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Macdonald polynomials/Ne strengthen some theorems of F. Knop and S. Sahi and give two explicit
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tool is ag-integral representation for ordinary Macdonald polynomial. We also discuss duality for
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1. Introduction

The orthogonality of Schur functions

(Sua S)\) = 5“)\7

is the orthogonality relation for characters of the unitary grbiip). The orthog-
onality of characters means that a character (as a function on the group) vanishes
in all but one irreducible representation.

There is a very remarkable basis in the center of the universal enveloping
algebral{(gi(n)), which is similar to the basis of characters in the algebra of
central functions oV (n). Many properties of this basis can be found in [OO, OK].
The elements of this basis are indexed by partitiprgith at mostn parts; they
are denoted bg,, and calledquantum immanant§ he elemens , has degre¢u|
and vanishes in as many irreducible representations, as possible, namely

s,(A) =0, unlessu C A,

wheresy,(A) is the eigenvalue df, in the representation with highest weight
The functions;, () is called theshifted Schur functiofor it is a polynomial inA
with highest terms,(\). This polynomial is symmetric in variables

No—i, i=1,2,...,
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and is also stable, which means it does not change if we add some zekod@ho
numbersy,(\) has a remarkable combinatorial interpretation: up to some simple
factors, it counts standard tableauxofy.

There is the following formula fa$,, in terms of the generators;; of U (gl(n)).
Fix any standard tabledli on i.. Let ¢y (i) denote the content of thiéh square in
T. Then we have (see [Ok1], and also [N, Ok2])

S, = tr((E — (1) ® - ® (E — er(ul)) - Pr), (1.1)

whereF is the following matrix with entries i¢/(gl(n))
E = (Eij)ij € Mat(n) @ U(gl(n)),
Pr is the orthogonal projection on the Young basis vector indexef by

Pr € QS(|ul),
and we use the standard representation
QS(|ul) — Mat(n)®l.

The formula (1.1) corresponds to the followimgmbinatorial formulafor the
shifted Schur functions (see [OO], Section 11, and also [Ok1], Section 3.7). We
call a tableadl’ on a diagramu a reverse tablealif its entries strictly decrease
down the columns and weakly decrease in the rows. Denof& bythe entry of

T in the square and byc(s) the content of the squase Then we have

SZ($1,$2, )= Z H(ﬂfT(s) —c(s)), 1.2

T sEp

whereT ranges over all reverse tableauon

The shifted Schur functions have numerous applications to the finite- and espe-
cially infinite-dimensional representation theory. Theirt)-analogs, with which
we deal in this paper, inherit most of their power.

In the generalg, t)-situation the center @f (gl(n)) gets replaced by the com-
mutative algebra generated by Macdongidifference operators [M]. The eigen-
functions of this commutative algebra are Macdonald polynonitgls, ¢), which
replace Schur functions. The eigenvalue of a central element in the representation
with highest weight\ becomes the eigenvalue ofyadifference operator on the
Macdonald polynomiaP, (g, t). It is known (see, for example [EK]) that the alge-
bra generated by Macdonald operators can be naturally identified with the center
of the g-deformed/ (gl(n)).

The eigenvalue of a Macdonald operatoifdytq, ) is known to be a polynomial
in ¢ which is symmetric in variables

q)\itfi.
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Therefore the naturdly, t)-analog of the shifted Schur function should be a poly-
nomial

b (z),
of degree
degP; (z) = |ul,
which is symmetric in variables
wit™h i=1,2...,
and satisfies the following vanishing condition
®0 A\
P;(¢") =0, unlessu C A, (1.3)

andPj(¢") # 0. Itis an overdetermined system of linear conditiongjiix). It
is easy to see that these polynomials are unique within a scalar factor provided they
exist. We shall specify the normalization in section 4. We call these polynomials
shifted Macdonald polynomials

Itis well known that the numbeyf —1t1~ is the(q, t)-analog of the content of the
asquare = (i, 7). Together with G. Olshanski we have conjectured (unpublished)
the following analog of the formula (1.2). By

a(s)=j—1, I'(s)=4i—1
denote thearm-colengthand theleg-colengttof the square = (7, j). Then

Py(;q,t ZwT q,0) [T 77 (@rs) — ¢ W71, (1.4)

seE

where the sum is over all reverse tableawavith entries in{1, 2, ...} andyr(q, t)
is the samdg, t)-weight of a tableau which enters the combinatorial formula for
ordinary Macdonald polynomials (see [M], Section VI.7)

ZE q,t ZwT q,t H T1(s)- (15)

SEM

The coefficients)r(q, t) are rational functions aof andt.

However, only in the present paper we obtain a proof of this formula.

First theorems about the polynomial (z) were obtained by F. Knop and
S. Sahi [KS, K, S]. In particular, they identified the highest degree term of the
inhomogeneous polynomidt;(x). Other fundamental properties (suchiate-
grality) were also established. Their approach was baseediiference equations
for polynomialsP; (z).
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The combinatorial formula (1.4) implies both the highest degree term identifi-
cation [K, S] and thextra vanishingproperty (1.3) proved in [K]. It is easy to see
that all conditions from the definition df; (z) are obvious in (1.4) except for the
symmetry inz;t~¢. We were not able to find any direct proof of this symmetry and
shall give a quite indirect proof.

We shall use an approach based grtegral representatiofor the polynomial
P;(z). Itis independent of the difference equations approach and generalizes the
coherenceroperty of quantum immanants (see [OO], Section 10 and also [Ok1],
Section 5.1).

