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Abstract. We extend some results aboutshifted Schur functionsto the general context ofshifted
Macdonald polynomials. We strengthen some theorems of F. Knop and S. Sahi and give two explicit
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1. Introduction

The orthogonality of Schur functions

(s�; s�) = ���;

is the orthogonality relation for characters of the unitary groupU(n). The orthog-
onality of characters means that a character (as a function on the group) vanishes
in all but one irreducible representation.

There is a very remarkable basis in the center of the universal enveloping
algebraU(gl(n)), which is similar to the basis of characters in the algebra of
central functions onU(n). Many properties of this basis can be found in [OO, Ok].
The elements of this basis are indexed by partitions� with at mostn parts; they
are denoted byS� and calledquantum immanants. The elementS� has degreej�j
and vanishes in as many irreducible representations, as possible, namely

s��(�) = 0; unless� � �;

wheres��(�) is the eigenvalue ofS� in the representation with highest weight�.
The functions��(�) is called theshifted Schur functionfor it is a polynomial in�
with highest terms�(�). This polynomial is symmetric in variables

�i � i; i = 1;2; : : : ;
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148 ANDREI OKOUNKOV

and is also stable, which means it does not change if we add some zeroes to�. The
numbers��(�) has a remarkable combinatorial interpretation: up to some simple
factors, it counts standard tableaux on�=�.

There is the following formula forS� in terms of the generatorsEij of U(gl(n)).
Fix any standard tableauT on�. Let cT (i) denote the content of theith square in
T . Then we have (see [Ok1], and also [N, Ok2])

S� = tr((E � cT (1))
 � � � 
 (E � cT (j�j)) � PT ); (1.1)

whereE is the following matrix with entries inU(gl(n))

E = (Eij)ij 2 Mat(n)
 U(gl(n));

PT is the orthogonal projection on the Young basis vector indexed byT

PT 2 QS(j�j);

and we use the standard representation

QS(j�j) ! Mat(n)
j�j:

The formula (1.1) corresponds to the followingcombinatorial formulafor the
shifted Schur functions (see [OO], Section 11, and also [Ok1], Section 3.7). We
call a tableauT on a diagram� a reverse tableauif its entries strictly decrease
down the columns and weakly decrease in the rows. Denote byT (s) the entry of
T in the squares and byc(s) the content of the squares. Then we have

s��(x1; x2; : : :) =
X
T

Y
s2�

(xT (s) � c(s)); (1.2)

whereT ranges over all reverse tableau on�.
The shifted Schur functions have numerous applications to the finite- and espe-

cially infinite-dimensional representation theory. Their(q; t)-analogs, with which
we deal in this paper, inherit most of their power.

In the general(q; t)-situation the center ofU(gl(n)) gets replaced by the com-
mutative algebra generated by Macdonaldq-difference operators [M]. The eigen-
functions of this commutative algebra are Macdonald polynomialsP�(q; t), which
replace Schur functions. The eigenvalue of a central element in the representation
with highest weight� becomes the eigenvalue of aq-difference operator on the
Macdonald polynomialP�(q; t). It is known (see, for example [EK]) that the alge-
bra generated by Macdonald operators can be naturally identified with the center
of theq-deformedU(gl(n)).

The eigenvalue of a Macdonald operator onP�(q; t) is known to be a polynomial
in q�i which is symmetric in variables

q�it�i:
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(SHIFTED) MACDONALD POLYNOMIALS 149

Therefore the natural(q; t)-analog of the shifted Schur function should be a poly-
nomial

P ��(x);

of degree

degP ��(x) = j�j;

which is symmetric in variables

xit
�i; i = 1;2; : : : ;

and satisfies the following vanishing condition

P ��(q
�) = 0; unless� � �; (1.3)

andP �� (q
�) 6= 0. It is an overdetermined system of linear conditions onP �� (x). It

is easy to see that these polynomials are unique within a scalar factor provided they
exist. We shall specify the normalization in section 4. We call these polynomials
shifted Macdonald polynomials.

It is well known that the numberqj�1t1�i is the(q; t)-analog of the content of the
a squares = (i; j). Together with G. Olshanski we have conjectured (unpublished)
the following analog of the formula (1.2). By

a0(s) = j � 1; l0(s) = i� 1

denote thearm-colengthand theleg-colengthof the squares = (i; j). Then

P ��(x; q; t) =
X
T

 T (q; t)
Y
s2�

t1�T (s)(xT (s) � qa
0(s)t�l

0(s)); (1.4)

where the sum is over all reverse tableau on�with entries inf1;2; : : :g and T (q; t)
is the same(q; t)-weight of a tableau which enters the combinatorial formula for
ordinary Macdonald polynomials (see [M], Section VI.7)

P�(x; q; t) =
X
T

 T (q; t)
Y
s2�

xT (s): (1.5)

The coefficients T (q; t) are rational functions ofq andt.
However, only in the present paper we obtain a proof of this formula.
First theorems about the polynomialsP ��(x) were obtained by F. Knop and

S. Sahi [KS, K, S]. In particular, they identified the highest degree term of the
inhomogeneous polynomialP ��(x). Other fundamental properties (such asinte-
grality) were also established. Their approach was based onq-difference equations
for polynomialsP �� (x).
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150 ANDREI OKOUNKOV

The combinatorial formula (1.4) implies both the highest degree term identifi-
cation [K, S] and theextra vanishingproperty (1.3) proved in [K]. It is easy to see
that all conditions from the definition ofP �� (x) are obvious in (1.4) except for the
symmetry inxit�i. We were not able to find any direct proof of this symmetry and
shall give a quite indirect proof.

We shall use an approach based on aq-integral representationfor the polynomial
P ��(x). It is independent of the difference equations approach and generalizes the
coherenceproperty of quantum immanants (see [OO], Section 10 and also [Ok1],
Section 5.1).

Our main technical tool is aq-integral representation for Macdonald polyno-
mials (see Theorem I below). Since Macdonald polynomials satisfy aq-difference
equation it is natural to expect that

P�(x1; : : : ; xn)

can be written as a multipleq-integral wherexi occur as limits of integration.
Indeed,P�(x1; : : : ; xn) can be written as such a multiple integral of the Macdonald
polynomial

P�(y1; : : : ; yn�1)

in a smaller set of variables with respect to a multivariate analog of the symmetric
beta measure. In the simplest casen = 2 this integral reduces to a particular case
of the q-analog of the beta integral studied in [AA, AV]. In the Schur function
case this integral can be evaluated explicitly and gives the determinant ratio for-
mula. The integral representation allows to characterizeP�(x) (and alsoP ��(x)) as
eigenfunctions of commuting integral operators, see Remark 4.7.

