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REES MATRIX SEMIGROUPS
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In this paper we provide a new, abstract characterisation of classical Rees matrix semigroups over monoids
with zero. The corresponding abstract class of semigroups is obtained by abstracting a number of algebraic
properties from completely 0-simple semigroups: in particular, the relationship between arbitrary elements and
idempotents.
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Introduction

The aim of this paper is to prove a new, abstract characterisation of Rees matrix
semigroups over monoids having regular sandwich matrices.

The motivation for wanting such characterisations is not hard to provide: from their
introduction in the fundamental paper of Rees [15], building on the pioneering work of
Suschkevitch [17], Rees matrix semigroups have established themselves as one of the
most useful semigroup theoretic constructions—as a glance at Meakin's survey article
will verify [14]. Their usefulness lies in providing a technique for constructing new
classes of semigroups from known or simpler classes. The Rees Theorem itself constructs
completely 0-simple semigroups via the Rees construction from groups (see Howie [6,
Theorem III 2.5]).

In looking for abstract characterisations of Rees matrix semigroups, it is natural to
take some defining characteristic of completely 0-simple semigroups and then by
generalisation show how it describes abstractly a class of Rees matrix semigroups. The
two properties (i) and (ii) below were the starting points for abstract characterisations of
Rees matrix semigroups by Steinfeld [16] and Lallement and Petrich [7] respectively:

(i) (Proposition 3.4 [16].) A semigroup S with zero is completely
0-simple iff S has the form S = [jXeASek (el = ex) where the Sex are
pairwise left S-similar 0-minimal left ideals of S.

(ii) (Theorem 4.5 [7].) A semigroup S with zero is completely 0-simple
iff S is regular, (0) is "matriciel" in S and the non-zero classes of the
finest "0-matricielle" congruence are groups.
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24 MARK V. LAWSON

Steinfeld generalised (i) to give an abstract characterisation of the class of Rees matrix
semigroups over monoids with zero having locally regular sandwich matrices. Lallement
and Petrich generalising (ii) characterised Rees matrix semigroups over monoids with
zero adjoined, the sandwich matrix being regular over the group of units of the monoid.

There is, however, a third well-known characterisation:

(iii) (Howie [6, Theorem III 3.5].) A semigroup S with zero is
completely 0-simple iff S is a O-bisimple, regular semigroup in which
every non-zero idempotent is primitive.

Our aim is to characterise Rees matrix semigroups by generalising (iii). We achieve
this by generalising, in the first instance, the class of regular semigroups to a class we
have dubbed "l/-semiabundant". The origin of this class of semigroups lies in the thesis
of El-Qallali [4] and a paper of de Barros [2]: the general theory of such semigroups is
pursued in detail in [11] and [12].

The paper is divided into three sections. In Section 1, we show that a Rees matrix
semigroup has a number of important properties with respect to a distinguished subset
of its idempotents. Sections 2 and 3 are dedicated to showing that these properties
characterise Rees matrix semigroups; Section 2 introduces the class of [7-semiabundant
semigroups and in particular the primitive l/-semiabundant semigroups and we obtain a
number of structural results for this class of semigroups generalising work by Fountain
[5]; in Section 3 we specialise down to a class of primitive [7-semiabundant semigroups
which we call "Rees semigroups"—these, we show, may be coordinatised by Rees matrix
semigroups, obtaining the converse results to those of Section 1. Finally we mention
that the results of this paper may be generalised to incorporate those of Steinfeld
[16]—where Rees matrix semigroups with locally regular sandwich matrices are
considered.

In a subsequent paper [10] we will extend the work of Fountain [5] to obtain a
description of a class of blocked Rees matrix semigroups.

1. Rees matrix semigroups

Let S be a monoid with identity 1 and zero element 0, having group of units G(S). Let
A and / be non-empty sets and let P be a A x /-matrix over S with entries pxi where
(A,/) e A x / . The Rees matrix semigroup M = M°(S; /, A;P) is the set of triples I xSx A
with a zero element 0 adjoined and where we identify all the elements of the form (i, 0, X)
with 0, under a multiplication given by

0 otherwise.

The matrix P is called regular if each row and each column contains an element from
G(S). From now on all Rees matrix semigroups will be assumed to be over a monoid
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REES MATRIX SEMIGROUPS 25

and to have regular sandwich matrices. If aeG{S) we will write a"1 for its group
inverse. We will denote the set of generalised inverses of the element a by V(a), and we
will write a' e V(a). The set of all idempotents of a Rees matrix semigroup will be
denoted by E or E{M).

