
Bull. Austral. Math. Soc. 78 (2008), 117–128
doi:10.1017/S0004972708000543

NATURALLY ORDERED TRANSFORMATION SEMIGROUPS
PRESERVING AN EQUIVALENCE

LEI SUN ˛, HUISHENG PEI and ZHENGXING CHENG

(Received 19 September 2007)

Abstract

Let T X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X . Write

TE (X) = { f ∈ TX | ∀ (x, y) ∈ E, ( f (x), f (y)) ∈ E},

then TE (X) is a subsemigroup of TX . In this paper, we endow TE (X) with the so-called natural order
and determine when two elements of TE (X) are related under this order, then find out elements of TE (X)

which are compatible with ≤ on TE (X). Also, the maximal and minimal elements and the covering
elements are described.
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1. Introduction

Order-theoretic considerations can be used in the algebraic study of semigroups, even
when the order is not compatible with the multiplication. Such a natural order is
well known for the class of inverse semigroup S. Denote by ES the set of all the
idempotents of S. This is defined by

a ≤ b if and only if a = eb for some e ∈ ES. (1)

This order is compatible on both sides with multiplication. It took about 30 years
before this order was generalized to the much larger class of regular semigroups. The
most commonly used definition for regular semigroups is the following:

a ≤ b if and only if a = eb = b f for some e, f ∈ ES. (2)

However, the order is no longer compatible with multiplication on either side. For an
inverse semigroup S this relation is just the natural partial order (1).
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In [3], the natural order on a regular semigroup was further extended to any
semigroup S as

a ≤ b if and only if a = xb = by, a = xa for some x, y ∈ S1. (3)

This natural partial order coincides with the relation (2) if the semigroup S is regular.
A characterization of this natural partial order was derived.

LEMMA 1.1 [3]. For any semigroup S and its natural partial order the following
conditions are equivalent:

(i) a ≤ b;
(ii) a = wb = bz, az = a for some w, z ∈ S1

;

(iii) a = xb = by, xa = ay = a for some x, y ∈ S1.

Let TX be the full transformation semigroup on a set X . In [1], the naturally ordered
semigroup TX endowed with the natural order (2) was studied. A characterization of
this order in terms of images and kernels was given, and the maximal and minimal
elements and the covering elements were described. In [2], this work was extended
to the semigroup PX of all partial transformations on X . Sullivan [11] considered
the minimal or maximal elements with respect to the natural order in the linear
transformation semigroup P(V ), where V was any vector space.

Let E be an equivalence on X . Write

TE (X) = { f ∈ TX | ∀(x, y) ∈ E, ( f (x), f (y)) ∈ E}.

Clearly, TE (X) is a subsemigroup of TX and if E = {(x, x) | x ∈ X} or E = X × X ,
then TE (X) = TX . Some interesting properties of TE (X) were studied in [4–10]. For
example, in [4, 9], some special congruences on TE (X) were investigated. In [5, 6],
some subsemigroups of TE (X) inducing certain lattices were described. Regularity
and Green’s relations on TE (X) were investigated in [7].

For the nontrivial equivalence E , from [7, Proposition 2.4], TE (X) is not a regular
semigroup. In this paper, we study the natural order on TE (X). The naturally ordered
semigroup TE (X) is endowed with the order (3), that is, for f, g ∈ TE (X), the order
on TE (X) can be written as

f ≤ g if and only if f = kg = gh, f = k f for some h, k ∈ TE (X).

The paper is organized as follows. In Section 2, a characterization of the naturally
ordered semigroup TE (X) is given. In Section 3, the compatibility of multiplication
is considered and the elements satisfying the compatibility will be investigated. In
Section 4, we describe the maximal, minimal and the covering elements with respect
to the order.

We now recall some notation which will be useful later. Throughout the paper, the
equivalence E is nontrivial. Let X/E denote the quotient set of X and π( f ) denote
the partition of X induced by f ∈ TX , namely,

π( f ) = { f −1(y) | y ∈ f (X)}.
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Also, for a subset A ⊆ X , we write

πA( f ) = {M ∈ π( f ) | M ∩ A 6= ∅}.

The following result comes from [9].

LEMMA 1.2. Let f ∈ TE (X). Then, for each B ∈ X/E, there exists B ′
∈ X/E such

that f (B) ⊆ B ′. Consequently, for each A ∈ X/E, the set f −1(A) is either ∅ or a
union of some E-classes.

