DUAL INTEGRAL EQUATIONS WITH A TRIGONOMETRIC KERNEL*

by BRIJ M. SINGH and RANJIT S. DHALIWAL
(Received 7th March 1978)

In this paper, we solve the following dual integral equations

$$
\begin{gather*}
\int_{0}^{\infty}\left[1-\frac{2 \xi \delta(1+\xi \delta)+1-e^{-2 \xi \delta}}{2 \xi \delta+\sinh 2 \xi \delta}\right] \xi A(\xi) \cos \xi x d \xi=f(x), \quad 0<x<a \tag{1}\\
\int_{0}^{\infty} A(\xi) \cos \xi x d \xi=0, \quad x>a \tag{2}
\end{gather*}
$$

where δ is a real positive constant and $f(x)$ is a continuous and integrable function of x in $[0, a]$. The dual integral equations (1) and (2) arise in a crack problem of elasticity.

Let us rewrite the above integral equations in the form:

$$
\begin{gather*}
\int_{0}^{\infty} \xi \psi(\xi)\left(1-\xi^{2} \delta^{2} \operatorname{cosech}^{2} \xi \delta\right) \cos \xi x d \xi=f(x), \quad 0<x<a \tag{3}\\
\int_{0}^{\infty} \psi(\xi)\left(\operatorname{coth} \xi \delta+\xi \delta \operatorname{coesch}^{2} \xi \delta\right) \cos \xi x d \xi=0, \quad x>a \tag{4}
\end{gather*}
$$

where

$$
\begin{equation*}
\psi(\xi)=\left(\operatorname{coth} \xi \delta+\xi \delta \operatorname{cosech}^{2} \xi \delta\right)^{-1} A(\xi) \tag{5}
\end{equation*}
$$

Equations (3) and (4) may be further put in the form

$$
\begin{gather*}
\int_{0}^{\infty} \psi(\xi) \frac{\partial}{\partial \delta}\left(-\frac{1}{\delta}+\xi \operatorname{coth} \xi \delta\right) \cos \xi x d \xi=\frac{f(x)}{\delta^{2}}, \quad 0<x<a \tag{6}\\
\int_{0}^{\infty} \psi(\xi) \frac{\partial}{\partial \delta}\left(\frac{1}{\delta} \operatorname{coth} \xi \delta\right) \cos \xi x d \xi=0, \quad x>a \tag{7}
\end{gather*}
$$

Integrating equations (6) and (7) with respect to δ, we obtain

$$
\begin{gather*}
\int_{0}^{\infty} \xi \psi(\xi)\left(-\frac{1}{\delta}+\xi \operatorname{coth} \xi \delta\right) \cos \xi x d \xi=-\frac{f(x)}{\delta}+g(x), \quad 0<x<a \tag{8}\\
\int_{0}^{\infty} \psi(\xi) \operatorname{coth} \xi \delta \cos \xi x d \xi=0, \quad x<a \tag{9}
\end{gather*}
$$

[^0]where the limits of integration have been taken from δ to ∞ for integrating equation (7) and $g(x)$ is an arbitrary function of x.

Integrating equation (8) with respect to x between 0 to x, we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \psi(\xi)\left(-\frac{1}{\delta}+\xi \operatorname{coth} \xi \delta\right) \sin \xi x d \xi=-\frac{F(x)}{\delta}+G(x), \quad 0<x<a \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x)=\int_{0}^{x} f(x) d x, \quad G(x)=\int_{0}^{x} g(x) d x \tag{11}
\end{equation*}
$$

If we assume the representation

$$
\begin{equation*}
\psi(\xi)=\frac{2}{\pi} \xi^{-1} \tanh \xi \delta \int_{0}^{a} \phi(t) \sin \xi t d t \tag{12}
\end{equation*}
$$

the integral equation (9) is identically satisfied. Now rewriting equation (10) in the form

$$
\begin{array}{r}
-\frac{1}{\delta} \int_{0}^{\infty} \psi(\xi) \sin \xi x d \xi-\frac{\partial}{\partial x} \int_{0}^{\infty} \psi(\xi) \operatorname{coth} \xi \delta \cos \xi x d \xi \\
=-\frac{1}{\delta} F(x)+G(x), \quad 0<x<a \tag{13}
\end{array}
$$

and then substituting for $\psi(\xi)$ from (12), we find that ϕ is the solution of the integral equation

$$
\begin{gather*}
-\frac{1}{\pi \delta} \int_{0}^{a} \phi(t) \log \left|\frac{\sinh c x+\sinh c t}{\sinh c x-\sinh c t}\right| d t-\phi(x) \\
\quad=-\frac{1}{\delta} F(x)+G(x), \quad 0<x<a \tag{14}
\end{gather*}
$$