Define the set of projections of M to be the following,

P(M) = {(',*, A): PxieG(S) and x = pii1} u {0}.

Lemma 1.1. The projections are idempotents and every element of M has a right and
left identity in P{M).

Proof. If (i,p-Xi\X)zP{M) then (i\ p ^ A)Mi\ P* ' PaPa".',-*) = (*, P i \ A). Let
(i,x, A)eM. Since P is regular there exists an invertible element pXi(X) for some i(X)eI
and similarly an invertible pMi)i for some A(i)eA. But then (i, x, A) = (i, x, A) (J(A),

Lemma 1.2. / / (i, pA~-*, A) e P(JW) r/ien,

(i) 0". x, n) (i, Pu', A) = (/, x, /i) iff A = //.

(ii) (i,pli1, A) 0",x, n) = (/,x, n) iff i =; .

Proof. We will prove case (i), case (ii) follows similarly. If (j,x,n)(i,px~i
i,X) = (j,x,n)

then (J,xpllipxil,?,) = {j,x,fi) which implies X=fi.
Conversely, if X = \i then since P(,jP^1 = l we have xpllip~i

l=x so that
i

It is important to note that in general P(M) is a proper subset of £(S). For the
following result we use the (non-standard) notation

R(x) = {aeS:axa = a}.

Lemma 1.3. P(M) = E(M) iff u {R(pXiY- (A,i]eAx/)cG(S)°.

Proof. Note that (i,x,X)eE(M) iff x = 0 or x = xpXix that is xeR{pXi). Let P(M) =
E(M). Let x / 0 and x e u {/?(Pi,-): (A, i) e A x / } . Then x = xpXix for some (A, i) e A x /. But
then (i,x,A)e£(M) so that ( I ' ,X ,A)EP(M) by assumption, giving x = pXi

1. Thus xeG(S).
Conversely, let v {R{pXi}:{X,i)eAx I)<=G(S)° and let (i,x,A)e£(M)\{0}. Then

xeR(Pxi) so that x e G(S) but then x = xpXix implies xpAl = pXix = 1 giving x = pXi
l whence

A unipotent monoid is a monoid with a unique idempotent. It is easy to see that in
such monoids regular elements are invertible. The following is now immediate:

Corollary 1.4. / / S is a unipotent monoid then P(M) = E(M).
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26 MARK V. LAWSON

The previous corollary holds, in particular, for groups and cancellative monoids.
Define two relations L and R on M as follows:

(i, x, k)L(j, y, n) iff (for all e e P) ((i, x, A)e = (i, x, A) iff 0", y, A»)e=(/, y, A*))

£ .jO iff (for all eeP)(e(i,x,k)=(i,x,k) iff eO",3',^) = C/.3',A«))-

It is clear that L and R are equivalence relations on M. In addition, define the
equivalences H = LAR and D = Lv R.

Proposition 1.5. / / (i, x, A), (J, y,n)eM then:

(i) (i, x, k)L(j, y, fx) iff (i, x, k) = (j, y,fi)=O or both elements are non-zero and k = n.

(ii) (i,x, k)R(j, y,n) iff (i, x,k) = (j, y,fi)=O or both elements are non-zero and i =j.

(iii) / / (a, b) e L and x e M and ax, bx # 0 then (ax, bx) e L.

(iv) / / (a ,b)eR and xeM and xa ,xb#0 then (xa,xb)eR.

(v) Eacft L-class and each R-class contains at least one projection.

Proof, (i) By Lemma 1.2 it is clear that if (i,x,k), (j,y,n)^0 then

(i,x,k)L(j,y,n)ifik = n.

Conversely, if (i,x,k) = 0 then (i,x,k) = (i,0,fi). Since 02 = 0 and OeP(Af) and given that
(i,x,k)L{j,y,n) we must have that (j, y, /i)0 = 0',y,n)- But this implies (/,y>A*) = 0- The
proof of (ii) is similar,

(iii) Suppose that (i,x,k), (j,y,k)*O and (i,x,k)L(j,y,k). U(k,z,fi)eM then,

(i, x, k) (fc, z, /j) = (i, xpXkz, fi)

If xpXkz, ypxkZ^O then (i,xpkkz,n)L{j,ypkkz,n) by (i) above.
The proof of (iv) is similar.
(v) By the regularity of P (for each k e A) (there exists i(k) e I) such that

(i(k),PxilX),k)eP(M) thus (i,x,A)I(i(A)ipi(
1

i),A).
We may similarly show that each £-class contains a projection.

Corollary 1.6. / / S is such that for all x,yeS, xy=0 implies x = 0 or y=0 then
M = M°(S; I, A; P) has the following property:

for a,b#0, (a,b)eL and xeM then ax=0 iĵ "bx = 0.

