1 = 3 for i = 1, 2, 3, 4, so 2 ∈ Im( f )

contributes s2
1s2

2s2
3s2

4t3
1t3

2t3
3t3

4 to the exponent of q for this homomorphism. Indeed, the

contribution from 3 ∈ T is the same, so we have a contribution of q2s2
1s2

2s2
3s2

4t3
1 t3

2 t3
3 t3

4 from

this homomorphism. Repeating with the other homomorphisms, we have

φsbp1,1
(L, T) = qs3

1t1s3
2t2s3

3t3s3
4t4 + 4qs3

1t1s3
2t2s3

3t3s3
4t4+2s2

1t3
1 s2

2t3
2 s2

3t3
3 s2

4t3
4

+ 2qs2
1t3

1 s2
2t3

2 s2
3t3

3 s2
4t3

4 + 2q2s2
1t3

1 s2
2t3

2 s2
3t3

3 s2
4t3

4 .

Since the least common multiple of the orders of the columns of T is 2, the full

invariant is a 2 × 2 matrix, of which the above value is one entry.

If K is a single-component link, that is, a knot, then the knot quandle of K is

connected, and hence the image of any quandle homomorphism f : Q(K) → T must

lie inside a single orbit subquandle of T. In particular, we have

|Hom(Q(K), T)| =

∣

∣

∣
Hom

(

Q(K),
n
⋃

i=1

Ti

)∣

∣

∣
=

n
∑

i=1

|Hom(Q(K), Ti)|,

where Ti are the orbit subquandles of T. In practice, this has meant that multi-orbit

quandles have been largely ignored in favor of single-orbit (“connected”) quandles.

The next example demonstrates that by using generalized subquandle polynomials,

non-connected quandles can still be used to distinguish knots whose counting in-

variants are the same.

Example 4.4 The quandle T ′ with operation matrix

MT ′ =

































1 3 5 2 4 3 1 4 2 5

5 2 4 1 3 5 3 1 4 2

4 1 3 5 2 2 5 3 1 4

3 5 2 4 1 4 2 5 3 1

2 4 1 3 5 1 4 2 5 3

8 9 10 6 7 6 10 9 8 7

7 8 9 10 6 8 7 6 10 9

6 7 8 9 10 10 9 8 7 6

10 6 7 8 9 7 6 10 9 8

9 10 6 7 8 9 8 7 6 10

































https://doi.org/10.4153/CMB-2010-090-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-090-x


Generalized Quandle Polynomials 157

has two 5-element orbit subquandles. The two knots 51 and 61 pictured below both

have counting invariant |Hom(Q(51), T ′)| = 30 = |Hom(Q(61), T ′)| with respect

to T ′. Indeed, the two knots have the same φsqp1,1
(K, T ′) value. However, the gener-

alized subquandle polynomial invariants with m = 2 distinguish the knots, detecting

the fact that the sets of homomorphisms are different despite having the same cardi-

nality.

n φsqp2,n
(51, T ′) φsqp2,n

(61, T ′)

0 5qs10t10

+ 20q5s10t10

+ 5qs10t2

5qs10t2

+ 20q5s10t2

+ 5qs10t10

1 5qs2t10

+ 20q5s2t10

+ 5qs2t2

5qs2t2

+ 20q5s2t2

+ 5qs2t10

2 5qs6t10

+ 20q5s6t10

+ 5qs6t2

5qs6t2

+ 20q5s6t2

+ 5qs6t10

3 5qs2t10

+ 20q5s2t10

+ 5qs2t2

5qs2t2

+ 20q5s2t2

+ 5qs2t10

5 Questions for Future Research

The quandle and biquandle polynomials as currently defined only make sense for

finite quandles. Consequently, to use these polynomials for defining invariants of

knot and link quandles and biquandles, which are typically infinite, we must first

convert to finite quandles in some way. If a version of the quandle polynomial could

be be defined for arbitrary quandles, or perhaps just for finitely generated quandles

such as knot quandles, we might use such a polynomial (or series?) to obtain link

invariants more directly.

If two knots or links have distinct quandles or biquandles, let the sub(bi)quan-

dle polynomial matrix index of the pair be the cardinality of the smallest finite

(bi)quandle whose polynomial matrix invariant distinguishes the pair, or ∞ if there

is no such finite (bi)quandle. Is there a pair of knots or links whose sub(bi)quandle

polynomial matrix index is infinite?

Each of the entries in a quandle or biquandle polynomial matrix has total coef-

ficient equal to the cardinality of the (bi)quandle. What other relationships, if any,

exist among the entries in a (bi)quandle polynomial matrix? In particular, what is

the minimal subset of the entries that determines the other entries?
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