There are importantq-integral formulas involving Macdonald polynomials due
to Kadell (see [M], example VI.9.3 and also [Ka]) as well as integral representation
of Macdonald polynomials via ordinary contour integrals (see [AOS] and references
therein).

The crucial property of our integral is that the domain of integration is of the
form Z

x1

x2

dqy1 � � �

Z
xn�1

xn

dqyn�1(� � �):

This allows to obtain aq-integral representation for the polynomialP �� just by a
minor modification of the integral, see Section 4. In other words, the orthogonal
polynomialsP� and the Newton interpolation polynomialsP �� have essentially the
same integral representation.

In a sense the relationship betweenP� andP �� is even closer than betweens�
ands��. One explanation for this is that the finite difference calculus (which is
suitable tos��) unifies with the ordinary calculus (which is suitable tos�) in the
q-difference calculus.
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(SHIFTED) MACDONALD POLYNOMIALS 151

The lower degree terms of the inhomogeneous polynomialP �� carry some
important additional information and make some properties ofP �� look even more
natural than the corresponding properties of the ordinary Macdonald polynomials.
For example, theduality for shifted Macdonald polynomials has a clear combina-
torial interpretation (see Section 6) which gives a new interpretation of the duality
for Macdonald polynomials.

In Section 7 we consider shifted Jack polynomials. This degeneration was
also considered by F. Knop and S. Sahi in [KS]. Even if one is interested in
Jack polynomials only it proves to be easier to work with general Macdonald
polynomials and then letq ! 1 in very final formulas.

It would be very interesting to find a(q; t)-analog of the formula (1.1).
I am grateful to I. Cherednik, S. Sahi and especially to G. Olshanski for many

helpful discussions. I would like to thank R. Askey, A. N. Kirillov, K. Mimachi,
M. Noumi, M. Wakayma for their remarks on the preliminary version of this paper
(q-alg 9605013). In particular, K. Mimachi gave me a copy of the preprint [MN].

Since the completion of this paper binomial type formulas forP �� and also for
ordinary Macdonald polynomials were obtained (see [Ok3] and also [OO3]). In
particular, they provide new and, perhaps, more natural ways to prove theq-integral
representations obtained here. Among other application let us mention the papers
[KOO] and [Ok5].

The analogs ofP �� for the root system of typeBCn were considered in [Ok4].
Those polynomials have essentially all properties ofP �� except for the difference
equations.

2. Notations

All q-shifted factorials in this paper will be with the same baseq, for example

(a)1 = (1� a)(1� qa)(1� q2a) : : : :

This product converges ifjqj < 1. Put

(a)� =
(a)1
(q�a)1

:

The numbersqandt = q� will be the two parameters of the Macdonald polynomials
P�. With this notation

(a)� =
(a)1
(ta)1

:

We shall need also anotherq-shifted power

hair = (a� 1)(a� q) � � � (a� qr�1); r = 0;1;2; : : : ;
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152 ANDREI OKOUNKOV

which is aq-analog of the falling factorial power ofa.
Recall the definition of theq-integral

Z
a

b

f(y)dqy =

Z
a

0
f(y)dqy �

Z
b

0
f(y)dqy;

where

Z
a

0
f(y)dqy = a(1� q)

1X
i=0

f(aqi)qi:

We haveZ
a

0
yrdqy =

1
[r + 1]

ar+1; (2.1)

where

[r] =
1� qr

1� q

is theq-analog of the numberr. Recall also the followingq-analog of the beta
function integral [GR, 1.11.7]

Z 1

0
ya�1(qy)b�1dqy = Bq(a; b); (2.2)

whereRa > 0; b 6= 0;�1;�2; : : :,

Bq(a; b) =
�q(a)�q(b)

�q(a+ b)
;

and, finally,

�q(a) = (1� q)1�a(q)a�1:

Given two vectors

x = (x1; : : : ; xn); y = (y1; : : : ; yn�1);

wheren = 2;3; : : :, write

y � x

if

yi 2 [xi; xi+1]; i = 1; : : : ; n� 1:
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(SHIFTED) MACDONALD POLYNOMIALS 153

Denote by

V (x) =
Y
i<j

(xi � xj)

the Vandermonde determinant in variablesx1; : : : ; xn. Put

V �(x) = V (x)
Y
i6=j

(qxi=xj)��1:

We will integrate symmetric polynomials iny1; : : : ; yn�1 over the domainy � x

with respect to the following measure

d�(yjx) = V (y)
Y
i;j

(qyi=xj)��1dqy; (2.3)

which is a multivariate analog of the beta measure in (2.2). Here

dqy = dqy1 : : : dqyn�1:

With the Macdonald notation

�(x; y; q; t) =
Y (txiyj)1

(xiyj)1

we have

d�(yjx) = V (y)�(1=x; ty; q; q=t)dqy; (2.4)

By � denote the algebra of symmetric functions with coefficients in rational
functions inq and t. By �(n) denote the algebra on symmetric functions inn
variables with the same coefficients.

3. q-Integral representation of Macdonald polynomials

Given a partition� with the number of parts̀(�) 6 n put

C(�; n) =
Y

Bq(�i + (n� i)�; �): (3.1)

In this section we will prove the following theorem

THEOREM I.Supposè(�) < n, then

1
V �(x)

Z
y�x

P�(y)d�(yjx) = C(�; n)P�(x): (3.2)
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154 ANDREI OKOUNKOV

On the one hand this formula expresses the Macdonald polynomialP�(x)
in terms of the Macdonald polynomialP�(y) in the smaller set of variables. By
stability of Macdonald polynomials it suffices to knowP� in j�j variables. Therefore
(3.2) gives aq-integral representation ofP�. This formula is a generalization of the
determinant ratio formula for Schur functions (see below).

On the other hand, sinceP� form a basis in the space of symmetric polynomials,
(3.2) tells how to integrate symmetric polynomials over the domainy � x with
respect to the measure (2.3).

In the limit q ! 1 the formula (3.2) becomes the integral representation for
Jack polynomials found by G. Olshanski [Ol].