Thus L is a right congruence. Similarly R is a left congruence.
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Proof. We consider the calculation carried out in Proposition 1.5(iii). If (i, xpXkz,ii) =
0 then xpuz = 0 in S. But under our assumption on S this occurs iff x=O or pAk = 0 or
z = 0. By assumption x^O so that either pXk=0 or z = 0 but in each case this implies
0) yPxkz>n) — 0- That L is a right congruence now follows from Proposition l.S(iii).

We will now turn to look more closely at the properties of the set of projections.
If S is any semigroup define preorders of and <w' on £(S) by

eca'f iff/e=e

eco'f iff ef—e.

If P^E(S) we will say that P is closed under basic products if e,feP and
(e,/) G (a/ u cu') u (a/ u a>')": implies efeP. Note that to prove that a subset P is closed
under basic products it is enough to show that for e,feP

(e,/)ea/ implies efeP and (e,f)ea>1 implies fee P.

Proposition 1.7.

(i) The set P(M)\{0} is totally unordered under a>.

(ii) The set P(M) is closed under basic products.

(iii) The elements of P(M)\{0} are all D-related.

Proof, (i) Let ( i ^ U ) , U,P^^)eP\M)\{0} with ,(i,Pul,k)aj{j,prf,n). Then
(J'Pp/'L1) 's a left and right identity for (i,pxi1,^) so that by Lemma 1.2, i = j , and A = ^,
giving Pu^p;/.

(ii) If (/ ,?;/ , MK^Pri1,^) then ((.p^1,^) is a left identity for (j.Pw1. ^) «° t h a t by
Lemma 1.2 we have ;=;". Thus, (i,p~i

1,ii)(i,Pu1,X) = {i,p^lp^Pxi
1,^)={i,pli1,X)eP{M).

A similar result holds for w1.
(iii) Let (i,PA/1,^),0',p^/,n)eP(M)\{0}. Consider the elements (i.pju1,/*) and

\X)- It is easy to check that (i,Pul,n)eV((i,p~i
l,k)). Also, (/.pi;1 ^ i

(i,Px~i\l) and (j,p~}
1 ,X)(i,pl,i,n) = (j,p~}\n). Now apply Proposition II 3.6 of Howie

[6].

The next result shows that local submonoids with respect to projections are of
interest.

Lemma 1.8. / / e e P{M), e * 0 then eMe a S.

Proof. Let e=(i,p^1,A) and define a map 8:S-+eMe by 0(a) = (i,apj"i\^)- It is easy to
check that this is an isomorphism.
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28 MARK V. LAWSON

Lemma 1.9. The semigroup M = M°(S; I, A; P) has the property that L is a right
congruence and R is a left congruence iff for all x, y e S, xy = 0 implies x = 0 or y = 0.

Proof. (<-) By Corollary 1.6.
(->) Let xy = 0 and pueG(S) for some (A, i)eA x /. Then using the notation of Lemma

1.8,

,A) and

Now x = 0 iff xpx,1=0 and y = 0 iff ypxi1 =0. Either (i,xpx~i
1,k)=0=(i,ypx~i

l,k) in
which case x = y = 0 or at least one is non-zero, say (i,xp^-1,A)#0. Then

p7i1.^)- But by assumption L is a right congruence so that

(i, xpu1, X) (i, ypxl, k) L{i, p^1, A) (i, yp^l, k)

thus (i,xypx~ii,k)L(i,ypx~il,k). But (i,xypxi
1,k) = 0 so that 0L(i,yp^1,k). This implies

yPxii=0 giving y = 0.

2. t/semiabundant semigroups

We will now begin the process of showing how the properties we derived for M in the
last section may be used to characterise M. Let S be a semigroup with zero and let
U £ E £ S with 0 e U. Define relations L and R on S depending on U as follows:

(a,b)el iff (for all ee U){ae = aitt be = b)

(a,b)eR iff (for all ee U){ea = a iff eb = b).

It is clear that L and R are equivalences on S. We will see later that these generalise the
relations defined in Section 1. It is straightforward to show that L^L and R^R, where
L and R are the usual Green's relations.

The semigroup 5 is called U-semiabundant if each L-class and each /J-class contains
an element from U. The L (resp. R) equivalence class containing the element a will be
denoted by La (respectively /?J. It will be convenient on occasion to denote an element
of U(La) by a* and an element of U(Ra) by af but it is important to note that these
elements are not generally unique. Define in addition the equivalences:

H = L A R and D = L v R.