For each f ∈ TE (X), let

E( f ) = { f −1(A) | A ∈ X/E and f −1(A) 6= ∅}.

Then E( f ) is also a partition of X . It is clear that x, y are contained in the same
U ∈ E( f ) if and only if ( f (x), f (y)) ∈ E .

LEMMA 1.3 [7]. f ∈ TE (X) is regular if and only if for each E-class A, there exists
an E-class B such that A ∩ f (X) ⊆ f (B).

2. Characterization

In this section, we investigate the condition under which f ≤ g for two elements
f, g ∈ TE (X).

Let A, B be two collections of subset of X . If for each A ∈A, there exists B ∈ B
such that A ⊆ B, then A is said to refine B.

THEOREM 2.1. Let f, g ∈ TE (X). Then f ≤ g if and only if the following statements
hold:

(1) E(g) refines E( f ) and π(g) refines π( f );
(2) for x ∈ X, if g(x) ∈ f (X), then f (x) = g(x);
(3) for each E-class A, there exists an E-class B such that f (A) ⊆ g(B).

PROOF. Suppose that f ≤ g, then there exist k, h ∈ TE (X) such that

f = kg = gh, f = k f.

For U ∈ E(g), let g(U ) ⊆ C, k(C) ⊆ D for some C, D ∈ X/E . Thus

f (U ) = kg(U ) ⊆ k(C) ⊆ D,

and so U ⊆ f −1(D) ∈ E( f ), which implies that E(g) refines E( f ). It follows from
f = kg that π(g) refines π( f ). Now for each x ∈ X , if g(x) ∈ f (X), then there exists
y ∈ X such that g(x) = f (y). So

f (x) = kg(x) = k f (y) = f (y) = g(x).

Condition (3) is obvious and the necessity follows.
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To show the sufficiency, we shall construct some k, h ∈ TE (X) such that

f = kg = gh, f = k f.

It is clear that condition (3) implies f (X) ⊆ g(X). We define k on each E-class A.
There are two cases to consider.

CASE 1. A ∩ g(X) = ∅. For each z ∈ A, let k(z) = z.

CASE 2. A ∩ g(X) 6= ∅. For each z ∈ A ∩ g(X), take x ∈ X such that z = g(x) and
define k(z) = f (x). Fix z0 ∈ A ∩ g(X) and let k(z) = k(z0) for each z ∈ A − g(X). If
some x ′

∈ X satisfies z = g(x ′) = g(x), then f (x ′) = f (x) since π(g) refines π( f ).
Thus k is well defined on A. Consequently, k is well defined on all of X .

Now we verify k ∈ TE (X). Let x, y ∈ A ∈ X/E . We discuss two cases.
If case 1 happens, that is, A ∩ g(X) = ∅, then it is clear that (k(x), k(y)) = (x, y)

∈ E .
If case 2 happens, that is, A ∩ g(X) 6= ∅, then there are three possibilities to

consider.

(1) x, y ∈ A ∩ g(X). Let x ′, y′
∈ X be such that x = g(x ′), y = g(y′), and there

exists some U ∈ E(g) such that x ′, y′
∈ U . Since E(g) refines E( f ), we have

( f (x ′), f (y′)) ∈ E . Hence (k(x), k(y)) = ( f (x ′), f (y′)) ∈ E .
(2) x ∈ A ∩ g(X) and y ∈ A − g(X). Then (k(x), k(y)) = (k(x), k(z0)), where z0

is a fixed point in A ∩ g(X). As in the previous case, we have (k(x), k(z0)) ∈ E
and so (k(x), k(y)) ∈ E .

(3) x, y ∈ A − g(X). Then (k(x), k(y)) = (k(z0), k(z0)) ∈ E .

In both cases k ∈ TE (X). It is clear that f = kg. To see f = k f , for each x ∈ X ,
there exists y ∈ X such that f (x) = g(y) and it follows from (2) that f (y) = g(y). So

k f (x) = kg(y) = f (y) = f (x).

Finally, we define h on X . For each A ∈ X/E , let B ∈ X/E be such that f (A) ⊆

g(B). So, for each x ∈ A, there exists some z ∈ B such that f (x) = g(z), and we
define h(x) = z. It is easy to show that h ∈ TE (X) and f = gh. Therefore, f ≤ g. 2

REMARK. Obviously, if f, g ∈ TE (X) and f ≤ g, then f (X) ⊆ g(X).