Both sides of (3.2) are analytic functions ofq andt in the polydisc

jqj < 1; jtj < 1:

More precisely, if

jqj; jtj < � < 1;

then we have to assume, for example, that

�1=2 < jxij < ��1=2; i = 1; : : : ; n

and that

xi 6= xj ; i 6= j

in order to avoid zero factors.
Therefore it suffices to prove the equality (3.2) for

t = q�; � = 2;3; : : : : (3.3)

Indeed, an analytic function, which vanishes on (3.3) should vanish on all lines

q = const6= 0

by the 1-dimensional uniqueness theorem.

LEMMA 3.1. Supposef(y1) is a polynomial. Then

1
x1 � x2

Z
x1

x2

f(y1)dqy1 (3.4)

is a symmetric polynomial inx1 andx2.
Proof.Follows from (2.1). 2
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(SHIFTED) MACDONALD POLYNOMIALS 155

The following computation is from [OO], Section 10.

LEMMA 3.2. Supposef(y) is a symmetric polynomial. ThenZ
y�x

f(y)V (y)dqy (3.5)

is a skew-symmetric polynomial inx.
Proof. Sincef(y)V (y) is skew-symmetric, it is a linear combination of the

following determinants

det

0
BBB@

y�1
1 � � � y

�n�1
1

...
...

y�1
n�1 � � � y

�n�1
n�1

1
CCCA

for some numbers�1 > �2 > � � �. Integrating we get up to a constant factor

det

0
BBBB@
x�1+1

1 � x�1+1
2 � � � x

�n�1+1
1 � x

�n�1+1
2

...
...

x�1+1
n�1 � x�1+1

n � � � x
�n�1+1
n�1 � x

�n�1+1
n

1
CCCCA :

Which equals

det

0
BBBBBBB@

x�1+1
1 � � � x

�n�1+1
1 1

x�1+1
2 � � � x

�n�1+1
2 1

...
...

...

x�1+1
n � � � x

�n�1+1
n 1

1
CCCCCCCA
: (3.6)

To see this subtract in (3.6) the second line from the first one, then the third line
from the second one and so on. Clearly, (3.6) is skew-symmetric inx. 2

REMARK 3.3. In the Schur functions caseq = t the computation from the previous
lemma gives in fact an explicit computation of the integral in the left-hand side of
(3.2) which shows that (3.2) is a generalization of the determinant ratio formula
for Schur functions.

PROPOSITION 3.4.Supposef(y) is symmetric polynomial. Then

1
V �(x)

Z
y�x

f(y)d�(yjx) (3.7)
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is a symmetric polynomials inx of degreedegf .
Proof.Multiply both the integrand and denominator in (3.7) by

�Y
xi

�(n�1)(��1)

so that they become polynomials. The integrand becomes a skew-symmetric poly-
nomial iny with coefficients in symmetric polynomials inx, therefore by Lemma
3.2 the integral is a skew-symmetric polynomial inx. Denote this polynomial by
J .

By Lemma 3.1 the polynomialJ is divisible by(x1 � x2).
Since the integrand vanishes at the points

y1 = x1=q; : : : ; x1=q
��1;

as well as at the points

y1 = x2=q; : : : ; x2=q
��1;

we can replace the integration
Z

x1

x2

dqy1

by integration
Z

x1=q
s

x2

dqy1; s = 1; : : : ; � � 1;

or by
Z

x1

x2=q
s
dqy1; s = 1; : : : ; � � 1:

ThereforeJ is divisible also by

x1 � qsx2; s = 1; : : : ; � � 1;

and

qsx1 � x2; s = 1; : : : ; � � 1:

SinceJ is skew-symmetric inx it is divisible by

V (x)
Y
i6=j

��1Y
s=1

(xi � qsxj):
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Therefore (3.7) is a symmetric polynomial inx. It is clear that its degree equals

degf + (n� 1)(n� 2)=2+ (n� 1)� n(n� 1)=2 = degf;

where the summands come fromf(y), V (y), integration, andV �(x) respectively.
This concludes the proof. 2

Denote byI(�; n) the left-hand side of (3.2). We want to apply the Macdonald
operator

D =
nX
i=1

Y
j 6=i

txi � xj

xi � xj
Tq;xi (3.8)

to I(�; n). Here

[Tq;xif ](x1; : : : ; xi; : : : ; xn) = f(x1; : : : ; qxi; : : : ; xn):

The operator (3.8) will be also denoted byD(q; t) and byDx(q; t)when it should be
stressed that it acts on variablesx. The Macdonald polynomials are eigenfunctions
of this operator [M]

DP� =
�X

q�itn�i
�
P�: (3.9)

We shall need the three following general lemmas about the operatorD. For
these lemmas we do not need any special assumptions aboutq andt.

LEMMA 3.5. For all q andt we have the following commutation relation

D(1=q;1=t)
1

V �(x)
=

(q=t)(n�1)

V �(x)
D(1=q; t=q): (3.10)

Proof.Direct computation. 2

LEMMA 3.6. Put

D1=x(q; t) =
X
i

Y
j 6=i

t=xi � 1=xj
1=xi � 1=xj

Tq;1=xi :

then

D1=x(q; t) = tn�1Dx(1=q;1=t): (3.11)

Proof.Direct computation. 2
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By definition (3.8) the operatorD acts on symmetric polynomials inn variables.
This action indeed depends onn; in other words it is not compatible with the
restriction homomorphisms

�(n)! �(n� 1): (3.12)

In the next lemma we shall deal with two finite sets of variablesx1; : : : ; xn and
y1; : : : ; ym and we suppose for simplicity thatn > m. Denote byDx andDy the
operatorsD in variablesx andy respectively. Put

�n;m = �(x; y; q; t):

LEMMA 3.7.

Dx�n;m = (tn�mDy + [n�m]t)�n;m; (3.14)

where[n�m]t = (1� tn�m)=(1� t).
Proof.As explained in [M, VI. 4] (this is clear from (3.9)) the following modi-

fication of the operator (3.8)

E = t�nD �
nX
1

t�i (3.15)

is compatible with homomorphisms (3.12) and therefore defines an operator

�! �;

which is self-adjoint. By [M, VI.2.13]

Ex�(x; y; q; t) = Ey�(x; y; q; t):

Therefore

Dx�n;m = tn
 
Ex +

nX
1

t�i
!
�n;m

= tn
 
Ey +

nX
1

t�i
!
�n;m

= tn
 
t�mDy �

mX
1

t�i +
nX
1

t�i
!
�n;m

=
�
tn�mDy + [n�m]t

�
�n;m: 2

In particular,

Dx�n;n�1 =
�
tDy + 1

�
�n;n�1: (3.16)
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PROPOSITION 3.8.