A 17-semiabundant semigroup is called primitive if co restricts to equality on t/\{0}.
We will call a semigroup S a Rees semigroup if it satisfies the following conditions:

(i) S is a primitive CZ-semiabundant semigroup.
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(ii) The set U is closed under basic products,

(iii) £/\{0} is contained in a single D-class of S.

We will show that Rees semigroups are precisely the abstract counterparts of Rees
matrix semigroups.

Note. In this section we will often prove results which fall naturally into two
parts—a "left" and a "right". For the most part we will only state and prove one of the
versions, the statement and proof of the other will always follow by interchanging left
and right.

We now turn to look at the relationship between the relations L and R and certain
ideals of S. For the time being S will be a semigroup with a fixed subset U of E{S). A
right ideal / of S is called a U-admissible right ideal if for each ael we have Ra^I.
Similarly we say that / is a U-admissible left ideal if for each ael we have La^/.

In the following lemmas we generalise some results from the theory of abundant
semigroups [5].

Lemma 2.1. The intersection of any family of U-admissible right ideals {Ia:cteJ} is
either empty or a I)'-admissible right ideal.

Proof. Straightforward.

If a e S we define the principal U-admissible right ideal containing a, denoted by R(a),
to be the intersection of all Inadmissible right ideals containing a. Likewise define L(a)
to be the intersection of all V-admissible left ideals containing a. A useful description of
R(a) and L{a) may be obtained as follows:

Lemma 2.2. (i) beR(a) iff there exist elements a o , . . . , a , 1 £ S 1 and elements xu...,xneS
such that a = a0 and b = an and (a^a^^x^eRfor i= \,...,n.

(ii) beL(a) iff there exist elements ao,...,aneSl and elements x 1 , . . . , x n e S such that
a = a0 and b = an and (a,, x,a,-_ j) e L for i = 1 , . . . , n.

Proof. We prove (i) the proof of (ii) is similar. Put I = {beS: b satisfies the conditions
of the lemma}. Now, be I implies there exist ao,...,aneS and xly...,xneSl such that
a = a0, b = an and (aj.a.^x.OeR for i=\,...,n. If a . - . t e ^ a ) then a.-jX.e/^a) since k\d)
is a right ideal. But then ateR(a) since R(a) is a {/-admissible ideal. Since ao = aeR(a)
we see that a,eR(a) for i = 0,...,n, in particular beR(a) and so I^R~(a). If bel then
Rfc£/, for if xRb then (x,M)e£. Also, if seS then bsel since (bs,bs)ek~. Thus / is a
[/-admissible right ideal. Since ael we thus have R(a) = /.

Corollary 2.3. (i) alb iff L(a) =

(n)aRbiffR(a) =

https://doi.org/10.1017/S0013091500028856 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028856


30 MARK V. LAWSON

Proof. We will prove case (i). If (a,b)eL it is clear that L\a) = L\b). Conversely,
suppose that L\a) = L{b). Then beL\a) so that we may find elements, ao,...,aneS and
xu...,xneSl such that, (a{,x{a,_i)EL for i=\ to n where a = a0 and b = an. Let eeU
with ae = a. Then (x,a)e = X!a. But x^aLa^ gives ave = av Continuing in this way we
obtain ane = an that is be = b. We may similarly show that be-b implies ae = a, so that
alb.

Lemma 2.4. Let U££(S). 77ien if eeU the set Se is a U-admissible left ideal and eS
is a U-admissible right ideal.

Proof. It is clear that Se is a left ideal containing e. Let x e Se and let xLy. We have
x = se for some seS so that xe = x. But then ye = y since xLy, so that y = yeeSe.

Corollary 2.5. The semigroup S is U-semiabundant iff for each aeS there exist
elements e,/e U(S) such that,

L\a) = SeandR(d)=fS.

Proof. Suppose that S is [/-semiabundant. Then aLe for some element e e U. Since
ae = a we have a e Se. But L(a) is a left ideal and e e L\a) so that Se £ L(a). But Se is a 17-
admissible left ideal containing the element a whence Se = L\a).

Conversely, suppose that for all a e S there exists e,f e U such that L(a) = Se and
R(a)=fS. Now eeSe and Se is a Inadmissible left ideal so that L\e)zSe. But from
Se^L\e) we have L(e) = Se. This means L\a) = L\e) whence aLe by Corollary 2.3.

Corollary 2.6. Let aeS. Then for eeU we have (a, e)eL iff aeSe and Se is contained
in every left ideal containing a, which is generated by an element of U.