As an immediate consequence of Theorem 2.1, we have the following result.

COROLLARY 2.2. Let f, g ∈ TE (X) and f ≤ g. Then the following statements hold:

(1) if f (X) = g(X), then f = g;
(2) for each P ∈ π( f ), there exists P ′

∈ π(g) such that P ′
⊆ P and f (P) = g(P ′);

(3) if π( f ) = π(g), then f = g;
(4) for each U = f −1(A) ∈ E( f ) with A ∈ X/E, there exists some V ∈ E(g) such

that V ⊆ U and
f (U ) = f (V ) ⊆ g(V ) = A ∩ g(X).
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PROOF. The verification of (1) is clear. The proof of (2) is similar to that of (4), while
(3) is an immediate consequence of (2). So we only show (4). By Theorem 2.1, U is a
union of some elements in E(g) and f (X) ⊆ g(X). So

f (U ) = A ∩ f (X) ⊆ A ∩ g(X)(6= ∅).

Let V = g−1(A) ∈ E(g). Then, for each y ∈ f (U ), there exists some x ∈ V such
that y = g(x). By Theorem 2.1 again, f (x) = g(x) = y ∈ f (U ) and x ∈ U . Thus
V ∩ U 6= ∅ and so V ⊆ U . Moreover, f (U ) = f (V ) ⊆ g(V ). Notice that g(V ) =

A ∩ g(X), the conclusion follows. 2

3. Compatibility

Let ρ be a partial order on a semigroup S. An element c ∈ S is said to be
left compatible with ρ if (ca, cb) for all (a, b) ∈ S. Right compatibility with ρ is
defined dually.

LEMMA 3.1 [10]. Let f ∈ TE (X) be a regular element. Then, for each U ∈ E( f ),
there exists an E-class C ⊆ U such that f (C) = f (U ).

LEMMA 3.2. If h ∈ TE (X) is both regular and surjective, then h is right compatible
with ≤ on TE (X).

PROOF. Let f, g ∈ TE (X) and f ≤ g. We only need to show that f h, gh satisfy
conditions (1)–(3) in Theorem 2.1. For each U ∈ E(gh), let A ∈ X/E be such
that gh(U ) = A ∩ gh(X). So h(U ) ⊆ g−1(A) ∈ E(g). Since f ≤ g, E(g) refines
E( f ). Thus there exists B ∈ X/E such that f h(U ) ⊆ f (g−1(A)) ⊆ B and so
U ⊆ ( f h)−1(B) ∈ E( f h), which implies that E(gh) refines E( f h). It is clear that
π(gh) refines π( f h) and condition (2) holds. For each A ∈ X/E , let C, D ∈ X/E be
such that f h(A) ⊆ f (C) ⊆ g(D). Noting that h is surjective, there exists some V ∈

E(h) such that h(V ) = D. Thus f h(A) ⊆ gh(V ). By the hypothesis that h ∈ TE (X)

is a regular element, there exists an E-class B ⊆ V such that h(V ) = h(B). Hence
f h(A) ⊆ gh(B) and condition (3) holds. Therefore, by Theorem 2.1, f h ≤ gh. 2

The following lemma follows immediately from Lemma 3.1.

LEMMA 3.3. Let f ∈ TE (X) be a regular element. If f is injective, then each
U ∈ E( f ) contains only one E-class. Consequently, if f ∈ TE (X) is both regular
and injective, then E( f ) = X/E.

LEMMA 3.4. If h ∈ TE (X) is both regular and injective, then h is left compatible with
≤ on TE (X).

PROOF. Let f, g ∈ TE (X) and f ≤ g. We show that h f, hg satisfy conditions
(1)–(3) in Theorem 2.1. For each U ∈ E(hg), let A ∈ X/E be such that hg(U ) =

A ∩ hg(X). Thus g(U ) ⊆ h−1(A) ∈ E(h). Since the regular element h ∈ TE (X)

is injective, it follows from Lemma 3.3 that g(U ) ⊆ h−1(A) = C ∈ X/E and so
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U ⊆ g−1(C) ∈ E(g). By f ≤ g, E(g) refines E( f ). Then there exist B, D ∈ X/E
such that h f (U ) ⊆ h(D) ⊆ B. Thus U ⊆ (h f )−1(B) ∈ E(h f ), which implies that
E(hg) refines E(h f ). One may routinely verify the remaining conclusion. By
Theorem 2.1 again, h f ≤ hg. 2

From Lemmas 3.2 and 3.4, we have the following result.