D(1=q;1=t)I(�; n) =

 X
i

q��iti�n

!
I(�; n): (3.17)

Proof.Recall that we consider the case� = 2;3; : : :. Put

I0 =

Z
y�x

P�(y)d�(yjx):

By (3.10) we have to prove that

(q=t)n�1D(1=q; t=q)I0 =

 X
i

q��iti�n
!
I0:

By (3.11) it is equivalent to

D1=x(q; q=t)I0 =

 X
i

q��iti�n

!
I0:

We have

Tq;1=xiI0 =

Z
x1

x2

� � �

Z
xi�1

xi=q

Z
xi=q

xi+1

� � �

Z
xn�1

xn

Tq;1=xiP�(y)d�(yjx): (3.18)

Since the integrand in (3.18) vanishes if

yj; yj�1 = xj=q; j 6= i;

we can rewrite (3.18) as follows

Tq;1=xiI0 =

Z
y�x=q

Tq;1=xiP�(y)d�(yjx):

Therefore

D1=x(q; q=t)I0 =

Z
y�x=q

D1=x(q; q=t)P�(y)d�(yjx): (3.19)

Now by (3.16)

D1=x(q; q=t)�(1=x; ty; q; q=t) =
�
q

t
Dy(q; q=t) + 1

�
�(1=x; ty; q; q=t): (3.20)

By (3.20) and (2.4), the integral (3.18) equalsZ
y�x=q

P�(y)V (y)

��
q

t
Dy(q; q=t) + 1

�
�(1=x; ty; q; q=t)

�
dqy: (3.21)
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Consider one summand in (3.21)

q

t

Z
y�x=q

P�(y)V (y)

2
4Y
j 6=i

qyi=t� yj

yi � yj
Tq;yi �(1=x; ty; q; q=t)

3
5 dqy; (3.22)

wherei = 1; : : : ; n�1. Replaceqyi by a new variable. To simplify notation denote
this new variable byyi. Then (3.22) becomes

1
t

Z
x1=q

x2=q

� � �

Z
xi

xi+1

� � �

Z
xn�1=q

xn=q

2
4Y
j 6=i

yi=t� yj

yi � yj
T1=q;yi P�(y)

3
5 d�(yjx): (3.23)

Since the beta measure vanishes if

yj = xj=q; xj+1=q; (3.24)

the integral (3.23) equals

1
t

Z
y�x

2
4Y
j 6=i

yi=t� yj

yi � yj
T1=q;yiP�(y)

3
5 d�(yjx): (3.25)

By the same vanishing of the beta measure for (3.24)Z
y�x=q

P�(y)V (y)�(1=x; ty; q; q=t)dqy

=

Z
y�x

P�(y)V (y)�(1=x; ty; q; q=t)dqy: (3.26)

Therefore the integral (3.21) equals

I0 +
1
t

Z
y�x

�
Dy(1=q;1=t)P�(y)

�
d�(yjx); (3.27)

It is well known (and follows, for example, from the formula for the scalar product)
that

P�(x; q; t) = P�(x; 1=q;1=t): (3.28)

By (3.9) and (3.28)

Dy(1=q;1=t)P�(y) =

 
n�1X

1

q��iti�n+1

!
P�(y):
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Hence (3.27) equals
 

nX
1

q��iti�n
!
I0;

as desired. 2

COROLLARY 3.9.I(�; n) equals the Macdonald polynomialP�(x) up to a scalar
factor.

We calculate this factor in the next proposition. It will conclude the proof of the
theorem.

Consider the highest monomial in ofI(�; n) with respect to the lexicographic
ordering of monomials

PROPOSITION 3.10.The highest monomial inI(�; n) equals

C(�; n)
Y

x
�i

i
: (3.29)

Proof.Multiply both the integrand and denominator inI(�; n) by

Y
(�1)(��1)(n�i)q�(n�i)�(��1)=2x

(n�1)�
i

:

Then the highest monomial in the denominator equals

Y
i

x
(2��1)(n�i)
i

:

Calculate the highest term of the integrand. We have to givexi andyi the same
priority because we obtainxi integratingyi. Therefore the highest term of the
integrand is

Y
i

x
(n�i�1)(��1)
i

y
�i+(n�i�1)+(n�i)(��1)
i

(xi � qyi) � � � (xi � q��1yi)

=
Y
i

x
(n�i�1)(��1)
i

y
�i+(n�i)��1
i

(xi � qyi) � � � (xi � q��1yi):

Now calculate the highest term of the integral. The terms which come from the
lower limits are negligible, therefore the highest term of the integral equals

Y
i

x
(n�i�1)(��1)
i

Z
xi

0
y
�i+(n�i)��1
i

(xi � qyi) � � � (xi � q��1yi)dqyi

=
Y
i

x
(n�i�1)(��1)+�i+(n�i)�+��1
i

comp4127.tex; 27/04/1998; 8:29; v.7; p.15

https://doi.org/10.1023/A:1000436921311 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000436921311


162 ANDREI OKOUNKOV

�

Z 1

0
z�i+(n�i)��1(1� qz) � � � (1� q��1z)dqz

=
Y
i

Bq(�i + (n� i)�; �)x
�i+(n�i)(2��1)
i

= C(�; n)
Y
i

x
�i+(n�i)(2��1)
i

;

where we used change of variablesyi = zxi, beta function integral (2.2) and
definition (3.1). Therefore the highest term of the ratio equals

C(�; n)
Y
i

x
�i

i
: 2

EXAMPLE 3.11. The integral representation (3.2) gives one more way to calculate
the special value (see [M], VI.6.17)

P�(1; t; t2; : : : ; tn�1): (3.30)

What is special about this value is that for

� = 1;2; : : :

only one summand, corresponding to the point

yi = ti�1

does not vanish in (3.2).

4. q-Integral representation for shifted Macdonald polynomials

Denote by��(n) the algebra of polynomialsf(x1; : : : ; xn) which are symmetric
in new variables

x0i = xit
1�i:

We shall call such polynomialsshifted symmetric. The algebra��(n) is filtered by
degree of polynomials. Denote by�� the projective limit of filtered algebras��(n)
with respect to the homomorphisms

��(n)! ��(n� 1);

f(x1; : : : ; xn) 7! f(x1; : : : ; xn�1;1):

The algebra�� can be naturally identified with the algebra of those polynomials
in Macdonald commuting difference operators which are stable (that is compatible
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with homomorphisms (3.12)). An example of such operator is the operatorE from
(3.15).