Our main technical tool is a-integral representation for Macdonald polyno-
mials (see Theorem | below). Since Macdonald polynomials satigfgliierence
equation it is natural to expect that

Py(z1,...,2p)

can be written as a multiplg-integral wherex; occur as limits of integration.
Indeed,P,(z1,...,z,) can be written as such a multiple integral of the Macdonald
polynomial

Pu(y1,---Yn-1)

in a smaller set of variables with respect to a multivariate analog of the symmetric
beta measure. In the simplest case 2 this integral reduces to a particular case
of the ¢g-analog of the beta integral studied in [AA, AV]. In the Schur function
case this integral can be evaluated explicitly and gives the determinant ratio for-
mula. The integral representation allows to charactefjZe) (and alsa’; (r)) as
eigenfunctions of commuting integral operators, see Remark 4.7.

There are importanj-integral formulas involving Macdonald polynomials due
to Kadell (see [M], example V1.9.3 and also [Ka]) as well as integral representation
of Macdonald polynomials via ordinary contour integrals (see [AOS] and references
therein).

The crucial property of our integral is that the domain of integration is of the
form

T1 Tpn—1
/ dqyl"'/ dgyn—1(++)-
xr Tn

This allows to obtain g-integral representation for the polynomidf just by a
minor modification of the integral, see Section 4. In other words, the orthogonal
polynomialsP, and the Newton interpolation polynomiaty have essentially the
same integral representation.

In a sense the relationship betweBpand P; is even closer than betweep
andsj,. One explanation for this is that the finite difference calculus (which is
suitable tosy,) unifies with the ordinary calculus (which is suitablestg) in the
g-difference calculus.
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The lower degree terms of the inhomogeneous polynofijalcarry some
important additional information and make some propertieBofook even more
natural than the corresponding properties of the ordinary Macdonald polynomials.
For example, theuality for shifted Macdonald polynomials has a clear combina-
torial interpretation (see Section 6) which gives a new interpretation of the duality
for Macdonald polynomials.

In Section 7 we consider shifted Jack polynomials. This degeneration was
also considered by F. Knop and S. Sahi in [KS]. Even if one is interested in
Jack polynomials only it proves to be easier to work with general Macdonald
polynomials and then let — 1 in very final formulas.

It would be very interesting to find @, ¢t)-analog of the formula (1.1).

| am grateful to I. Cherednik, S. Sahi and especially to G. Olshanski for many
helpful discussions. | would like to thank R. Askey, A. N. Kirillov, K. Mimachi,

M. Noumi, M. Wakayma for their remarks on the preliminary version of this paper
(g-alg 9605013). In particular, K. Mimachi gave me a copy of the preprint [MN].

Since the completion of this paper binomial type formulasfprand also for
ordinary Macdonald polynomials were obtained (see [Ok3] and also [OO3]). In
particular, they provide new and, perhaps, more natural ways to proyartegral
representations obtained here. Among other application let us mention the papers
[KOO] and [OK5].

The analogs of’; for the root system of typ&C,, were considered in [Ok4].
Those polynomials have essentially all propertieg’pfexcept for the difference
equations.

2. Notations

All g-shifted factorials in this paper will be with the same bas®r example
(a)so = (1 - a)(1 - ga)(1 - ¢%a)....

This product converges j§| < 1. Put

The numberg andt = ¢ will be the two parameters of the Macdonald polynomials
P,,. With this notation

We shall need also anothgsshifted power

(a)y=(a—D(a—q)---(a—qg" Y, r=0,12,...,
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which is ag-analog of the falling factorial power af.
Recall the definition of thg-integral

/ba fy)dyy = /Oa f(y)dgy — /Ob F(y)dgy,

where

[ 1wy =01-0) Y aa')s"
1=0

We have
a 1
r - r+1 2.1
/O y d(]y ['I" + 1]Cl 9 ( )
where
1—4¢"
I:T] - 1_ q

is the g-analog of the number. Recall also the following-analog of the beta
function integral [GR, 1.11.7]

1
/o Y aqy)s-1dgy = Bqla,b), (2.2)

whereRa > 0,0 #£0,-1,-2,..

Ty(a)Ty(b)

B(I(a”b) = Fq(@‘i‘b) ’

and, finally,

Ty(a) = (1- ¢)"*(q)a-1-

Given two vectors

I:(Il,...,l‘n), y:(yla"'aynfl)a
wheren = 2,3,. .., write

y<x

Y € [mi,mi+1], 1=1...,n—1
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Denote by

i<j
the Vandermonde determinant in variahlgs. . ., x,. Put

V(2) = V(z) [[(gzi/;)o-1.
i#]

We will integrate symmetric polynomials i, . .., y,—1 over the domainy < x
with respect to the following measure

dB(ylr) = V(y) H(qyi/wj)éfldqya (2.3)
2]

which is a multivariate analog of the beta measure in (2.2). Here
dqy = dqyl e dqyn—l-

With the Macdonald notation

O(z,y;0,t) =[] %

we have
dp(ylz) = V(y)IL(1/z, ty; q,q/t)dgy, (2.4)
By A denote the algebra of symmetric functions with coefficients in rational

functions ing and¢. By A(n) denote the algebra on symmetric functionsnin
variables with the same coefficients.

3. g-Integral representation of Macdonald polynomials

Given a partitiorp, with the number of parté(;) < n put

Cp,n) =[] By(i + (n —0)0,6). (3.1)

In this section we will prove the following theorem

THEOREM I. Supposé(u) < n, then

1
Vi) [, Pu0B) = Ol Pyt (32)
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On the one hand this formula expresses the Macdonald polynaial)
in terms of the Macdonald polynomidt, (y) in the smaller set of variables. By
stability of Macdonald polynomials it suffices to kndvyin | ;2| variables. Therefore
(3.2) gives a-integral representation @f,. This formula is a generalization of the
determinant ratio formula for Schur functions (see below).