THEOREM 3.5. If h ∈ TE (X) is both regular and bijective, then h is right and left
compatible with ≤ on TE (X).

REMARK. (1) In the semigroup TE (X), a bijection f ∈ TE (X) need not be a regular
element, in general. For example, let

X = {1, 2, . . .}, E =

∞⋃
i=1

(Ai × Ai ),

where

A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6, 7, 8},

A4 = {9, 10}, A5 = {11, 12}, A6 = {13, 14, 15, 16},

A7 = {17, 18}, A8 = {19, 20}, A9 = {21, 22, 23, 24}, . . . .

Let f ∈ TE (X) be such that

f (A1) = {5, 6} ⊂ A3, f (A2) = {7, 8} ⊂ A3, f (A3) = A6,

f (A4) = A1, f (A5) = A2, f (A6) = A9, f (A7) = A4, f (A8) = A5,

f (A9) = A12, f (A10) = A7, f (A11) = A8, f (A12) = A15, . . . .

It is clear that f is bijective. Since

f (X) ∩ A3 = A3, f (A1) ⊂ A3, f (A2) ⊂ A3,

there is no E-class B such that A3 ∩ f (X) ⊆ f (B). Therefore, by Lemma 1.3, f is
not a regular element.

(2) We know from [1] that, in the naturally ordered semigroup TX , f ≤ g implies
that f h ≤ gh for each surjection h ∈ TX and that k f ≤ kg for each injection k ∈ TX .
However, this conclusion does not hold for the naturally ordered semigroup TE (X).
For example, let

X = {1, 2, . . .}, E =

∞⋃
i=1

(Ai × Ai ),

where A1 = {1, 2, 3, 4}, A2 = {5, 6, 7, 8}, . . . , Ai+1 = {4i + 1, 4i + 2, 4i + 3,

4i + 4}, . . . . Let
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f =

(
1 2 3 4 5 6 7 8 9 10 11 12 · · ·

2 1 3 3 2 1 3 1 9 10 11 12 · · ·

)
,

g =

(
1 2 3 4 5 6 7 8 9 10 11 12 · · ·

5 6 7 8 2 1 3 4 9 10 11 12 · · ·

)
,

and

h =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

1 2 3 4 5 5 6 6 7 7 8 8 9 10 11 12 · · ·

)
.

Then one can easily verify that f, g, h ∈ TE (X), f ≤ g and h is surjective. Since
A2 ∩ h(X) = A2 and there is no E-class B such that A2 ∩ h(X) ⊆ h(B), it follows
from Lemma 1.3 that h is not regular in TE (X). It is clear that f h(A1) = {1, 2, 3}.
However,

gh(A1) = A2, gh(A2) = {1, 2}, gh(A3) = {3, 4}, gh(A4) = A3, . . . ,

which implies that there is no E-class B such that f h(A1) ⊆ gh(B). So, by
Theorem 2.1, f h ≤ gh does not hold. Therefore, the natural order on TE (X) is not
right compatible with multiplication.

The following example shows that the natural order on TE (X) is not left compatible
with multiplication. Let

X = {1, 2, . . .}, E =

4⋃
i=1

(Ai × Ai ),

where A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}, A4 = {7, 8, 9, . . .}. Let

f =

(
1 2 3 4 5 6 7 8 9 · · ·

2 1 1 1 6 5 7 8 9 · · ·

)
,

g =

(
1 2 3 4 5 6 7 8 9 · · ·

2 1 4 3 6 5 7 8 9 · · ·

)
,

and

k =

(
1 2 3 4 5 6 7 8 9 · · ·

1 2 7 8 9 10 11 12 13 · · ·

)
.

Then, clearly, f, g, k ∈ TE (X), f ≤ g and k is injective. Since A4 ∩ k(X) = A4 and
there is no E-class B such that A4 ∩ k(X) ⊆ k(B), it follows from Lemma 1.3 that k
is not regular in TE (X). Obviously, kg(A2 ∪ A3 ∪ A4) ⊆ A4, kg(A1) ⊆ A1. So

A2 ∪ A3 ∪ A4 = (kg)−1(A4) ∈ E(kg).