The graded algebra corresponding to the filtered algebra�� can be naturally
identified with the algebra of symmetric functions in variablesx0

i
. The algebra��

is generated, for example, by the following analogs of the power sums

p�k(x) =
X
i

(xki � 1)tk(1�i); k = 1;2; : : : : (4.1)

Given a partition� put

n(�) =
X
i

(i� 1)�i =
X
j

�0j(�
0
j � 1)=2:

Recall that for each squares = (i; j) 2 � the numbers

a(s) = �i � j; a0(s) = j � 1;

l(s) = �0j � i; l0(s) = i� 1;

are called arm-length, arm-colength, leg-length, and leg-colength respectively. By
definition, put

H(�) = t�2n(�)qn(�
0)
Y
s2�

(qa(s)+1tl(s) � 1):

This number will play the same role as the hook-length product played in [OO].
Supposè(�) 6 n. By P �� denote the element of��(n) which satisfies the two

following conditions

degP �� = j�j; (4.2)

P ��(q
�) = H(�)��;�; j�j 6 j�j; `(�) 6 n; (4.3)

whereq� = (q�1; : : : ; q�n). HereH(�) is just normalization constant and is intro-
duced for convenience. Note that the condition (4.3) is weaker than the condition
(1.3) in the introduction. Here we have a square system of linear equations onP �� .
We shall prove (1.3) below in (4.11).

It is clear that ifP �� exists then it is unique. The existence ofP �� will follow
from an explicit formula for it. The existence of this polynomial was proved by
different methods in [K, S].

In the same way as in [OO], Example 3.5, we have

PROPOSITION 4.1.The sequence

fP �� 2 ��(n)gn>`(�)
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defines an element of��.
Proof.The polynomial

P ��(x1; : : : ; xn�1;1)

satisfies all conditions for the shifted Macdonald polynomial in(n � 1) variables
providedn > `(�). 2

PROPOSITION 4.2.Suppose�n > 0 and put

�� = (�1 � 1; : : : ; �n � 1):

Then

P ��(x1; : : : ; xn) = qj�
�j
Y
i

(x�i t
1�i � t1�n)P �

��
(x1=q; : : : ; xn=q): (4.4)

Proof.We have to verify that the right-hand side of (4.4) satisfies all conditions
for P �� . It is clear, that its degree equalsj�j. Evaluate it atq�. We have

qj�
�jt�n(n�1)

Y
i

(q�itn�i � 1)H(��) = H(�):

Finally, it is easy to see that it vanishes at all pointsq�, where j�j 6 j�j and
`(�) 6 n. 2

In this section we shall obtain aq-integral formula for polynomialsP �� , which is a
minor modification of the formula (3.2).

We shall consider the following integration
Z
y��x

dqy =

Z
qx1

x2

dqy1� � �

Z
qxn�1

xn

dqyn�1:

Introduce new variables

x�i = xit
n�i; y�i = yit

n�1�i;

and put

V �(x) = V (x�);

V ��(x) = V �(x�);

d��(yjx) = d�(y�jx�):

We have
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THEOREM II. Supposè(�) < n then

1
V ��(x)

Z
y��x

P �� (y)d�
�(yjx) = tj�jC(�; n)P ��(x): (4.5)

Together with (4.4) the theorem gives a formula for polynomialsP �� . In the
proof we shall assume that

� = 1;2; : : : : (4.6)

Indeed, the left-hand side of (4.5) is analytic in the polydiscjqj; jtj < 1 and being
a polynomial vanishing at certain points provided (4.6) must be such a polynomial
for the other values ofq andt as well.

We need the two following elementary lemmas.

LEMMA 4.3. For anyA

(qA=t)��1

(q=A)��1
= A��1q��(��1)=2: (4.7)

LEMMA 4.4. For any partition� and� = 1;2; : : :

V ��(q�) 6= 0: (4.8)

Proof of the theorem.Denote byI� the integral in the left-hand side of (4.5).
First show that it is an element of��(n). In variablesx�; y� it can be rewritten as

1
V �(x�)

Z
q

1��
x
�

1

x�2

� � �

Z
q

1��
x
�

n�1

x�n

P ��(y)d�(y
�jx�): (4.9)

The polynomial

P ��(y)

is symmetric iny�
i
. Because of the vanishing of the beta measure we can replace

integration

Z
q

1��
x
�

i

x�
i+1

by integration

Z
x�
i

x�
i+1

:
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Thus, by Proposition 3.4 it is a symmetric polynomial inx�
i
, that is an element of

��(n).
The main point is the verification of the vanishing condition. Let us evaluate

I�(�; n) at

x = q�;

where� is a partition. Then the summands which enter theq-integral correspond
to points

yi = q
i ; �i > 
i > �i+1; i = 1; : : : ; n� 1:

(Recall thatq < 1 and thereforeq�i+1 is in fact the upper limit of integration for
yi andq�i+1 is the lower one. This explains also the minus sign below in (4.10).)
Note that
 is a partition


1 > 
2 > � � � > 
n�1

andj
j 6 j�j.
Now suppose thatj�j 6 j�j and� 6= �. Then always


 6= �:

By definition,P �� (y) vanishes at all such points! Since by (4.8) the denominator
does not vanish,I�(�; n) vanishes.

The only calculation left is evaluation of the integral at

x = q�;

which means

x�i = q�itn�i:

In particularxn = x�n = 1. This evaluation is elementary but quite messy. To the
end of the proof the indicesi andj will range from 1 ton� 1. Only one summand
in the integral does not vanish. This summand equals the product of the following
factors:

H(�)

from the value ofP ��(y) at this point,

t�(n�1)(n�2)=2
Y
i<j

(x�i � x�j)
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from the Vandermonde determinant,

((q=t)��1)
n�1

Y
(qx�i =t)��1

Y
i6=j

((q=t)x�i =x
�
j )��1

from the other factors in the beta density, and finally

(�1)n�1(1� q)n�1t�(n�1)
Y

x�i (4.10)

from theq-Lebesgue measuredqy�.
The denominator equals

Y
i<j

(x�i � x�j)
Y
i6=j

(qx�i =x
�
j )��1

Y
i

((x�i � 1)(qx�i )��1(q=x
�
i )��1):

By (4.7)

Y
i6=j

((q=t)x�
i
=x�

j
)��1

(qx�
i
=x�

j
)��1

= q��(��1)(n�1)(n�2)=2:

Again, by (4.7)