On the other hand, sindg, form a basis in the space of symmetric polynomials,
(3.2) tells how to integrate symmetric polynomials over the domain = with
respect to the measure (2.3).

In the limit ¢ — 1 the formula (3.2) becomes the integral representation for
Jack polynomials found by G. Olshanski [Ol].

Both sides of (3.2) are analytic functionsgéndt in the polydisc

lg] < 1,]t| < 1.
More precisely, if
lgl, [t] <0 <1,
then we have to assume, for example, that
§Y2 <ol <672, i=1,...,n
and that
Ti # Tj, 1F]

in order to avoid zero factors.
Therefore it suffices to prove the equality (3.2) for

t=4¢%, 60=23,.... (3.3)
Indeed, an analytic function, which vanishes on (3.3) should vanish on all lines
q = const#£ 0
by the 1-dimensional uniqueness theorem.

LEMMA 3.1. Supposég (y1) is a polynomial. Then
1 x

T1 — 22 Jxo

" gy (3.4)

is a symmetric polynomial im; andzx.
Proof. Follows from (2.1). O
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The following computation is from [OO], Section 10.

LEMMA 3.2. Suppos¢ (y) is a symmetric polynomial. Then

FWV (y)dey (3.5)
y=<=
is a skew-symmetric polynomial in
Proof. Since f(y)V (y) is skew-symmetric, it is a linear combination of the
following determinants

1% Vn—-1
det
1% Vp—1
Y1 7 Yna
for some numbers; > v, > ---. Integrating we get up to a constant factor
C1+1 no1+1
:E11/1+1 o x;ﬁrl . xin 1+1 :17; 1+
det
o1+l o1+l
sz/Ll:rll o .%‘ZlJrl . 35271# - xTVL 1+
Which equals
xljj-1+l .. .’,El::n_l+l 1
x;l_i_l e x;n_l+1 1
det . (3.6)
PR

To see this subtract in (3.6) the second line from the first one, then the third line
from the second one and so on. Clearly, (3.6) is skew-symmetsic in O

REMARK 3.3. In the Schur functions cage= ¢ the computation from the previous
lemma gives in fact an explicit computation of the integral in the left-hand side of
(3.2) which shows that (3.2) is a generalization of the determinant ratio formula
for Schur functions.

PROPOSITION 3.4Suppos¢ (y) is symmetric polynomial. Then

1

Vg—(x) y<xf(y)d5(y|33) (3.7)
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is a symmetric polynomials in of degreedeg f.
Proof. Multiply both the integrand and denominator in (3.7) by

(H 3:) (n=1)(6-1)

so that they become polynomials. The integrand becomes a skew-symmetric poly-
nomial iny with coefficients in symmetric polynomials in therefore by Lemma
3.2 the integral is a skew-symmetric polynomiakinDenote this polynomial by
J.
By Lemma 3.1 the polynomial is divisible by(z1 — z2).
Since the integrand vanishes at the points

Y1 = xl/Qa N axl/qeila
as well as at the points
Y1 = xZ/Qa N axZ/qeila

we can replace the integration

T
/ dqyl
T2

by integration

z1/q°
/ dey1, s=1,...,0-1,

2

or by

2]
/ dey1, s=1,...,0 -1
T2/q°

ThereforeJ is divisible also by
r1—q¢°x2, s=1,...,0 -1,
and
¢’x1—2x2, s=1,...,0 -1
Since.J is skew-symmetric irx it is divisible by

-1
V(z) H H(a:Z —¢’zj).

i#j s=1
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Therefore (3.7) is a symmetric polynomialinlt is clear that its degree equals
degf+ (n—1)(n—2)/24+ (n — 1) —n(n — 1)/2 = degf,

where the summands come frgfty), V (y), integration, and’?(z) respectively.
This concludes the proof. |

Denote byI(u,n) the left-hand side of (3.2). We want to apply the Macdonald
operator

D= ZH“”_ ' (3.8)

1=1j#1 _:E]

to I(u,n). Here

Tgz: fl(z1,. . ziy. oy xn) = o1, .0, QT4 .o, Zn).

The operator (3.8) will be also denotedbyq, t) and byD,.(q, t) when it should be
stressed that it acts on variablesThe Macdonald polynomials are eigenfunctions
of this operator [M]

DP, = (Z qﬂit”*i) P,. (3.9)

We shall need the three following general lemmas about the opdbatbor
these lemmas we do not need any special assumptions@bodt.

LEMMA 3.5. For all ¢ andt we have the following commutation relation

1 (a/p"t
Viz) Vi)

Proof. Direct computation. O

D(1/q,1/t) D(1/q,t/q). (3.10)

LEMMA 3.6. Put

t/z; —1/x;
D]_/ac q,t ZH 1/51:2 _ 1/xj a,1/z;

1 jFi
then
Dy5(g,t) = "D, (1/g, 1/1). (3.11)
Proof. Direct computation. O
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By definition (3.8) the operatal acts on symmetric polynomials #variables.
This action indeed depends en in other words it is not compatible with the
restriction homomorphisms

A(n) = A(n —1). (3.12)

In the next lemma we shall deal with two finite sets of variablgs. ., x,, and
Y1, - - -, Ym and we suppose for simplicity that> m. Denote byD, andD, the
operatorsD in variablesr andy respectively. Put

I, m =(z,y;q,1).
LEMMA 3.7.

DIl m = (""" Dy + [n — m]) Iy m, (3.14)
wheren —mj; = (1 —t""™)/(1 —t).