However,

k f (A2 ∪ A3 ∪ A4) ⊆ A4 ∪ {1}, 1 /∈ A4,

which implies that E(kg) does not refine E(k f ) and k f ≤ kg does not hold. Therefore,
the regularity condition in Theorem 3.5 cannot be omitted.
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4. Maximal, minimal and covering elements

An element g ∈ TE (X) is called an upper cover for f ∈ TE (X) if f < g and there
exists no h ∈ TE (X) such that f < h < g. Lower cover is defined dually. In this
section, we describe the maximal, minimal and covering elements in TE (X).

The next result is routinely verified.

LEMMA 4.1. Let f ∈ TE (X). Then the following statements hold:

(1) if f is surjective, then f is maximal;
(2) if f is injective, then f is maximal.

REMARK. In view of [1, Theorem 3.1], f ∈ TX is maximal if and only if f is either
surjective or injective. From Lemma 4.1, if f ∈ TE (X) is either surjective or injective,
then f is maximal. However, the converse is not true, in general. For example, let

X = {1, 2, . . .}, E = (A1 × A1) ∪ (A2 × A2),

where A1 = {1, 3, 5, . . .}, A2 = {2, 4, 6, . . .}. Let

f =

(
1 2 3 4 5 6 7 8 9 · · ·

2 3 2 5 4 7 6 9 8 · · ·

)
.

Then f (A1) = A2, f (A2) = {3, 5, . . .} ⊂ A1. It is clear that f ∈ TE (X) and f is
neither surjective nor injective. However, f is maximal in the naturally ordered
semigroup TE (X). In fact, if there exists g ∈ TE (X) such that f ≤ g, then g(X) =

f (X) or g(X) = X . If g(X) = f (X), then, by Corollary 2.2(1), g = f . If g(X) = X ,
then, by Theorem 2.1, it must be the case that

g =

(
1 2 3 4 5 6 7 8 9 · · ·

1 3 2 5 4 7 6 9 8 · · ·

)
,

or

g =

(
1 2 3 4 5 6 7 8 9 · · ·

2 3 1 5 4 7 6 9 8 · · ·

)
.

However, it is clear that, in both cases, g /∈ TE (X). Therefore, f is maximal.

DEFINITION 4.2. Let f ∈ TE (X). U ∈ E( f ) is said to be saturated if f (U ) is just
an E-class, that is, f (U ) = A ∈ X/E .

LEMMA 4.3. Let f ∈ TE (X). If there exists U ∈ E( f ) such that U is not saturated
and f |U is not injective, then f is not maximal.

PROOF. Let f (U ) ⊂ A ∈ X/E . By the hypothesis, there exist a, b ∈ U such that
a 6= b and f (a) = f (b). Take c ∈ A − f (X) and define g : X → X as follows:

g(x) =

{
c x = b,

f (x) otherwise.

Then one can easily see that g ∈ TE (X) and f < g. Thus, f is not maximal. 2
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DEFINITION 4.4. Let f ∈ TE (X). U ∈ E( f ) is said to be divisible if there exist
A, B ∈ X/E such that A ⊆ U , f (U ) = f (U − A), B ∩ f (X) = ∅ and |B| ≥ | f (A)|.

Obviously, if U ∈ E( f ) is divisible, then f |U is not injective.

LEMMA 4.5. Let f ∈ TE (X). If there exists U ∈ E( f ) such that U is divisible, then
f is not maximal.

PROOF. Let A, B be as in Definition 4.4 and φ : f (A) → B be an arbitrary injection
from f (A) into B. Define g : X → X by

g(x) =

{
φ f (x) x ∈ A,

f (x) otherwise.

Then one can routinely verify that g ∈ TE (X). Moreover, it is clear that

E(g) = (E( f ) − {U }) ∪ {A, U − A}

and

π(g) = U1 ∪ U2 ∪ U3,

where U1 = {P − A | P ∈ πA( f )}, U2 = {P ∩ A | P ∈ πA( f )} and U3 = π( f ) −

πA( f ). Notice that f (U − A) = f (U ); each P ∈ πA( f ) is divided exactly
into two elements P1, P2 ∈ π(g) where P1 = P − A ∈ U1 and P2 = P ∩ A ∈ U2.
Consequently, E(g) refines E( f ) and π(g) refines π( f ), that is, Theorem 2.1(1)
holds. It is a routine matter to verify that Theorem 2.1(2) and 2.1(3) also hold. So
f ≤ g. By the definition of g, we have f (X) ⊂ g(X) and f < g. Therefore, f is not
maximal. 2

Now we can characterize the maximal elements of TE (X).

