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Abstract
For a k-uniform hypergraph H on vertex set {1, . . . , n} we associate a particular signed incidence matrix
M(H) over the integers. ForH∼Hk(n, p) an Erdős–Rényi random k-uniform hypergraph, coker(M(H))
is then a model for random abelian groups. Motivated by conjectures from the study of random simplicial
complexes we show that for p= ω(1/nk−1), coker(M(H)) is torsion-free.
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1. Introduction
LetH be a k-uniform hypergraph on vertex set [n]. We associate toH a matrixM := M(H) with
rows indexed by the vertices and columns indexed by the edges ofH. For e= {v1, v2, . . . , vk} each
vi ∈ [n] with v1 < v2 < · · · < vk, M(vi, e) := (−1)i+1 for 1≤ i≤ k and M(v, e) := 0 for v /∈ e. Our
primary object of study is the cokernel ofM(H) whenH is a random hypergraph.

The motivation for this model comes from a question about random simplicial complexes.
Recall that the Linial–Meshulam model, introduced in [10, 13], denoted Yd(n, p) is the proba-
bility space on d-dimensional simplicial complexes on n vertices with complete (d − 1)-skeleton
sampled by including each d-face independently with probability p. Observe that Y1(n, p) is the
Erdős–Rényi random graph model. Since the Linial–Meshulam model was first introduced much
of the research has been to establish thresholds for topological properties that generalise thresh-
olds for graph properties. One of the most important thresholds in Yd(n, p) is the one-sided sharp
threshold for nonvanishing of the dth homology group due to Aronshtam, Linial, and Peled
[2, 11]. Namely for each d ≥ 2, there is an explicit constant cd defined in [2] so that if p= c/n
with c< cd then the dth homology group of Y ∼ Yd(n, p) with rational coefficients is generated
by Poisson-distributed embedded copies of the (d + 1)-simplex boundary in Yd(n, p) [11]. On the
other hand for c> cd, [2] shows that with high probability Y ∼ Yd(n, p) has dth Betti number of
order �(nd) with high probability.

While we don’t yet have a good understanding of what happens inside the critical window
for p near cd/n, experiments conducted by Kahle, Lutz, Newman, and Parsons [9] demonstrate
strongly that the homology within the critical window is very interesting. More specifically, the
experiments conducted in [9] witness a torsion burst in the (d − 1)st homology group within the
critical window. An instance of the experiment in [9] starts with the complete graph on n vertices,
and a 2-complex is constructed from this graph by adding triangles one at a time in random order.
That is, at each step one picks uniformly at random a triangle on the ground set that is not already
included in the complex and adds it. In this way we turn Y2(n, p) into a stochastic process and can
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Table 1. Sample run of the random abelian
group process with n= 100 and k= 3

Number of columns Cokernel

0 Z100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Z99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94 Z6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

95 Z5 ×Z/2Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

96 Z4 ×Z/6Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

97 Z3 ×Z/894Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

98 Z3 ×Z/3Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99 Z3 ×Z/3Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 Z3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

125 Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

126 0

study how the two interesting homology groups evolve. Early on, most of the time a new triangle
is added, the free rank of H1 drops by one, but occasionally a tetrahedron boundary is completed
and so the rank of H2 increases by one instead. Moreover, at the early stages H1 is torsion-free.
However, right around the critical density for the phase transition inH2 established in [2, 11], one
observes large torsion in the first homology group. In a particular instance shown as Table 1 in
[9] with n= 75, when the 2470th triangle is added, torsion appears in the first homology group.
At that point in this experiment the first homology group was Z235 ×Z/2Z. What is even more
interesting is that when the 2475th triangle is added in this particular run the torsion part of the
first homology group has order larger than 1026, but when one more triangle is added this torsion
drops toZ/2Z. The details of which groups appear can be found in Table 1 of [9]. Once this torsion
is gone, we have apparently passed the homology threshold of [2, 11] and the rank of the second
homology group starts to grow quickly.