Proof. As explained in [M, VI. 4] (this is clear from (3.9)) the following modi-
fication of the operator (3.8)

E=t"D-Y t"' (3.15)
1

is compatible with homomorphisms (3.12) and therefore defines an operator
A — A,

which is self-adjoint. By [M, VI1.2.13]
E(2,y;q,t) = E,II(7,y;q,1).

Therefore

n
DmHn,m = t" (Ez + Ztl> Hn,m
1
n .
= " (Ey + Zt") Mm
1
m . n .
=" (tmDy SRR tl) o m
1 1

= (t""™Dy + [n —m);) I . O
In particular,

D:an,n—l = (tDy + 1) Hn,n—l- (316)
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PROPOSITION 3.8.

D(1/q,1/t)1 (Z q it ”> ,1).

Proof. Recall that we consider the cae- 2, 3,.. .. Put

Io= P, (y)dB(y|z).

y<x

By (3.10) we have to prove that

(¢/t)" *D(1/q,t/q)To = (Z q’“ti”> Io.

By (3.11) it is equivalent to

Dy, (q,q/t) o = (Z q‘”ti”> Io.

i

We have

z/q
q,l/:leO = / / / / q,l/acl )dlg(y|x)
zi/q Tit+1

Since the integrand in (3.18) vanishes if
yjayjfl:]:j/Q7 ]7527

we can rewrite (3.18) as follows

Toyedo= | ToamPa)ddiylo)
y=<z/q
Therefore

Dys(aa/lo= | Dusla,af)F )80

y<z/q

Now by (3.16)

Dyjala /N1, ty:0.0/t) = (4D, (ava/t) + 1) Lo 133 5 0/)

By (3.20) and (2.4), the integral (3.18) equals

/y o Pu(y)V(y) [(%Dy(% q/t) + 1) (1/z, ty; q; q/t)] d
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Consider one summand in (3.21)
t—
] v |12 S —— Tqyln(l/x,ty;q;q/t)] dy.  (3.22)
t y-<m/q IJ#Z Yi — J

wherei = 1,...,n—1. Replacey; by a new variable. To simplify notation denote
this new variable by;. Then (3.22) becomes

1 Il/q Tp-1/q y t— vy,
;/ / / Z/ e — T1/qy: B, u(Y)
x2/q Tip1 Tn/q j . —Yj

2

df(ylz). (3.23)

Since the beta measure vanishes if

yj = ;/q,2j4+1/q, (3.24)

the integral (3.23) equals

1 Yi/t — yj
- LA OV
t /y-<m [1;[ yi—y; 0V Fuly)

By the same vanishing of the beta measure for (3.24)

dB(yla). (3.25)

/ P(y)V ()L, ty; 4; ¢/t dyy
y=<z/q

=) Pu(y)V (y)T(1/2, ty; q; q/t)dgy. (3.26)

Therefore the integral (3.21) equals

1

o+ | [Dy(1/q,1/t) Pu(y)] dB(y|z), (3.27)
y<x
Itis well known (and follows, for example, from the formula for the scalar product)
that

By (3.9) and (3.28)

n—1

Dy(1/q,1/t)Pu(y) = (Z Q"”ti‘”+l> Pu(y).

1
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Hence (3.27) equals

n .
(Z Q”itzn> Io,
1
as desired. 0

COROLLARY 3.9.I(u, n) equals the Macdonald polynomia),(x) up to a scalar
factor.

We calculate this factor in the next proposition. It will conclude the proof of the
theorem.

Consider the highest monomial in 6fx, n) with respect to the lexicographic
ordering of monomials

PROPOSITION 3.10The highest monomial if(;:, n) equals

C(,u,n)Hxé”. (3.29)
Proof. Multiply both the integrand and denominatoriify:, n) by

2

I(—1)@ Dl g (n=ido(0-1)/25(n- 10,
Then the highest monomial in the denominator equals

H xz(Zﬂ—l)(n—i).

i

Calculate the highest term of the integrand. We have togiandy; the same
priority because we obtain; integratingy;. Therefore the highest term of the

integrand is
H xgnfifl)wfl)yz;_ziJr(nfifl)Jr(nfi)(Qfl) (l"z . qyi) o ($z . qa_lyi)
_ H xz(n—z'—l)(0—1)yé¢i+(n—i)0—l(xi —qyi) - (i — qe_lyi).

i

Now calculate the highest term of the integral. The terms which come from the
lower limits are negligible, therefore the highest term of the integral equals

ng 1)( 1)/0 yl;_w( 0w — qui) -+ (w5 — ¢° Yy d,y:

i

_ H xl(n—i—l)(0—1)+ui+(n—i)9+9—1
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1 .
X / P U R P B " 12)d,z
0

=[] By(ui + (n —4)8, 9)x§‘i+(n_i)(29_l)

3

— C(/J;, n) H IétrF(TL*i)(ZQfl)’
i

where we used change of variablgs= zz;, beta function integral (2.2) and
definition (3.1). Therefore the highest term of the ratio equals

C(,u,n)Hxé”. O
i

EXAMPLE 3.11. The integral representation (3.2) gives one more way to calculate
the special value (see [M], VI.6.17)

P, (L, t,¢%, ... 1", (3.30)
What is special about this value is that for

0=12,...

only one summand, corresponding to the point

does not vanish in (3.2).

4. g-Integral representation for shifted Macdonald polynomials

Denote byA*(n) the algebra of polynomial§(x, ..., z,) which are symmetric
in new variables
T = zitt

We shall call such polynomiatghifted symmetricThe algebra\*(n) is filtered by
degree of polynomials. Denote By the projective limit of filtered algebras*(n)
with respect to the homomorphisms

A*(n) = A*(n—1),
flxa, ... zn) = f(z1y.. ., Zp_1,1).