THEOREM 4.6. Let f ∈ TE (X). Then f is maximal if and only if one of the following
conditions holds:

(1) f is surjective;
(2) for each U ∈ E( f ), either f |U is injective, or U is saturated and not divisible.

PROOF. Suppose that f is maximal and not surjective. For each U ∈ E( f ), if f |U is
not injective, then, by Lemmas 4.3 and 4.5, U is saturated and not divisible.

Conversely, if f is surjective, then, by Lemma 4.1, f is maximal. Now suppose
f is not surjective and condition (2) holds. Let g ∈ TE (X) and f ≤ g. Then, by
Theorem 2.1(1), E(g) refines E( f ). For each U ∈ E( f ) such that f |U is injective,
we assert that U ∈ E(g) and f (U ) = g(U ). In fact, by Corollary 2.2(4), there is some
V ∈ E(g) such that V ⊆ U and f (U ) ⊆ g(V ) = A ∩ g(X) for some A ∈ X/E . For
each x ∈ U , f (x) ∈ f (U ) ⊆ g(V ) and there exists x ′

∈ V such that f (x) = g(x ′). By
Theorem 2.1(2), f (x ′) = g(x ′) and so f (x) = f (x ′). Notice that f |U is injective,
x = x ′ and U ⊆ V . Thus U = V ∈ E(g) and f (U ) = g(U ) and the assertion holds.
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For the remaining U ∈ E( f ), namely, U is saturated and not divisible, we shall
show that f (U ) = g(U ) holds as well. There are two cases to consider.

CASE 1. U ∈ E(g). By Corollary 2.2(4), we have

A = f (U ) ⊆ g(U ) = A ∩ g(X) ⊆ A ∈ X/E .

Hence f (U ) = g(U ) = A.

CASE 2. U /∈ E(g). By Corollary 2.2(4) again, there exists V ∈ E(g) such that V ⊆ U
and

A = f (U ) ⊆ g(V ) = A ∩ g(X) ⊆ A ∈ X/E,

that is, f (U ) = g(V ) = A. Moreover, by Theorem 2.1(2), f (V ) = g(V ) = A. Notice
that E(g) refines E( f ) and U /∈ E(g); there exists W ∈ E(g) such that W 6= V
and W ⊆ U . Let B ∈ X/E be such that g−1(B) = W . If B ∩ f (X) 6= ∅, then
U ′

= f −1(B) ∈ E( f ). As in proving Corollary 2.2(4), one can see that W ⊆ U ′ and
U ′

= U . Consequently, B = A = g(V ), contradicting the choice that W 6= V . Hence
B ∩ f (X) = ∅. Take D ∈ X/E such that D ⊆ W . Since g(W ) ⊆ B and π(g) refines
π( f ),

|B| ≥ |g(W )| ≥ |g(D)| ≥ | f (D)|

and

A = f (V ) ⊆ f (U − W ) ⊆ f (U − D) ⊆ f (U ) = A.

So f (U − D) = f (U ) which implies that U is divisible, contradicting the hypothesis.
Consequently, case 2 can not happen. Therefore, f (U ) = g(U ) for each U ∈ E( f ).
By Corollary 2.2(1), g = f and f is maximal. 2

The following theorem whose proof is omitted describes the minimal elements of
TE (X).

THEOREM 4.7. Let f ∈ TE (X), then f is minimal if and only if f is a constant map.

THEOREM 4.8. Let f ∈ TE (X) be not maximal. Then f has an upper cover.

PROOF. By Theorem 4.6, f is not surjective. There are two cases to consider.

CASE 1. There exists U ∈ E( f ) such that U is not saturated and f |U is not injective.
We can define g as in proving Lemma 4.3. It is clear that g ∈ TE (X) and g is an upper
cover of f .

CASE 2. There exists U ∈ E( f ) such that U is divisible. Suppose that A, B ∈ X/E
satisfy the conditions in Definition 4.4. Let g be defined as in Lemma 4.5. In what
follows, we verify that g is an upper cover of f . Suppose that f ≤ h ≤ g holds for
some h ∈ TE (X). Then E(g) refines E(h) and E(h) refines E( f ). Notice that there
is only one element U ∈ E( f ) which is divided into two elements A, U − A ∈ E(g),
so either E(h) = E( f ) or E(h) = E(g).
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If E(h) = E( f ) happens, we assert that h(X) ∩ B = ∅. Otherwise, let W =

h−1(B) ∈ E(h) = E( f ). Suppose that f (W ) = C ′
= C ∩ f (X) for some C ∈ X/E .

