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DUAL INTEGRAL EQUATIONS WITH A TRIGONOMETRIC
KERNEL*

by BRIJ M. SINGH and RANJIT S. DHALIWAL
(Received 7th March 1978)

In this paper, we solve the following dual integral equations

»«-"*>• •< *< * <•>

cos £td£ = O, x>a, (2)

where S is a real positive constant and f(x) is a continuous and integrable function of
x in [0, a]. The dual integral equations (1) and (2) arise in a crack problem of
elasticity.

Let us rewrite the above integral equations in the form:

f £K£)(l-£252cosech2£S)cos £td£ = /(*), 0<x<a, (3)
Jo

f i/Kf)(coth & + & coesch2 £8) cos £x di; = 0, x > a, (4)
Jo

where

«A(£) = (coth £S + £8 cosech2 £S)-'A(£). (5)

Equations (3)'and (4) may be further put in the form

^ ( - } + £ coth # ) cos £xdf = *|& 0<x<a, (6)

) | 5 ( ! coth # ) cos f*d£ = O, *>a . (7)

Integrating equations (6) and (7) with respect to S, we obtain

- 1 + € coth # ) cos £xd{ = -ttf + g(x), 0<x<a, (8)

| i/f(|) coth £8 cos £t d^ = 0, x < a, (9)
Jo
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where the limits of integration have been taken from 8 to °° for integrating equation
(7) and g(x) is an arbitrary function of x.

Integrating equation (8) with respect to x between 0 to x, we obtain

Jo"«M£)(-! + fcoth£s)sin£cdf = - ^ + G(x), 0 < x < a , (10)

where

F(x) = f * f(x)dx, G(x) = f * g(x)dx. (11)
Jo Jo

If we assume the representation

<K£) = - r 1 tanh £S f" <{>(t) sin & dt, (12)
77" Jo

the integral equation (9) is identically satisfied. Now rewriting equation (10) in the
form

-if"
o Jo

sin --j- f coth £8 cos,

, 0 < x < a, (13)

and then substituting for (/>(£) from (12), we find that (f> is the solution of the integral
equation

I sinh ex + sinh ct1 f
" r f Jo I sinh ex - sinh i

dt-<f>(x)

1

where c = TT/25 and we have used the following integral

Jo
tanh £8 sin £x sin = ̂  log sinh ex + sinh cf

, 5>0 ,

(14)

(15)
sinh ex - sinh ct

for obtaining integral equation (14). Letting 5-»°° in equation (14), we find that

G(x) = - tf>(x) (16)

and equation (14) simplifies to

sinh ex + sinh ctf" <t>(t) log
Jo sinh ex — sinh ct dt = TTF(X), 0 < x < a. (17)

With the help of (1) or (2), the solution of the above integral equation is obtained in
the following form:

cosh ct
v (sinh2 ca - sinh2 ct)m

' (sinh2 ca — sinh2 ex)112f . , f" (sinsinh ct I i—
L Jo si

_,, , , F(0) sinh ca
. , 2 . , 2 . F (x) dx • . t—o sinh ex — sinn ct smh ct

], (18)
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where prime denotes the derivative with respect to the argument. If f(x) is a constant,

say,

f(x) = Po, (19)

w e find f r o m (18) a n d (19) t h a t

. . . 2 c p 0 s inh ct c o s h ct f ( s inh 2 ca - s inh 2 cx)m j n ^ , ^ ,«,«*
d>(t) = ^-ro :—r?—rn? i—r-* r~n—-—ax, 0<t<a. (20)
VK ' IT (sinh2 ca - sinh2 cf) ' Jo sin2 ex - smh2 ct

If we let 8 -»» (or c -»0) in equation (20), we find that

and hence from (5), (12) and (21), we have

A(£) = <M£) = aPoT
lUa£), (22)

which is the solution (see Sneddon (3), pp. 103-104) of the dual integral equations

P
Jo

= p0, 0<x<a, (23)

cos £t </£ = 0, x>a. (24)

The integral equations (1) and (2) reduce to (23) and (24) for f(x) = p0 and 8 -»<».
By evaluating the integral in equation (20), we find that <f>(t) may be put in the

following form.

_ £o sinh2 ct
17 cosh ca(sinh2 ca - sinh2 ct)m

x [F(W2 tanh ca) -H(W2, ̂ ^ ^ d > tan « ) ] , 0<^<a, (25)

where F and II, respectively, denote elliptic integrals of the first and third kind. Now
A(£) may be obtained from equations (5), (12) and (25).
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