The algebra\* can be naturally identified with the algebra of those polynomials
in Macdonald commuting difference operators which are stable (that is compatible
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with homomorphisms (3.12)). An example of such operator is the opdrarom
(3.15).

The graded algebra corresponding to the filtered algabraan be naturally
identified with the algebra of symmetric functions in variablesThe algebra\*
is generated, for example, by the following analogs of the power sums

pi(z) = (aF —tkD k=12 (4.1)

Given a partitiory: put

n(p) = (i = Dpi =3 p(u — 1)/2
J

Recall that for each squase= (i, j) € u the numbers
a,(s) ::ul_ja a'(s) :j_la
s)=py—i  Ms)=i-1

are called arm-length, arm-colength, leg-length, and leg-colength respectively. By
definition, put

H(p) = t*zn(#)qn(#') H (qa(S)Jrltl(S) —1).
SEN

This number will play the same role as the hook-length product played in [OO].
Supposé(i) < n. By P denote the element df* (n) which satisfies the two
following conditions

degP, = |ul, (4.2)
Pi(q") = H(w)oru A< |ul, L) <n, (4.3)
whereg® = (¢, ...,¢*). HereH (1) is just normalization constant and is intro-

duced for convenience. Note that the condition (4.3) is weaker than the condition
(1.3) in the introduction. Here we have a square system of linear equatiafs on
We shall prove (1.3) below in (4.11).

It is clear that if P exists then it is unique. The existence Rf will follow
from an explicit formula for it. The existence of this polynomial was proved by
different methods in [K, S].

In the same way as in [OO], Example 3.5, we have

PROPOSITION 4.1The sequence

{P; € A () bnsew
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defines an element &f.
Proof. The polynomial

Pi(71,...,7n-1,1)

satisfies all conditions for the shifted Macdonald polynomigkin- 1) variables
providedn > £(u). O

PROPOSITION 4.2Supposé:,, > 0 and put

/J'_:(/J'l_la"'aun_l)'
Then

Pi(e, on) = ¢ [ =t Pl (/g anfa). (4.4)
2

Proof.We have to verify that the right-hand side of (4.4) satisfies all conditions
for P;. Itis clear, that its degree equalg. Evaluate it ag*. We have

gt O (@ — DH () = H(w).

3

Finally, it is easy to see that it vanishes at all poigts where|)\| < |x| and
(M) < n. O

In this section we shall obtaingintegral formula for polynomial$*, which is a
minor modification of the formula (3.2).
We shall consider the following integration

qry qTn—1
/ dey = dgy1- - / dgYn—1-
y<*x x2 Tn

Introduce new variables

wf =at" oy =gt
and put

Vi(z) = V(z"),

Ve (z) = VO(a"),

df*(ylz) = dB(y"|z").

We have
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THEOREM II. Supposé (i) < n then

1

V(1) <o P, (y)dB*(y|z) = t‘“‘C(,u,n)P;‘(x). (4.5)

Together with (4.4) the theorem gives a formula for polynomigfs In the
proof we shall assume that

0=12,.... (4.6)

Indeed, the left-hand side of (4.5) is analytic in the polydigdt| < 1 and being
a polynomial vanishing at certain points provided (4.6) must be such a polynomial
for the other values aof andt as well.

We need the two following elementary lemmas.

LEMMA 4.3. For any A

(qA/t)o-1 _ 401 —06-1)/2
W AT @7

LEMMA 4.4. For any partitiony andd = 1,2, ...
V9 (q") # 0. (4.8)

Proof of the theoremDenote byl* the integral in the left-hand side of (4.5).
First show that it is an element &f*(n). In variablesz™, y* it can be rewritten as

1 q*~%2] ¢~y
— Pl (y)dB(y*|z"). 4.9
ey M M Ay (4.9)
The polynomial

Py(y)

is symmetric iny;. Because of the vanishing of the beta measure we can replace
integration

/ql—em:
T
by integration

*

T

*
i+1
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Thus, by Proposition 3.4 it is a symmetric polynomialkif that is an element of
A*(n).

The main point is the verification of the vanishing condition. Let us evaluate
I'*(u,n) at

—_ A
r=9q,

where) is a partition. Then the summands which enterg¢hietegral correspond
to points

yi:q%a >\Z>71,>>\1,+13 i=1...,n—-1

(Recall thaty < 1 and thereforg?i+1 is in fact the upper limit of integration for
y; andg* T is the lower one. This explains also the minus sign below in (4.10).)
Note thaty is a partition

YIZV2Z 2 Yn-1

andjy| < |Al.
Now suppose that\| < || and\ # u. Then always

Y # p

By definition, P;(y) vanishes at all such points! Since by (4.8) the denominator
does not vanish,*(u, n) vanishes.
The only calculation left is evaluation of the integral at

z =q",
which means

z; = q‘”t"ii.
In particularz,, = z;, = 1. This evaluation is elementary but quite messy. To the
end of the proof the indicesandj will range from 1 ton — 1. Only one summand

in the integral does not vanish. This summand equals the product of the following
factors:

H ()

from the value ofP’; (y) at this point,

tf(nfl)(an)/ZH (x;k - 33;)
1<j
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from the Vandermonde determinant,

((a/t)o-1)"* T (az} /D)o-1 [T ((a/ D)} /7)o
i]

from the other factors in the beta density, and finally
A R K e | £ (4.10)

from theg-Lebesgue measutgy*.
The denominator equals

[1(=7 = 23) [1(awi/27)o-1 [1((=7 = D(azi)o-1(a/77)o-2)-

i<y i#j

By (4.7)

10 ((a/t)z}/x})o-1 _ ~IO-D-D(n-2)/2
i (axi/e)e

Again, by (4.7)

(=Da; (L~ a)(a/Do-slaz}/t)o-1 _ (7)°a"""V (1~ ) (@)o—1
(z; — D(qz})o-1(a/7})o-1 (7)o ’

which equals

(23)" VB, (i + (n —0)9,0).