Beyond gathering evidence about the existence of a torsion burst in the Linial–Meshulam
model, [9] also provides experimental evidence that the torsion groups that appear look like typ-
ical random abelian groups. More specifically, they appear to follow Cohen–Lenstra heuristics, a
family of distributions on finite abelian groups first described in [5]. This fits with the behaviour
of torsion in other models of cokernels of random integer matrices such as sandpile groups of
random graphs studied by [4, 14, 19].

As the torsion in the (d − 1)st homology group of a simplicial complex comes from the cok-
ernel of the dth boundary matrix, it seemed reasonable when conducting the experiments for [9]
to try and see if the same torsion burst behaviour occurred in a random matrix model. The dth
boundary matrix of a simplicial complex (when choosing orientations from an ordering on the
vertices) is a matrix in which each column has exactly (d + 1) nonzero entries and those nonzero
entries alternate as 1,−1, 1,−1, . . . , (−1)d+1. From this perspective when working on [9] it made
sense to run experiments to see what happens in a model of randommatrices that have this struc-
ture but not the far more restrictive structure coming from the geometry of a simplicial complex,
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that is, the matrices described above as M(H) for H a (d + 1)-uniform hypergraph on [n]. These
experiments turned out to exhibit the same behaviour as Yd(n, p).

Random matrices with a fixed number of nonzero entries in each row have been considered
in the past and [11] in particular mentions their similarity with Yd(n, p). For example Pittel and
Sorkin [17] consider this same model for random matrices we describe here over Z/2Z in study-
ing random instances of k-XORSAT and Cooper, Frieze, and Pegden [6] prove that a random
matrix over Z/2Z with exactly k 1’s in each column exhibit a phase transition in the rank. The
phase transitions described in [6, 17] are perfectly analogous to the phase transition in homol-
ogy of Yd(n, p) established by [2, 11] in quite a strong sense. In Yd(n, c/n) with c constant, if c is
large enough that the average degree of a (d − 1)-dimensional face exceeds cd then Y ∼ Yd(n, c/n)
asymptotically almost surely has nonvanishing dth homology while for c small enough that the
average degree of (d − 1)-dimensional face is smaller than cd then d-homology is generated by
(d + 1)-simplex boundaries. For this same cd, as is pointed out in [11], Pittel and Sorkin show
that a random n×mmatrix over Z/2Z with exactly d + 1 1’s in each column will have nontrivial
kernel when the average number of 1’s in each row exceeds cd and trivial kernel when this average
is below cd. Work of Cooper, Frieze, and Pegden [6] refines this result to describe the asymptotic
rank of the random Z/2Zmatrix on either side of the phase transition. It is at the phase transition
of [17] that experiments witness a torsion burst in our random matrix model.

As with the experiments for [9] to see this torsion burst it seems necessary to view the cokernel
of M(H) for H a random hypergraph as a stochastic process. That is we add columns one at a
time and compute the cokernel at each step. The results of a sample run are shown in Table 1. The
experiment was carried out using GAP [8].

Proving the existence of the torsion burst in Yd(n, p) seems to be quite a difficult problem
without obvious tools to approach it. More tractable perhaps is proving its uniqueness. This is
formulated as a conjecture of Łuczak and Peled in [12].

Conjecture 1 (Łuczak and Peled [12]). For every d ≥ 2 and p= p(n) such that |np− cd| is bounded
away from 0, Hd−1(Yd(n, p)) is torsion-free asymptotically almost surely.

We point out that for Y ∼ Yd(n, p), Hd−1(Y) a.a.s. does not vanish until p= d log n
n . This result

was proved for fixed field coefficients in [10, 13], and for integer coefficients in the d = 2 case in
[12] and in the general case in [16]. Thus Conjecture 1 would provide a probability regime where
Hd−1(Y) is nonvanishing and torsion-free.

In light of this conjecture and the comparison between random matrices over Z/2Z with
(d + 1) 1’s in every row and Yd(n, p), we prove the following as our main theorem.

Theorem 2. For any k≥ 3, if p= ω
(

1
nk−1

)
then the cokernel of M(H) forH∼Hk(n, p) asymptoti-

cally almost surely is torsion-free.