(�1)x�
i
(1� q)(q=t)��1(qx

�
i
=t)��1

(x�
i
� 1)(qx�

i
)��1(q=x

�
i
)��1

=
(x�

i
)�q�(��1)(1� q)(q)��1

(x�
i
)�

;

which equals

(x�i )
�q�(��1)Bq(�i + (n� i)�; �):

Therefore the result equals

C(�; n)H(�)

times the following power ofq

�j�j+ �2n(n� 1)=2� �(� � 1)(n� 1)

��(� � 1)(n� 1)(n� 2)=2� �(n� 1)(n� 2)=2� �(n� 1);

which equals�j�j. 2

Write

� � �

comp4127.tex; 27/04/1998; 8:29; v.7; p.21

https://doi.org/10.1023/A:1000436921311 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000436921311


168 ANDREI OKOUNKOV

if �i > �i for all i, and

� � �

if � � � and� 6= �. In the sequel we shall deal with some sums likeX
�

c�P�

where the only thing that matters is whichP� can enter the sum, no matter with
which specific constant factorsc� . Constant factor likec� will always denote such
unspecific factors.

The following proposition is a strengthening of a result by S. Sahi and F. Knop.In
particular, it gives the highest degree term ofP �� , which was found in [K, S] by
different methods.

PROPOSITION 4.5.

P ��(x1; x2; : : : ; xn) = P�(x1; x2t
�1; : : : ; xnt

1�n)

+
X
���

c�P�(x1; x2t
�1; : : : ; xnt

1�n); (4.11)

wherec� are some constants? which depend on� andn.
Proof. Induct onn andj�j. Suppose�n > 0. By (4.4) we have

P ��(x1; : : : ; xn)

= qj�
�j

 
nX

k=0

(�t�n)ken�k(: : : ; xit
1�i; : : :)

!
P �
��

(x1=q; : : : ; xn=q):

By inductive assumption (4.11) is true for��. It is well known that the product

erP�

is a linear combination of such Macdonald polynomialsP� that

�=�

is a verticalr-strip. Therefore (4.11) is true also for�.
Suppose�n = 0. By inductive assumption

P ��(y1; : : : ; yn�1) = P�(y1; : : : ; yn�1t
2�n)

+
X
���

c�P�(y1; : : : ; yn�1t
2�n):

? Explicit formulas for these coefficients are given by a particular case of thebinomial theorem
for Macdonald polynomials, see the recent paper [Ok3]
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Therefore

P ��(y1; : : : ; yn�1) = t(2�n)j�jP�(y
�
1; : : : ; y

�
n�1)

+
X
���

c0�P�(y
�
1; : : : ; y

�
n�1);

for some constantsc0� . Integrating as in (3.2) and (4.5) we obtain

P ��(x1; : : : ; xn) = t(1�n)j�jP�(x
�
1; : : : ; x

�
n)

+
X
���

c00�P�(x
�
1; : : : ; x

�
n);

which is equivalent to (4.11). 2

Using (4.5) we can reprove one more result from [K], which generalizes the
corresponding result for the shifted Schur functions [OO], Theorem 3.1.

PROPOSITION (VANISHING PROPERTY) 4.6.

P ��(q
�) = 0; unless� � �: (4.12)

Proof. Induct onn andj�j. If �n > 0 apply Proposition 4.2.
If �n = 0 then apply the very same argument which proved vanishing in the

proof of the theorem. 2

REMARK 4.7. The formulas (3.2) and (4.5) define certainq-integral operators

�(n� 1)! �(n)

and

��(n� 1)! ��(n):

Using projection (3.12) (and its analog for��) in the inverse direction we can
characterize Macdonald polynomials and shifted Macdonald polynomials as eigen-
functions (with distinct eigenvalues) of some integral operators (in the same way
as for Schur functions [OO], Section 10).

In fact, there are countably many commuting integral operators which corre-
spond to iterated integration (3.2) and (4.5)

�(n)! �(N); n < N;

and projection back

�(N)! �(n):
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5. Combinatorial formula for shifted Macdonald polynomials

In this section we shall establish branching rule for shifted Macdonald polynomials,
or (what is the same) a combinatorial formula forP �� in terms of semistandard
tableaux on�.

First, we need some qualitative results about the branching forP �� .

PROPOSITION 5.1.Letd be a variable, then

P ��(dx1; : : : ; dxn) =
X
���

c�(d)P
�
� (x1; : : : ; xn); (5.1)

wherec�(d) are some polynomials ind which depend also on� andn.
Proof. It is clear that an expansion

P ��(dx1; : : : ; dxn) =
X
�

c�(d)P
�
� (x1; : : : ; xn)

exists. We have to show that

c�(d) = 0; unless� � �:

By (4.11) the bases

fP �� (x1; : : : ; xn)g (5.2)

and

fP�(: : : ; xit
1�i; : : :)g (5.3)

are mutually triangular with respect to the partial ordering by inclusion of diagrams.
Since dilatation byd in diagonal in the basis (5.3) it is triangular in the basis (5.2).2

Put

�0 = (�1; : : : ; �n�1):

We have

PROPOSITION 5.2.

P ��(x1; : : : ; xn�1; d) =
X
���0

c�(d)P
�
� (x1; : : : ; xn�1); (5.4)

wherec�(d) are some polynomials ind which depend also on� andn.
Proof.Again we have to show that certain summands cannot occur.
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If d = 1 then by stability ofP ��

P ��(x1; : : : ; xn�1;1) =

(
P �� (x1; : : : ; xn�1); �n = 0

0; �n > 0:

For generald introduce new variables�i

xi = d�i; i = 1; : : : ; n� 1;

and use (5.1). 2

Put

8� = (�2; : : : ; �n):

Recall that

� � �

means that

�1 > �1 > �2 > � � � > �n�1 > �n;

which is equivalent to

8� � � � �0:

PROPOSITION 5.3.

P ��(d; x2; : : : ; xn) =
X
���

f�;�(d)P
�
� (x2; : : : ; xn); (5.5)

wheref�;�(d) are some polynomials ind.

Note that because of stability of shifted Macdonald polynomials the polynomial
f�;�(d) doesnotdepend onn.