)

Therefore the result equals

C(pym) H (1)
times the following power of
Olp| +6°n(n —1)/2—60(0 — 1)(n — 1)
00 —-1)(n—1)(n—-2)/2—0(n—1)(n—2)/2—0(n —1),
which equal®)|y|. O

Write

pCA
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if A; > u; for all 4, and
pwCA

if # C Aandu # A. In the sequel we shall deal with some sums like
Z c, P,

where the only thing that matters is whi¢h can enter the sum, no matter with
which specific constant factoes. Constant factor like, will always denote such
unspecific factors.

The following proposition is a strengthening of aresult by S. Sahiand F. Knop.In
particular, it gives the highest degree term/gff, which was found in [K, S] by
different methods.

PROPOSITION 4.5.
P;(xl, x2,...,Ty) = P,(z1, wztfl, .. ,xntlfn)
+ Z coPy(z1,zot™ Lz tt ™), (4.11)
vCu

wherec, are some constaritsvhich depend op andn.
Proof. Induct onn and|u|. Suppose:,, > 0. By (4.4) we have

Pi(r1,...,zn)

= g (i(—t")kenk(. it .)) Pi_(21/¢,-- - xn/q).

k=0
By inductive assumption (4.11) is true for . It is well known that the product
e P,
is a linear combination of such Macdonald polynomi&jsthat
n/v

is a verticalr-strip. Therefore (4.11) is true also far
Suppose:, = 0. By inductive assumption

P;(yla e 7yn—1) = Pu(yla s ayn—ltz_n)

+ Z CVPV(yla R 7ynflt2_n)-
vCu

* Explicit formulas for these coefficients are given by a particular case dfiti@mial theorem
for Macdonald polynomials, see the recent paper [Ok3]
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Therefore
P;(ylv ceyYn-1) = t(27n)‘mpﬂ(yiv e Yno1)

+ Z C:/PV(yI? tee ay:,fl)a
vCu

for some constants,. Integrating as in (3.2) and (4.5) we obtain

Py(z1,...,2) = tMp, (21, a)
+ Z CZPV(:EL e 733:(1,)7
vCu
which is equivalent to (4.11). O

Using (4.5) we can reprove one more result from [K], which generalizes the
corresponding result for the shifted Schur functions [OO], Theorem 3.1.

PROPOSITION (VANISHING PROPERTY) 4.6.
®0 Ay
P;(¢") =0, unlessu C A (4.12)

Proof. Induct onn and|y|. If 1, > 0 apply Proposition 4.2.
If u, = 0 then apply the very same argument which proved vanishing in the
proof of the theorem. O

REMARK 4.7. The formulas (3.2) and (4.5) define cerigiimtegral operators
A(n —1) = A(n)

and
A*(n—1) = A*(n).

Using projection (3.12) (and its analog far) in the inverse direction we can
characterize Macdonald polynomials and shifted Macdonald polynomials as eigen-
functions (with distinct eigenvalues) of some integral operators (in the same way
as for Schur functions [OO], Section 10).

In fact, there are countably many commuting integral operators which corre-
spond to iterated integration (3.2) and (4.5)

A(n) - A(N), n <N,
and projection back

A(N) = A(n).
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5. Combinatorial formula for shifted Macdonald polynomials

In this section we shall establish branching rule for shifted Macdonald polynomials,
or (what is the same) a combinatorial formula #f in terms of semistandard
tableaux onu.

First, we need some qualitative results about the branchingfor

PROPOSITION 5.1Letd be a variable, then

Pi(dzy, ... ,dr,) = Z ()P (x1,. .. 20), (5.1)
vCp

wherec, (d) are some polynomials i which depend also om andn.
Proof. It is clear that an expansion

Pi(dzy, ... ,dr,) = Z cy(d)P) (21, ... xp)

exists. We have to show that

cy(d) =0, unlesw C u.
By (4.11) the bases

{P:(xl, cesZpn)} (5.2)
and

(Pu(... it )} (5.3)

are mutually triangular with respect to the partial ordering by inclusion of diagrams.
Since dilatation byl in diagonal in the basis (5.3) itis triangular in the basis (5:2).

Put

w= (.- s pn1).
We have
PROPOSITION 5.2.

Pi(r1,...,7n 1,d) = Z ey (d)P) (1, .. Tn-1), (5.4)
vCu!

wherec, (d) are some polynomials i which depend also op andn.
Proof. Again we have to show that certain summands cannot occur.
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If d = 1 then by stability off?;

P*(xla"'axn—l)a /J'nzo
Py(z1,...,2p-1,1) =< "
07 /J/n > 0.

For generall introduce new variable§
z;=d&, i=1,...,n—1,
and use (5.1). O
Put
o= (2, pin)-
Recall that
v=<Uu
means that
M1 Z V12§22 2 Vp-12 ln,
which is equivalent to
‘wCvCy
PROPOSITION 5.3.