We remark also that the absence of torsion far below the phase transition, that is, for p=
o(1/nk−1), follows from facts about the 2-core ofHk(n, p). Recall that the 2-core of a hypergraphH
is the hypergraphH′ obtained by successively deleting vertices (and hyperedges containing them)
belonging to fewer than two hyperedges. Note that if H is a k-uniform hypergraph and v ∈H is
contained in exactly one hyperedge e then deleting v and e fromH does not change coker(M(H)).
On the other hand if v ∈H does not belong to any hyperedges at all, then deleting v from H
removes a Z factor from coker(M(H)). Therefore the torsion part of coker(M(H)) is the torsion
part of coker(M(H′)) whereH′ is the 2-core ofH.

One of the main results of a paper of Molloy [15] establishes the sharp phase transition for the
property thatH∼Hk(n, p) for k≥ 3 has a nontrivial 2-core to be γk/nk−1 for an explicit constant
γk. In fact the threshold that he establishes for this property is fundamentally the same as the
threshold for d-collapsibility in the Linial–Meshulam model established by [1, 3] furthering the

https://doi.org/10.1017/S0963548323000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000056


Combinatorics, Probability and Computing 657

analogy between Yd(n, c/n) and M(Hk(n, c/nk−1)). Because of Molloy’s result about the 2-core
and the connection between the 2-core and the torsion part of the cokernel we immediately have
the following.

Proposition 3. For k≥ 3, if p= o
(

1
nk−1

)
then the cokernel of M(H) if H∼Hk(n, p) asymptoti-

cally almost surely is torsion-free.

Also because of the comparison between Yd(n, p) andM(Hk(n, p)) we prove the following ana-
logue to the homology vanishing threshold in our random matrix model. This proof will follow
immediately from Theorem 2 and a result about the Z/2Z version of the random matrix model
from [6].

Theorem 4. For any k≥ 3, if p= c log n
nk−1 then for c< k! the cokernel of M(H) for H∼Hk(n, p)

asymptotically almost surely has free rank at least 1 when k is odd and at least 2 when k is even,
while for c> k! the cokernel of M(H) for H∼Hk(n, p) asymptotically almost surely is 0 if k is odd
and is Z if k is even.

Note that Theorems 2 and 4 implies that there is a probability regime where coker(M(H)) is
torsion-free, but also nontrivial.

2. Outline of the proof of Theorem 2
Since the cokernel of an n×mmatrixM isZn/Im(M), a torsion element for coker(M) is an integer
vector w so that w is not in the image ofM but tw is in the image ofM for some t ≥ 2. Obviously it
suffices to rule out q-torsion over all primes q, that is, to show that for all primes q there is never an
integer vector w so that qw ∈ Im(M) but w /∈ Im(M), however there is an important subtlety. We
need to show that in the probability regime considered we can bound the probability that there
is q-torsion simultaneously over all primes q. It would not be enough to fix q and show that the
probability of q-torsion is o(1). Such an approach would leave open the possibility that there is
q(n)-torsion in our random model for some sequence of primes q(n) growing with n.

We first state the key lemmas to sketch out the arguments. It turns out to be easier to rule out
torsion in coker(MT) rather than directly ruling out torsion for coker(M). This is similar to how
[10, 12, 13, 16] prove cohomology vanishing theorems rather than directly proving homology
vanishing theorems. This formulation is equivalent since the torsion coefficients of an integer
matrix come from its Smith normal form; the torsion part of coker(MT) is the same as the torsion
part of coker(M) for any matrix.

The idea of the proof is to show that with high probability there are no w, v, q so that MTv=
qw with q prime, v /∈ (qZ)n, and w /∈ Im(MT). The argument splits depending on the size of the
support of v. The first key lemma has to do with the case that the support of v is small. Here we
introduce the notation MS for S a subset of the columns of M to be the submatrix obtained by
restrictingM to the columns belonging to S.