where $c=\pi / 2 \delta$ and we have used the following integral

$$
\begin{equation*}
\int_{0}^{\infty} \xi^{-1} \tanh \xi \delta \sin \xi x \sin \xi t d \xi=\frac{1}{2} \log \left|\frac{\sinh c x+\sinh c t}{\sinh c x-\sinh c t}\right|, \quad \delta>0 \tag{15}
\end{equation*}
$$

for obtaining integral equation (14). Letting $\delta \rightarrow \infty$ in equation (14), we find that

$$
\begin{equation*}
G(x)=-\phi(x) \tag{16}
\end{equation*}
$$

and equation (14) simplifies to

$$
\begin{equation*}
\int_{0}^{a} \phi(t) \log \left|\frac{\sinh c x+\sinh c t}{\sinh c x-\sinh c t}\right| d t=\pi F(x), \quad 0<x<a \tag{17}
\end{equation*}
$$

With the help of (1) or (2), the solution of the above integral equation is obtained in the following form:

$$
\begin{align*}
\phi(t)= & -\frac{2 c}{\pi} \frac{\cosh c t}{\left(\sinh ^{2} c a-\sinh ^{2} c t\right)^{1 / 2}} \\
& \times\left[\sinh c t \int_{0}^{a} \frac{\left(\sinh ^{2} c a-\sinh ^{2} c x\right)^{1 / 2}}{\sinh ^{2} c x-\sinh ^{2} c t} F^{\prime}(x) d x-\frac{F(0) \sinh c a}{\sinh c t}\right], \quad 0<t<a \tag{18}
\end{align*}
$$

where prime denotes the derivative with respect to the argument. If $f(x)$ is a constant, say,

$$
\begin{equation*}
f(x)=p_{0}, \tag{19}
\end{equation*}
$$

we find from (18) and (19) that

$$
\begin{equation*}
\phi(t)=-\frac{2 c p_{0}}{\pi} \frac{\sinh c t \cosh c t}{\left(\sinh ^{2} c a-\sinh ^{2} c t\right)^{1 / 2}} \int_{0}^{a} \frac{\left(\sinh ^{2} c a-\sinh ^{2} c x\right)^{1 / 2}}{\sin ^{2} c x-\sinh ^{2} c t} d x, \quad 0<t<a \tag{20}
\end{equation*}
$$

If we let $\delta \rightarrow \infty$ (or $c \rightarrow 0$) in equation (20), we find that

$$
\begin{equation*}
\phi(t)=p_{0} t\left(a^{2}-t^{2}\right)^{-1 / 2} \tag{21}
\end{equation*}
$$

and hence from (5), (12) and (21), we have

$$
\begin{equation*}
A(\xi)=\psi(\xi)=a p_{0} \xi^{-1} J_{1}(a \xi) \tag{22}
\end{equation*}
$$

which is the solution (see Sneddon (3), pp. 103-104) of the dual integral equations

$$
\begin{gather*}
\int_{0}^{\infty} \xi A(\xi) \cos \xi x d \xi=p_{0}, \quad 0<x<a \tag{23}\\
\int_{0}^{\infty} A(\xi) \cos \xi x d \xi=0, \tag{24}\\
x>a
\end{gather*}
$$

The integral equations (1) and (2) reduce to (23) and (24) for $f(x)=p_{0}$ and $\delta \rightarrow \infty$.
By evaluating the integral in equation (20), we find that $\phi(t)$ may be put in the following form.

$$
\begin{align*}
\phi(t)= & \frac{p_{0}}{\pi} \frac{\sinh ^{2} c t}{\cosh c a\left(\sinh ^{2} c a-\sinh ^{2} c t\right)^{1 / 2}} \\
& \times\left[F(\pi / 2 \tanh c a)-\Pi\left(\pi / 2, \frac{\sinh ^{2} c a}{\sinh ^{2} c a-\sinh ^{2} c t}, \tan c a\right)\right], \quad 0<t<a \tag{25}
\end{align*}
$$

where F and Π, respectively, denote elliptic integrals of the first and third kind. Now $A(\xi)$ may be obtained from equations (5), (12) and (25).

REFERENCES

(1) J. C. COOKE, The solution of some integral equations and their connection with dual integral equations and series, Glasgow Math. J. 11 (1970), 9-20.
(2) D. Homentcovschi, On the integral equation, Glasgow Math. J. 15 (1974), 95-98.
(3) I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, (North-Holland, 1966).

Department of Mathematics
The University of Calgary.
Calgary
Alberta
Canada
T2N 1N4

[^0]: *This work has been supported by National Research Council of Canada through NRC-Grant No. A 4177.