Pi(dyz2,...,20) = Y fun(d)P)(z2,. .., xn), (5.5)
v<u

wheref, , (d) are some polynomials i.
Note that because of stability of shifted Macdonald polynomials the polynomial
fu,v(d) doesnotdepend om.
Proof. By the shifted symmetry
Pi(d, 32, ...,20) = P (22/t, ...,z /t,t" " d).
Hence by (5.4)

Pi(d,z2,...,2n) = Z c, (" Yd)P¥ (z2/t, . . ., xn/t).
vCu!
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By (5.1)

Py (za/t,...,x/t) = Z cn(1/t) Py (w2, ..., o).
nCv

Therefore only summands with
vCpu

can occur in (5.5).
Now assume that there is a summand in (5.5) with

‘W v

We can choose minimal, that is in such a way thdty with n C v do not enter
the sum (5.5). Then for all sufficiently large

Pi(d,v1,...,vp—1) #0
because
P:(Vla"'al/n—l) 7é0

and all other summands in (5.5) vanish by the vanishing property (4.12). Clearly,
this contradicts (4.12) and makes our assumption impossible. O

Now recall the corresponding result for Macdonald polynomials

Py(d,z2,...,25) = > upd ™’ Py (22, .. 2,), (5.6)
V<

wherey,, , are certain nonzero rational functionsgadindt which can be found in
[M], Section VI.7. Introduce the following notation

<d>u/u = H (d - qa’(s)t—l’(s)),

sep/v

where the numberg'(s) and!’(s) for a squares € 1 were defined in Section 4.
The number® )¢ ¥(5) js theg-analog of theontentof the square. If

v =10, p=(r),

then

<d>u/ll = <d>r
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Therefore the numbed),,/, is a generalization of the factorial powef),. The
main result of this section is the following

THEOREM III.

Pi(d, w2, ... wn) = Y Yupt Nd), ) Py (32, . 2), (5.7)
v<u

It is clear that iterating this formula we obtain the semistandard tableaux sum
formula (1.4) for polynomials”;. We shall use induction on. In fact we shall
need only the following corollary of this theorem

COROLLARY 5.4.Forallr=1,...,n.
Pz, e, @'t gt ) = et a4 (5.8)

wherec is a nonzero factor and dots stand for lower monomials in lexicographic
order.
Proof. Given a partition

n=(n--Mn-1)
set
W= (ni,... 1)
Then
e =t 221" (T oy i) HT ). =

Proof of the theoremnduction om. The casen = 1 is clear. Suppose > 1.
We shall find

/v
distinct zeros of the polynomidl, , (d). Fix some: and show that
f%”(d) =0, d= qui_ltl_ia SR aqUitl_i' (5.9)

We shall prove (5.9) by induction d v, in other words we shall deduce (5.9)
from the assumption that

Fum(d) =0, d=ghi =0 g (5.10)
for all n such that
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Supposeél is as (5.9). We have

P;(d7:1727"'7$i7qui7"' 7qyn_1)

- Z fﬂm(d)P;(xz, e Ty @ g Y). (5.11)
n<p

By the vanishing property (4.12) only summands satisfying
@Oy @y

are nonzero. On the other hand, if
Oy @y,

then in particular
i < Vi

and by our Assumption (5.10) the corresponding summand vanishes. Therefore
only summands with

@y =)
enter the sum. By (5.8) each summand has the following form
Cfun(d) (@3t .. a]™ 4 ), (5.12)

wherec is a nonzero factor and dots stand for lower monomials in lexicographic
order.
On the other hand, by shifted symmetry

Pi(d,z2,...,7i,q",...,¢"?)
= P (z2/t,. .. R N IR L
By the vanishing property (4.12) this should vanist i§ as in (5.9) and
xj/t:q/\f, J=2,...,1
for all sufficiently large integers

A2 > 2 A

Therefore for suckl the polynomial (5.11) should be identically zero. By virtue of
(5.12) it is impossible unless

fu,n(d) =0

comp4127.tex; 27/04/1998; 8:29; v.7; p.28

https://doi.org/10.1023/A:1000436921311 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000436921311

(SHIFTED) MACDONALD POLYNOMIALS 175

for all n such that?y = v This proves (5.9).
Since

degf,., < |u/vl
the polynomialf, , equals
(d) v
up to a factor. This factor is clear from (4.11) and (5.6). O

EXAMPLE 5.5. The shifted analogs of the elementary symmetric functions are

Ply(a) = Y 720 T (i, — 7). (5.13)

iy <<y s

REMARK 5.6. The shifted symmetry aP; results in some complicated identi-
ties for coefficients), , which are not clear from the explicit formula for these
coefficients.

6. Duality
The duality we shall discuss in this section relates shifted Macdonald polynomials
with parameterg andt to shifted Macdonald polynomials with parametefs 1
and J/q. Denote by

Ay
the algebra\* constructed in Section 4. Denote by

Zt’“ (zF — 1) (6.1)

the power-sum generators &f. Consider the following isomorphisay, ,

*

w
Ay = i/q’
*(t)r—>71 ¢ +(1/q) (6.2)
Pk 1—(1/t)’“pk - '

Note a slight difference with the Macdonald duality automorphism. The isomor-

phism (6.2) has the following clear combinatorial interpretation which generalizes

the corresponding result for shifted Schur function [OO], Theorem 4.1.
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PROPOSITION 6.1For all f € A}

wi (NI = F(@). (6.3)

Proof. It suffices to check (6.3) on generators (6.1). For any partiiare have

1 —ig oy oy 1 J=1p=N; _

which is Example VI.5.1(a) in [M]. To see (6.4) one can use the same trick as in
[OO], Theorem 4.1, and sum

Z g

(i,7)EX
first along rows and then along columns. It is clear that (6.4) means

l—q

1_71/,51”{@“? 1/q) = pi(a";1).