Lemma 5. Fix δ ∈ (0, 1) then forH∼Hk(n, p)with p= ω(1/nk−1) asymptotically almost surely for
every set S⊆ [n] with |S| < δn, rankQ(MT

S )= rankZ/qZ(MT
S ) for every prime q where M =M(H).

For the case that the support of v is large the argument splits depending on the parity of k.
For the case that k is odd the argument is a bit more straightforward. The issue when k is even is
that the row sum along every row of MT is zero, so the all-ones vector is always in the kernel of
MT which makes the argument slightly more difficult. The lemma to handle the odd case is the
following. Note that here we use Hk(n,m) the uniform distribution on k-uniform hypergraphs
with exactlym hyperedges.
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Lemma 6. For any k≥ 3 odd, δ > 0, and c= c(k, δ) a sufficiently large constant there exists
C = C(k, c, δ)> log(k) so that for any prime q the probability that kerZ/qZ (MT) for M =M(H),
Hk(n, cn) contains a vector of support size at least δn is at most e−Cn.

Note here that the C in the statement does not depend on q. This is important because the
following lemma tells us that we only have to consider exponentially many primes. This lemma
is well known, and it seem that the earliest reference to it is a paper of Soulé [18]. It appears in
papers about vanishing homology theorems for random complexes. In particular, it appears with
proof as Claim 2 of [16].

Lemma 7. If M is an integer matrix with n columns so that each column of M has Euclidean norm
at most t then the torsion part of coker(M) has size at most tn.

With Lemmas 5–7 we can prove Theorem 2 for k odd.

Proof of Theorem 2 for odd k. For p= ω(1/nk−1) we bound the probability that M := M(H)
has cokernel with torsion when H∼Hk(n, p). If coker(M) has torsion then it has q-torsion for
some prime q≤ √

kn. Moreover if M has q-torsion then so does coker(MT), so in that case there
exists a vector v so that MTv= qw for w an integer vector not in the image of MT and v /∈ (qZ)n.
In this case v (mod q) is a nontrivial vector in kerZ/qZ (MT). By Lemma 6 and a union bound
over all

√
kn primes under consideration we see that with high probability, there is no vector in

kerZ/qZ (MT) with support size larger than n/2 for any prime q≤ √
kn. Indeed letting Tq denote

the event that there is a vector v ∈ kerZ/qZ (MT) with support size at least n/2 and taking union
bound over all primes smaller than

√
kn we find the probability that there is v ∈ kerZ/qZ (MT) of

large support for some prime q is at most

P

⎛
⎜⎝ ⋃

q≤√
kn,q prime

Tq

⎞
⎟⎠ ≤ P

⎛
⎜⎝ ⋃

q≤√
kn,q prime

Tq

∣∣∣∣∣∣∣|E(H)| > cn

⎞
⎟⎠+ P(|E(H)| ≤ cn)

≤
∑

q≤√
kn,q prime

P(Tq||E(H)| > cn)+ P(|E(H)| ≤ cn)

where c is some sufficiently large constant for the assumptions of Lemma 6 to hold. By a standard
coupling argument betweenHk(n, cn) andHk(n, p) for p= ω(1/nk−1), we apply Lemma 6 to con-
clude that each term in the sum over at most

√
kn primes is at most exp(−Cn) forC > log(k). Thus

the large sum is at most exp(−n log(k)/2) and the last term is o(1) since the number of hyperedges
ofH is distributed as a binomial with mean ω(n).

We can assume now that the vector v with MTv= qw has support size (over Z/qZ) at most
n/2. We know however that with high probability MT satisfies the assumption of Lemma 5 with
δ = 1/2. In this case then taking S to be the support of v over Z/qZ, we see that rankQ((MT)S)=
rankZ/qZ((MT)S). Therefore coker((MT)S) is q-torsion-free. As S is the support of v over Z/qZ,
v= v1 + qv2 where supp(v1)= S, we have that qw=MT(v1 + qv2) ∈ coker((MT)), so MT(v1)=
qw1 for some vector w1. As v1 is supported on S and coker((MT)S) is torsion-free there is some
integer vector u supported on S withMTu=w1 and soMT(u+ v2)=w contradicting the choice
of w as a torsion element of coker(MT). �

The proof when k is even makes use of a definition we introduce later, so we save the proof for
the even case for the end.
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3. Vectors with small support
Here we prove Lemma 5. Toward that goal we start with the following definition.