Proof.By the shifted symmetry

P ��(d; x2; : : : ; xn) = P �� (x2=t; : : : ; xn=t; t
n�1d):

Hence by (5.4)

P ��(d; x2; : : : ; xn) =
X
���0

c�(t
n�1d)P �� (x2=t; : : : ; xn=t):
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By (5.1)

P �� (x2=t; : : : ; xn=t) =
X
���

c�(1=t)P �� (x2; : : : ; xn):

Therefore only summands with

� � �0

can occur in (5.5).
Now assume that there is a summand in (5.5) with

8� 6� �:

We can choose� minimal, that is in such a way thatP �� with � � � do not enter
the sum (5.5). Then for all sufficiently larged

P ��(d; �1; : : : ; �n�1) 6= 0

because

P �� (�1; : : : ; �n�1) 6= 0

and all other summands in (5.5) vanish by the vanishing property (4.12). Clearly,
this contradicts (4.12) and makes our assumption impossible. 2

Now recall the corresponding result for Macdonald polynomials

P�(d; x2; : : : ; xn) =
X
���

 �;�d
j�=�jP�(x2; : : : ; xn); (5.6)

where �;� are certain nonzero rational functions ofq andt which can be found in
[M], Section VI.7. Introduce the following notation

hdi�=� =
Y

s2�=�

(d� qa
0(s)t�l

0(s));

where the numbersa0(s) andl0(s) for a squares 2 � were defined in Section 4.
The numberqa

0(s)t�l
0(s) is theq-analog of thecontentof the squares. If

� = ;; � = (r);

then

hdi�=� = hdir:
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Therefore the numberhdi�=� is a generalization of the factorial powerhdir. The
main result of this section is the following

THEOREM III.

P ��(d; x2; : : : ; xn) =
X
���

 �;�t
�j�jhdi�=�P

�
� (x2; : : : ; xn); (5.7)

It is clear that iterating this formula we obtain the semistandard tableaux sum
formula (1.4) for polynomialsP �� . We shall use induction onn. In fact we shall
need only the following corollary of this theorem

COROLLARY 5.4.For all r = 1; : : : ; n.

P ��(x1; : : : ; xr; q
�r+1; : : : ; q�n) = cx

�1
1 : : : x�rr + � � � ; (5.8)

wherec is a nonzero factor and dots stand for lower monomials in lexicographic
order.

Proof.Given a partition

� = (�1; : : : ; �n�1)

set

(i)� = (�i; : : : ; �n�1):

Then

c = t�
Pr

1
j(i+1)

�j
�Y

 (i)�;(i+1)�

�
H((r+1)�): 2

Proof of the theorem.Induction onn. The casen = 1 is clear. Supposen > 1.
We shall find

j�=�j

distinct zeros of the polynomialf�;�(d). Fix somei and show that

f�;�(d) = 0; d = q�i�1t1�i; : : : ; q�it1�i: (5.9)

We shall prove (5.9) by induction on(i)�, in other words we shall deduce (5.9)
from the assumption that

f�;�(d) = 0; d = q�i�1t1�i; : : : ; q�it1�i (5.10)

for all � such that

(i)� �(i) �:
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Supposed is as (5.9). We have

P ��(d; x2; : : : ; xi; q
�i ; : : : ; q�n�1)

=
X
���

f�;�(d)P
�
� (x2; : : : ; xi; q

�i ; : : : ; q�n�1): (5.11)

By the vanishing property (4.12) only summands satisfying

(i)� �(i) �

are nonzero. On the other hand, if

(i)� �(i) �;

then in particular

�i 6 �i;

and by our Assumption (5.10) the corresponding summand vanishes. Therefore
only summands with

(i)� =(i) �

enter the sum. By (5.8) each summand has the following form

cf�;�(d)(x
�1
2 : : : x

�i�1
i

+ � � �); (5.12)

wherec is a nonzero factor and dots stand for lower monomials in lexicographic
order.

On the other hand, by shifted symmetry

P ��(d; x2; : : : ; xi; q
�i ; : : : ; q�n�1)

= P �� (x2=t; : : : ; xi=t; t
i�1d; q�i ; : : : ; q�n�1):

By the vanishing property (4.12) this should vanish ifd is as in (5.9) and

xj=t = q�j ; j = 2; : : : ; i

for all sufficiently large integers

�2 > � � � > �i:

Therefore for suchd the polynomial (5.11) should be identically zero. By virtue of
(5.12) it is impossible unless

f�;�(d) = 0
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for all � such that(i)� =(i) �. This proves (5.9).
Since

degf�;� 6 j�=�j

the polynomialf�;� equals

hdi�=�

up to a factor. This factor is clear from (4.11) and (5.6). 2

EXAMPLE 5.5. The shifted analogs of the elementary symmetric functions are

P �(1k)(x) =
X

i1<���<ik

tk�
P

is
Y
s

(xis � ts�k): (5.13)

REMARK 5.6. The shifted symmetry ofP �� results in some complicated identi-
ties for coefficients �;� which are not clear from the explicit formula for these
coefficients.

6. Duality

The duality we shall discuss in this section relates shifted Macdonald polynomials
with parametersq and t to shifted Macdonald polynomials with parameters 1=t

and 1=q. Denote by

��t

the algebra�� constructed in Section 4. Denote by

p�k(x; t) =
X
i

tk(1�i)(xki � 1) (6.1)

the power-sum generators of��t . Consider the following isomorphism!�q;t

��t
!�q;t
�! ��1=q;

p�k(t) 7!
1� qk

1� (1=t)k
p�k(1=q): (6.2)

Note a slight difference with the Macdonald duality automorphism. The isomor-
phism (6.2) has the following clear combinatorial interpretation which generalizes
the corresponding result for shifted Schur function [OO], Theorem 4.1.
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PROPOSITION 6.1.For all f 2 ��t

[!�q;t(f)](t
��) = f(q�

0

): (6.3)

Proof.It suffices to check (6.3) on generators (6.1). For any partition� we have

1
q � 1

X
i

t1�i(q�i � 1) =
1

1=t� 1

X
j

qj�1(t��
0

j � 1); (6.4)

which is Example VI.5.1(a) in [M]. To see (6.4) one can use the same trick as in
[OO], Theorem 4.1, and sum

X
(i;j)2�

qj�1t1�i

first along rows and then along columns. It is clear that (6.4) means

1� q

1� 1=t
p�1(t

��; 1=q) = p�1(q
�
0

; t):

Now replaceq by qk andt by tk in (6.4) to obtain

1� qk

1� (1=t)k
p�k(t

��; 1=q) = p�k(q
�
0

; t);

as desired. 2

COROLLARY 6.2.