Now replacey by ¢* andt by ¢* in (6.4) to obtain

— ok .
T ) = i),

as desired. O

COROLLARY 6.2.

wy,1(Py (g, 1)) = cPyi(1/t,1/q), (6.5)

wherec is a constant which depends pn
Proof. Follows from (6.3) and definition aP;. O

Recall the following notation of Macdonald
1— qa(s)tl(s)-l-l
ng,t) = [ e
o l-a (s)+1¢l(s)
In particular,
1— qa(s)+1tl(s)

bvit,q) = ] it
A ( ) sel_[)\ 1— qa(s)tl(s)-l-l
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THEOREM IV.

wy (P (g, ) = (—=t)*b (t,9) P (1/t, 1/q).
Proof. It is clear that in order to calculate the constant in (6.5) we have to
evaluate the equality (6.5) &it*'. By (6.3) and definition of’; we have
H(p;q,t)
H(p';1/t,1/q)
¢ 2n(u) gn(u’) Hsgﬂ(q“(s)ﬂtl(s) —1)
g2 (u') ¢ —n(p) Hseu(qfa(s)tfl(s)fl -1

= (—t)Mbx(t,9),

CcC =

because
Sis)=n(w), Y als)=n(). =
sEn SEN

EXAMPLE 6.3. Since the automorphism (6.2) preserves the degree we can look at
the corresponding isomorphism of the graded algebras

A — A,

which differs from Macdonald automorphism

1-g*
pr — (=1)* 11_;1/@1%
by factor
(_t)dega

where deg is the degree of a polynomial. Since the highest ter#y;aé the
Macdonald polynomiaP,, and

Pﬂ(qat) = Pu(l/qa 1/t)7
the Theorem IV gives a new proof of the duality theorem of Macdonald together
with computation of the constant factor.
7. Degeneration

In this section we consideshifted Jack polynomialsThese polynomials were
considered by F. Knop and S. Sahi in [KS]. These polynomials are indexed by
partitionsy, depend on a parametéand equal, by definition, to

Py (x;0) = ;ig\l(q — )P (g q,4"). (7.1)
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In this section let us change notations as follows. The dependengemihbe
denoted explicitly in all prelimit expressions like in the right-hand side of (7.1). The
expressions without will denote the corresponding degenerations. For example,
we write

Zar=(E-DE-q - (z-¢Y. (7.2)
This is the shifted Macdonald polynomial in one variable

Pi(zq,1) = (zq)r.
The corresponding shifted Jack polynomial equals

Pr(z0) = (2)r,
where

(2} =2(z=1)---(z—7r+1). (7.3)
In the same way write

(=TI (z=a'(s) +0(s)),

sEu/v

this is a generalization of (7.3).
The easiest way to see that (7.1) is a polynomial of defjreés to look at
the combinatorial formula foP; (¢, ). The branching rule (5.7) has the following

limit
Pi(r1,72,...,7n;0)
= Z wu,u(o) <£E1>#/1,P:($2, sy Ty, 9)3 (7-4)
V<

wherey,, ,,(0) are the branching coefficients for ordinary Jack polynomials, which
are rational functions i@ and can be found in [St] and [M], Section VI.10. Note
that
0=1/a,
whereq is the traditional parameter for Jack polynomials.
Because of the symmetry and vanishing properties of the shifted Macdonald
polynomials we have

P, (x;0) is symmetric in variables; — 04, (7.5)
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P;(X;0) =0 unlessu C A, (7.6)
Pi(;0) = ] (al(s) + 61(s) + 1). (7.7)
SEW

The productin (7.7) is 8-analog of the hook length product; denote it#yy; 6).
Before discussing the limit of integral formula (4.5) fé};(z; ¢,?) consider
some elementary properties of finite sums. We have

T1

{1+ 1) — (w2)r 1

Yy=r2
providedz1 — x is a nonnegative integer. Using (7.8) one can evaluate sums
T
> ) (7.9)
Yy=r2

for arbitrary polynomialsf (y). If 1 — x2 is not a nonnegative integer thdefine
(7.9) using (7.8). In particular, we have

T 1'2—1
S -- %
Yy=r2 y=x1+1

Now suppose thaf is a polynomial and

;iinlmf(qy) = f(y)

for somes andf. Then

) 1 g1t T
é@lm /q . f(y)dqyzyng(y), (7.10)

which follows directly from definitions ifc; — x, is an integer.
Now we calculate the limit of (4.5). Recall that [GR, 1.10]

lim T'y(2) =TI'(2),

q—1

whereq tends to 1 from below. Therefore

- (¢F)e-1  T(z+0-1)
mMa—g? 1~ T()
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In the sequel we assume that
0=12....

In this case

I'(z+6-1)

e =z(z+1)...(2+6-1).

Recall that we denote biy*? (x; ¢) the denominator in (4.5)

V(25 q) =[] ("™ Pz — "™ D) [T(a°V "2 /5) g1

i<j i#]
We have
- V*(q";q) _ n(n—1)/2y 40
;@1 (1— q)n(n—D0+1/2) — (—1) Vi(z), (7.11)
where
V*a(ﬂj) = H(ZEZ — Xy + 9(] - Z)) H(QSZ — Ty + 9(] - Z) +6— 1>9_1. (712)
i<j i#j
Denote by
By, 7 4,¢") = [J ("™ Vs — "2 Dy TT(@9 D i /)91
i<j 2%

the density of the beta measure in (4.5). In the same way we have

*( Y AT+ 0
lim A ) = (-1 D=D/2g*(y 3:0),  (7.13)

where, by definition,

By, 7 0) = [[ (i —y; + 00 — 1) [[{wi — 2 + 600 — i) — 1)p_1.(7.14)

i<j i,J
Using (7.10), (7.11), and (7.14) we obtain the following degeneration of (4.5)
1 N *(o
T 2 Fn Wi 0)B,210) = O, m) Pi(w:0), (7.15)

y<x

where

Tn—1

IR SR

y<z Y1=22 Yn—1=Tn
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and

(1yn) = HB(Mz + (n —1)0,0).

Forf = 1 we obtain the coherence property of the shifted symmetric functions
[OQ], Section 10.
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