Definition 8. Let M be an integer matrix, a subset S of the columns of M is said to be a torsion
cocycle provided that there exists a prime q so that rankQ(MS)> rankZ/qZ(MS). Aminimal torsion
cocycle is an inclusion-minimal set of columns S which is a torsion cocycle.

The name torsion cocycle comes from the fact that our proof of the main theorem here is an
adaptation of the cocycle counting argument from proofs of homology vanishing theorems in
[10, 13, 16]. The following claim about minimal torsion cocycles is easy to prove and sets up a
sub-hypergraph inclusion problem to rule out small torsion cocycles and prove Lemma 5.

Claim 9. If S is a minimal torsion cocycle of a matrix M, then rankQ(MS)= |S|. Moreover MS
cannot have a row which has |S| − 1 entries equal to zero and the remaining entry equal to 1 or
to −1.

Proof. Suppose that rankQ(MS)< |S|. Let U � S be a maximal collection of linearly independent
columns of MS over Q. Since S is a torsion cocycle there exists a prime q so that rankQ(MS)>
rankZ/q/Z(MS). By minimality of S, rankQ(MU)= rankZ/qZ(MU). On the other hand, we have

rankQ(MU) = rankQ(MS)

> rankZ/qZ(MS)

≥ rankZ/qZ(MU).

Thus, we reach a contradiction and finish the proof of the first part of the claim.
For the second part, we observe that if z is a row of MS so that the ith entry of z is ±1 and

all other entries of z are 0 then clearly over any field column i of MS is outside the span of all
other columns of MS. Thus, deleting i from S drops the rank of MS over any field by 1. Thus
rankQ(MS\{i})> rankZ/qZ(MS\{i}) when rankQ(MS)> rankZ/qZ(MS) as both ranks drop by one.
However this contradicts minimality. �

By the claim, we have that in any set of columns S⊆ [n] ofMT which form a minimal torsion
cocycle there must be at least |S| nonzero rows in MT

S . Otherwise the (row) rank of MT
S over

Q would be smaller than |S|. As the columns of MT are indexed by vertices of H and the rows
are indexed by hyperedges of H, for S the set of t vertices corresponding to the minimal torsion
cocycle we have by the two parts of Claim 9:

1. There are at least t hyperedges in the random hypergraph which involve at least one vertex
of S, but

2. no hyperedge contains exactly one vertex of S.

We use a linearity of expectation argument to bound the probability that H∼Hk(n, p) for
p= ω(1/nk−1) has a small subset of vertices S which satisfies conditions (1) and (2) above.

Lemma 10. Fix δ ∈ (0, 1) and take p= ω(1/nk−1). With high probability H∼Hk(n, p) does not
contain a subset of vertices S with |S| ≤ δn satisfying both of the following:

• There are at least |S| hyperedges that intersect S, but
• no hyperedge intersects S exactly once.

Proof. We prove this by counting the expected number of subsets S satisfying both of the condi-
tions. Let t denote the size of S. For each 1≤ t ≤ δn there are

(n
t
)
ways to pick S. From here we have

to choose at least t hyperedges that intersect S in at least 2 vertices to be included. The number of
hyperedges that intersect S in at least 2 vertices is
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k−2∑
i=0

(
n− t
i

)(
t

k− i

)
≤

k−2∑
i=0

nitk−i.

And from this set, we choose at least t hyperedges to be included. Next, we have to guarantee that
all hyperedges that intersect S in only one place are excluded. The number of hyperedges that meet
S in exactly one vertex is

t
(
n− t
k− 1

)
.

Putting this all together the number of expected number of sets S that satisfy the conditions we
want to avoid is at most

δn∑
t=1

(
n
t

)
et
(∑k−2

i=0 nitk−i

t

)t

pt exp
(
−p
(
n− t
k− 1

))t
.