By Corollary 2.2(4), there exists V ∈ E(h)(= E( f )) such that V ⊆ W and

f (W ) ⊆ h(V ) = C ∩ h(X),

which implies that V = W and B = C , contradicting the fact that B ∩ f (X) = ∅,
and the assertion holds. Since f ≤ h ≤ g, we have f (X) ⊆ h(X) ⊆ g(X). By the
definition of g, g(X) − f (X) ⊆ B, which together with h(X) ∩ B = ∅ implies that
h(X) = f (X). Thus, by Corollary 2.2(1), f = h.

If E(h) = E(g) happens, we assert that π(h) = π(g), which implies that h = g.
Otherwise, since π(g) refines π(h), there exist P, Q ∈ π(g) such that h(P) = h(Q).
Then f (P) = f (Q) since π(h) refines π( f ). Recall that π(g) = U1 ∪ U2 ∪ U3, if
P, Q ∈ Ui (i = 1, 2, 3), which leads to a contradiction that two distinct elements of
π( f ) have the same image under f . Similarly, it is also impossible that P ∈ U1,
Q ∈ U3, and P ∈ U2, Q ∈ U3, and P ∈ U1, Q ∈ U2, P ∪ Q /∈ π( f ). Therefore, it must
be the case that

P = R − A ∈ U1 and Q = R ∩ A ∈ U2

for some R ∈ πA( f ). Let f (R) = c ∈ C ∈ X/E . Then, by the definition of g,

g(P) = f (R) = c and g(Q) = φ f (Q) = φ(c) = b ∈ B,

say. Thus, by Corollary 2.2(2), h(P) = h(Q) = f (R) = c, which implies h(A) ⊆ C
(since Q ⊆ A and h ∈ TE (X)) and h(X) ∩ B = ∅. As above, we can deduce that
f = h and E( f ) = E(h) = E(g), a contradiction. Hence, π(h) = π(g) and so h = g
by Corollary 2.2(3). Consequently, there exists no h ∈ TE (X) such that f < h < g.
Therefore, g is an upper cover of f . 2

The following theorem is concerned with the existence of a lower cover of f .

THEOREM 4.9. Let f ∈ TE (X) be not minimal. Then f has a lower cover.

PROOF. Suppose that f ∈ TE (X) is not minimal. Then, by Theorem 4.7, f is
not a constant map. So there exist distinct a, b ∈ f (X). Let Ma = f −1(a) and
Mb = f −1(b). There are two cases to consider.

CASE 1. (a, b) ∈ E . Then there exists some U ∈ E( f ) such that Ma ∪ Mb ⊆ U .
Define g as follows:

g(x) =

{
f (x), x /∈ Ma ∪ Mb,

a, x ∈ Ma ∪ Mb.

Then g is a map from X into itself. To see g ∈ TE (X), take (x, y) ∈ E . Suppose that
x, y ∈ A ∈ X/E . If A ∩ U = ∅, then (g(x), g(y)) = ( f (x), f (y)) ∈ E . If A ∩ U 6= ∅,
then A ⊆ U . Assume that f (U ) ⊆ B ∈ X/E . It is clear that g(x), g(y) ∈ B and so
(g(x), g(y)) ∈ E . Consequently, we have g ∈ TE (X).

CASE 2. (a, b) /∈ E . Let U, V ∈ E( f ) be such that Ma ⊆ U and Mb ⊆ V . There are
two possibilities.
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(1) | f (U )| = | f (V )| = 1. It is clear that U = Ma and V = Mb in this case. Define
g just as in case 1. And one can easily verify that g ∈ TE (X) as well.

(2) | f (U )| > 1 or | f (V )| > 1. Without loss of generality, we may assume | f (U )| >

1. Take b′
∈ f (U ) with b′

6= a.

One may routinely verify that, in both cases, E( f ) refines E(g), pi( f ) refines π(g)

and the other conditions in Theorem 2.1 hold. Hence g ≤ f . Moreover, it is clear that
there is no h ∈ TE (X) such that g < h < f . So g is a lower cover of f . The proof is
complete. 2
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