!�q;t(P
�
�(q; t)) = cP ��0(1=t;1=q); (6.5)

wherec is a constant which depends on�.
Proof.Follows from (6.3) and definition ofP �� . 2

Recall the following notation of Macdonald

b�(q; t) =
Y
s2�

1� qa(s)tl(s)+1

1� qa(s)+1tl(s)
:

In particular,

b�0(t; q) =
Y
s2�

1� qa(s)+1tl(s)

1� qa(s)tl(s)+1
:
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THEOREM IV.

!�q;t(P
�
�(q; t)) = (�t)j�jb�0(t; q)P

�
�0(1=t;1=q):

Proof. It is clear that in order to calculate the constant in (6.5) we have to
evaluate the equality (6.5) att��

0

. By (6.3) and definition ofP �� we have

c =
H(�; q; t)

H(�0; 1=t;1=q)

=
t�2n(�)qn(�

0)Q
s2�(q

a(s)+1tl(s) � 1)

q2n(�0)t�n(�)
Q

s2�(q
�a(s)t�l(s)�1 � 1)

= (�t)j�jb�0(t; q);

becauseX
s2�

l(s) = n(�);
X
s2�

a(s) = n(�0): 2

EXAMPLE 6.3. Since the automorphism (6.2) preserves the degree we can look at
the corresponding isomorphism of the graded algebras

�! �;

which differs from Macdonald automorphism

pk ! (�1)k�11� qk

1� tk
pk

by factor

(�t)deg;

where deg is the degree of a polynomial. Since the highest term ofP �� is the
Macdonald polynomialP� and

P�(q; t) = P�(1=q;1=t);

the Theorem IV gives a new proof of the duality theorem of Macdonald together
with computation of the constant factor.

7. Degeneration

In this section we considershifted Jack polynomials. These polynomials were
considered by F. Knop and S. Sahi in [KS]. These polynomials are indexed by
partitions�, depend on a parameter� and equal, by definition, to

P ��(x; �) = lim
q!1

(q � 1)�j�jP ��(q
x; q; q�): (7.1)
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In this section let us change notations as follows. The dependence onq will be
denoted explicitly in all prelimit expressions like in the right-hand side of (7.1). The
expressions withoutq will denote the corresponding degenerations. For example,
we write

hz; qir = (z � 1)(z � q) � � � (z � qr�1): (7.2)

This is the shifted Macdonald polynomial in one variable

P �r (z; q; t) = hz; qir:

The corresponding shifted Jack polynomial equals

P �r (z; �) = hzir;

where

hzir = z(z � 1) � � � (z � r + 1): (7.3)

In the same way write

hzi�=� =
Y

s2�=�

(z � a0(s) + �l0(s));

this is a generalization of (7.3).
The easiest way to see that (7.1) is a polynomial of degreej�j is to look at

the combinatorial formula forP �� (q; t). The branching rule (5.7) has the following
limit

P ��(x1; x2; : : : ; xn; �)

=
X
���

 �;�(�)hx1i�=�P
�
� (x2; : : : ; xn; �); (7.4)

where �;�(�) are the branching coefficients for ordinary Jack polynomials, which
are rational functions in� and can be found in [St] and [M], Section VI.10. Note
that

� = 1=�;

where� is the traditional parameter for Jack polynomials.
Because of the symmetry and vanishing properties of the shifted Macdonald

polynomials we have

P ��(x; �) is symmetric in variablesxi � �i; (7.5)
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P ��(�; �) = 0 unless� � �; (7.6)

P ��(�; �) =
Y
s2�

(a(s) + �l(s) + 1): (7.7)

The product in (7.7) is a�-analog of the hook length product; denote it byH(�; �).
Before discussing the limit of integral formula (4.5) forP ��(x; q; t) consider

some elementary properties of finite sums. We have

x1X
y=x2

hyir =
hx1 + 1ir+1 � hx2ir+1

r + 1
; (7.8)

providedx1 � x2 is a nonnegative integer. Using (7.8) one can evaluate sums

x1X
y=x2

f(y) (7.9)

for arbitrary polynomialsf(y). If x1 � x2 is not a nonnegative integer thendefine
(7.9) using (7.8). In particular, we have

x1X
y=x2

= �
x2�1X

y=x1+1

:

Now suppose thatf is a polynomial and

lim
q!1

1
(q � 1)s

f(qy) = �f(y)

for somes and �f . Then

lim
q!1

1
(q � 1)s+1

Z
q
x1+1

qx2
f(y)dqy =

x1X
y=x2

�f(y); (7.10)

which follows directly from definitions ifx1 � x2 is an integer.
Now we calculate the limit of (4.5). Recall that [GR, 1.10]

lim
q!1

�q(z) = �(z);

whereq tends to 1 from below. Therefore

lim
q!1

(qz)��1

(1� q)��1 =
�(z + � � 1)

�(z)
:
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In the sequel we assume that

� = 1;2; : : : :

In this case

�(z + � � 1)
�(z)

= z(z + 1) : : : (z + � � 1):

Recall that we denote byV ��(x; q) the denominator in (4.5)

V ��(x; q) =
Y
i<j

(q�(n�i)xi � q�(n�j)xj)
Y
i6=j

(q�(j�i)+1xi=xj)��1:

We have

lim
q!1

V ��(qx; q)
(1� q)n(n�1)(�+1=2)

= (�1)n(n�1)=2V ��(x); (7.11)

where

V ��(x) =
Y
i<j

(xi � xj + �(j � i))
Y
i6=j

hxi � xj + �(j � i) + � � 1i��1: (7.12)

Denote by

��(y; x; q; q�) =
Y
i<j

(q�(n�1�i)yi � q�(n�1�j)yj)
Y
i;j

(q�(j�i)+1��yi=xj)��1

the density of the beta measure in (4.5). In the same way we have

lim
q!1

��(qy; qx; q; q�)
(1� q)n(n�1)�+(n�1)(n�2)=2

= (�1)(n�1)(n�2)=2��(y; x; �); (7.13)

where, by definition,

��(y; x; �) =
Y
i<j

(yi � yj + �(j � i))
Y
i;j

hyi � xj + �(j � i)� 1i��1: (7.14)

Using (7.10), (7.11), and (7.14) we obtain the following degeneration of (4.5)

1
V ��(x)

X
y�x

P �� (y; �)�(y; x; �) = C(�; n)P ��(x; �); (7.15)

where

X
y�x

=
x1X

y1=x2

� � �

xn�1X
yn�1=xn

;
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and

C(�; n) =
Y

B(�i + (n� i)�; �):

For � = 1 we obtain the coherence property of the shifted symmetric functions
[OO], Section 10.
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