Taking p= f /nk−1 with f := f (n)→ ∞ arbitrarily slowly, we have the above is at most

δn∑
t=1

nte2t

tt

⎛
⎝k−2∑

i=0
nitk−i−1

⎞
⎠

t (
f

nk−1

)t
exp

(
−(f /nk−1)

(1− δ)k−1nk−1

(k− 1)k−1

)t

.

Thus for some positive constant c= ck,δ that depends on k and δ, we have that the above sum is at
most

δn∑
t=1

⎛
⎝e2n

k−2∑
i=0

nitk−i−2

⎞
⎠

t (
f

nk−1

)t
exp

(−fc
)t ≤

δn∑
t=1

⎛
⎝e2n2−kf

k−2∑
i=0

δk−i−2nk−2

⎞
⎠

t

exp
(−fc

)t

≤
δn∑
t=1

(
e2(k− 1)fe−cf

)t
And this is o(1) as long as f tends to infinity. Thus by Markov’s inequality we have the lemma. �

Lemma 5 follows immediately from Claim 9 and Lemma 10.

Remark 11. Lemma 10 turns out to be the only part of the proof of Theorem 2 where we use
p= ω(1/nk−1) and where it could not be replaced with p= C/nk−1 with C = C(k) a large con-
stant. While the main theorem still ought to hold for p= C/nk−1, the first moment argument in
Lemma 10 does not work in this case. As an illustration of what goes wrong, let’s just consider the
k= 3 case. A set S of three vertices so that each pair is contained in at least one hyperedge with
the third vertex being outside of S, but no hyperedge intersects S exactly once is a configuration
we want to rule out with Lemma 10. However the expected number of such configurations is at
least: (

n
3

)
(n− 3)3

(
C
n2

)3 (
1− C

n2

)3n2/4

but this has a constant, nonzero lower bound for C fixed when n is large enough.

4. Vectors with large support
We turn our attention now to the proof of Lemma 6. As this proof is aboutHk(n,m) we consider
Hk(n,m) and the correspondingM(H) as a stochastic process obtained by adding the hyperedges
of
([n]
k
)
one at a time in random order. In order to prove Theorem 6 we want to find a lower bound
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on the probability that the dimension of the kernel ofMT drops as we add the random rows ofMT

one at a time. The arguments here are similar to the coboundary expansion arguments found in
[10, 13, 16] where a cocycle counting argument is applied to prove homology vanishing theorems
in the Linial–Meshulam model. The idea of coboundary expansion is discussed in more detail
in [7].

To set up our arguments, we introduce the following definition.

Definition 12. Take Vk,n to be the set of vectors that can be column vectors ofM(H), that is, Vk,n
is the set of vectors in Zn with exactly k nonzero entries and the nonzero entries alternating as
1,−1, 1,−1, . . .. For k≥ 3, q prime, and v ∈ (Z/qZ)n let Bq(v) denote the set {w ∈Vk,n |w · v �= 0
over Z/qZ.}. We observe that for any matrix M with rows in Vk,n if v ∈ kerZ/qZ (M), and we add
a row in Vk,n to it to create a new matrix M′ then v ∈ kerZ/qZ (M′) if and only if the new row is
outside of Bq(v).

We prove the following statement regarding Bq(v) when k is odd. Those familiar with cobound-
ary expansion will find this lemma and Lemma 16 analogous to Proposition 2.1 of [13], although
the proofs are quite different.

Lemma 13. For k odd there exists γ := γ (k)> 0 so that for every prime q and every vector v ∈
(Z/qZ)n, |Bq(v)| ≥ γ |supp(v)|k.

In order to prove this lemma we introduce the following definition.

Definition 14. For q a prime and ε > 0, we say that v ∈ (Z/qZ)n is ε-balanced provided every
nonzero element of Z/qZ appears at most ε|supp(v)| times in v.

With the definition of ε-balanced the proof of Lemma 13 splits into two cases.

Proof of Lemma 13. For a vector v ∈ (Z/qZ)n we wish to bound from below the number of w ∈
Vk,n so thatw · v �= 0.With foresight into the calculations fix some positive ε < (k−1)!

kk .We consider
first the case that v is ε-balanced.

If v is ε-balanced then there are at least(|supp(v)|
k

)
−
(|supp(v)|

k− 1

)
ε|supp(v)|

vectors w in Vk,n over Z/qZ so that w · v �= 0. To see this we restrict only to those vectors w ∈Vk,n
so that supp(w)⊆ supp(v); denote this set by Vv

k,n. There are clearly (exactly)
(|supp(v)|

k
)
vectors in

Vv
k,n. We claim that among these vectors at most

(|supp(v)|
k−1

)
ε|supp(v)|will be orthogonal overZ/qZ

to v. To construct a vector w in Vv
k,n that’s orthogonal to v we first pick the first k− 1 positions in

supp(v) to be nonzero in w. Clearly there are at most
(|supp(v)|

k−1
)
ways to do this. If w′ denotes this

vector (in Vv
k−1,n) then if w′ · v= 0 then there is no way to select the last position of the nonzero

entry in w so that supp(w)⊆ supp(v) and w · v= 0. On the other hand if w′ · v �= 0 then in order
for w · v to be zero, and the last entry of w must fall into a position where v is the unique non-
zero element of Z/qZ equal to −w′ · v. By the ε-balanced condition, there are at most ε|supp(v)|
choices for this position. Thus Vv

k,n has
(|supp(v)|

k
)
vectors and at most

(|supp(v)|
k−1

)
ε|supp(v)| of them

are orthogonal to v.
Suppose on the other hand, that v is not ε-balanced. Then there is some subset S of supp(v)

with |S| ≥ ε|supp(v)| so that v restricted to S is a constant, nonzero function in Z/qZ. Then any
vector in Vk,n with support contained in S cannot be orthogonal to v as the dot product of v with
such a vector is simply x− x+ x− x · · · + x= x. Thus, there are at least(

ε|supp(v)|
k

)
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vectors in Vk,n that are not orthogonal to v when v is not ε balanced. Thus, we have the
claim with

γ =min

{
1
kk

− ε

(k− 1)! ,
εk

kk

}
.

�
Now we prove Lemma 6.

Proof of Lemma 6. Consider the stochastic process to buildMT one row at a time. LetMT
i denote

the i× n matrix at step i and let Zi be the random variable dim( kerZ/qZ (MT
i )) with the conven-

tion that Z0 = n. If MT
i has a vector of support size at least δn in its kernel over Z/qZ then the

probability that Ki+1 <Ki is at least

γ (δn)k(n
k
) ≥ k!δkγ ,

where γ is as in Lemma 13. Thus the probability that MT
cn for c a large constant has a kernel

element over Z/qZ of support size at least δn is at most the probability that a binomial random
variable with cn trials and success probability k!δkγ has at most n successes. By Chernoff’s bound
this is at most exp(−Cn) where C can be made an arbitrarily large constant by setting c large
enough. �

Now we turn our attention to the even case. Fortunately the relevant definition we need is the
ε-balanced definition we have already introduced. The analogue of Lemma 6 is the following:

Lemma 15. For any k≥ 4 even, δ > 0, and 0< ε < (k−1)!
kk and c= c(k, δ, ε) sufficiently large there

exists C = C(c)> log(k) so that for any prime q the probability that kerZ/qZ (MT) for M =M(H),
H∼Hk(n, cn) contains an ε-balanced vector of support size at least δn is at most e−Cn.

The proof of this proceeds from the following lemma exactly as the proof of Lemma 6.

Lemma 16. For k≥ 4 even and 0< ε < (k−1)!
kk there exists γ = γ (k, ε) so that for any prime q and

every ε-balanced vector v ∈ (Z/qZ)n, |Bq(v)| ≥ γ |supp(v)|k.
The proof of Lemma 16 is exactly the ε-balanced case of the proof of Lemma 13. Now we are

ready to prove Theorem 2 in the case that k is even.

Proof of Theorem 2 for even k. As in the odd k case it suffices to show that with high probability
there are no v, w, and q so that MTv= qw, w /∈ Im(MT) and v /∈ (qZ)n. Fix a positive ε < (k−
1)!/kk and take δ = (1+ ε)−1. By Lemma 10 the probability thatMT has a torsion cocycle of size
at most δn is o(1). IfMTv= qw with S := supp(v) of size at most δn then we use the fact that with
high probability coker((MT)S) is torsion-free to conclude that w ∈ Im(MT).

For vectors of large support, by a similar union bound to the odd k case we can use Lemmas
15 and 7 to rule out ε-balanced vector v ∈Z/qZ with |supp(v)| ≥ δn and v ∈ kerZ/qZ (MT). The
only case that’s different is if v is not ε-balanced but still has large support. If v is not ε-balanced
then some x ∈Z/qZ \ {0} appears more than εδn times in v. In this case then x1− v satisfies
|supp(x1− v)| ≤ n− εδn= δn, and MT(x1− v)= −qw, but then S= supp(x1− v) has size at
most δn so we appeal again to the fact that coker((MT)S) has no q-torsion to conclude that
w ∈ Im(MT). �

5. Proof of Theorem 4
For the proof of Theorem 4, we use Theorem 2 as well as a theorem of Cooper, Frieze, and Pegden
[6]. In [6], the authors consider the samemodel that we consider except that thematrices are taken
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over Z/2Z rather than over Z. Theorem 1.3 from [6] and the usual coupling argument between
Hk(n, p) andHk(n,m) immediately give the following.

Theorem 17. (Corollary to Theorem 1.3 of [6]). Let n∗ := n, if k is odd, and n∗ := n− 1, if k is
even. For p= c log n

nk−1 the following hold forHk(n, p).

• If c< k! then with high probability rankZ/2Z(M(H)) is smaller than n∗.
• If c> k! then with high probability rankZ/2Z(M(H)) is equal to n∗.

We can now give a short proof of Theorem 4.

Proof of Theorem 4. For any matrix m× n matrix M the cokernel of M can be read off of the
elementary divisors ofM, so in particular the free part of coker(M) is Zn−rankQ(M). Moreover the
inequality rankQ(M)≥ rankZ/2Z(M) for M an integer matrix always holds since Mv= 0 over Q
implies that Mv= 0 over Z/2Z. For c< k! by Theorem 17, with high probability the free part of
coker(M(H)) has rank larger than n− n∗. Thus we have the first part of Theorem 4.

For c> k!, we know that rankQ(M(H))≥ rankZ/2Z(M(H))= n∗ asymptotically almost surely,
and trivially rankQ(M(H))≤ n∗. Thus rankQ(M(H))= n∗ in this regime. Thus for k odd, with
high probability coker(M(H)) is finite, and for k even, with high probability coker(M(H))=Z⊕
A for some finite abelian group A. However we know by Theorem 2 that coker(M(H)) is torsion-
free, so we conclude in the odd k case we are left with the trivial group and in the even k case we
are left with Z. �

6. Concluding remarks
The main result here was motivated by the conjecture of Łuczak and Peled about random simpli-
cial complexes described earlier. Based on Theorem 2 it would seem plausible that an adaptation
of the methods here could be used to show that p= ω(1/n) implies thatHd−1(Y) for Y ∼ Yd(n, p)
is torsion-free with high probability.

In another direction, it would be interesting to extend the model forM(H) here to allow for the
nonzero entries to come from a sequence other than 1,−1, 1,−1, . . .. For example, if we instead
defined M(H) by having the nonzero entries all be equal to 1, then clearly 1 is an element of the
kernel ofMT for primes that divide k, but not overQ, and so there would always be k-torsion even
when p= 1. Nonetheless, it seems likely that in this version of the model one could show that for
p= ω(1/nk−1) with high probability there is no torsion other than the torsion which exists in
coker(M(H)) forH the complete k-uniform hypergraph on n vertices, which would be Z/kZ.
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