Proof. Let (a,e)eL. Then ae = a giving a6Se. Now let aeSf where feU. Then af=a
so that e/=e whence Se^Sf.

Conversely, let aeSe where ee U and for each feU with aeSf we have Se^Sf. Then
L\a)^Se since Se is a [/-admissible left ideal. Since S is l/-semiabundant, by Corollary
2.5, L\a) = Sf for some feU. But then SesS/=L(a) so that Se = S/ giving (a,e)el.

From now on S will be a primitive [/-semiabundant semigroup in which U is closed
under basic products.

Lemma 2.7. // e,/e 1/ and eS^fS then either e = 0or eS=fS.

Proof. From eS sfS we have e e/S so that fe — e giving e<o'f. By the closure of U
under basic products e/e [/. But efeof, so that by [/-primitivity either e/=0 or e/=/. If
e/=0 then e = e2 =/e/e = 0. If e /= / then eK/ so that eS=fS.

Corollary 2.8 If e^=0 where eeU then aRe iff a # 0 and a e eS.

Proof. Suppose that aRe then ea = a so that aeeS. Conversely, suppose that aeeS.
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Now aRf for some feU so that a efS and fS is contained in any right ideal generated
by an element of U containing a. Whence fS^eS. By Lemma 2.7 either / = 0 which
gives a = 0 contrary to our assumption or fS = eS whence fRe giving afte, where we use
the fact that R £ R.

The following is immediate:

Corollary 2.9. With S as above the R-classes are all of the form eS\{0} for eeU.

We say that a [/-semiabundant semigroup satisfies the congruence condition if L and
R are right and left congruences respectively and that a [/-semiabundant semigroup S
with 0 e U satisfies the weak congruence condition if for all xeS,

(a,b)eL implies that if ax^O and bx^O then (ax,bx)eL

together with the left-right dual for R.
Define the relations r and / by

(a,b)er iff (ax = 0 iff bx = O)

(a,b)e/iff (xa = 0iff xb = O).

Lemma 2.10. The congruence condition holds iff the weak congruence condition holds
and L^r and R^l.

Proof. Let I be a right congruence and let (a,b)eL. Suppose that ax = 0. Then
axLbx but OLbx gives bx = 0. A similar argument shows that bx = 0 implies ax=O. Thus
(a, ft) e l .

Conversely, let (a,b)eL. Then ax=0 iff ftx = 0 since I s r so if ax = 0 then bx=O and
axLbx. If ax#0 then bx#0 so that (ax,bx)eL by the weak congruence condition.

Lemma 2.11. Primitive U-semiabundant semigroups in which U is closed under basic
products satisfy the weak congruence condition.

Proof. If aLb then we need to show that if ac, bc#0 then acLbc for any ceS. Let c
be I-related to / where fell so that Lc=S/\{0} by Corollary 2.9. Since ac#0 and
bc /0 we have ac,beeS/\{0}. But then ac,bceLc whence acLbc.

Lemma 2.12. If x,yeS\{0} and xy^Q then xyeR# n Lr.

Proof. Choose x\,y* then xex|S\{0} by Corollary 2.9 so that xy e *t S n Sy*\{0}
that is xy e R^ n Ly..

We conclude with a result which is somewhat tangential but nevertheless of interest.
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Proposition 2.13. Let S be a primitive U-semiabundant semigroup with U closed under
basic products and satisfying the congruence condition. Then:

(i) Ifx,yeS\{0} choose xty* then yx = 0 iff y*xf = O.
(ii) ft is a congruence.

(iii) fta is either a subsemigroup or ftafta = {0}.

Proof, (i) If x, yeS\{0} then y*xf = O implies y(j>*xt)x=0 so that yx = O. Conversely,
let yx = 0. From the fact that x^Exf and that the congruence condition holds we have
yxRyxf. But then yx = 0 implies yxf = O. Similarly from yLy* we obtain yxfLy*x-f but
yxf = 0 implies y*xf = 0.

(ii) Let x,y,a,beS with xfty and aftb. Then x,yeLf and a,beRe some e,feU. But
xa = 0 iff fe = O iff yb = 0 by (i). iffe^O then xaek~xnLa and ybeRynlb by Lemma
2.12 and since Rx = Ry and La = Lb we have xaftyb.

(iii) Let fta = RenLf where e,feU and let x,yefla. If /<? = 0 then xy = 0 so that
#o#f l = {0}. Otherwise/<?#0 so that xy^O and xyeRxr\Ly = fta by Lemma 2.12.

3. Rees semigroups

In this section we will obtain a Rees matrix representation for Rees semigroups,
thereby obtaining a converse to the results of Section 1. Let S be a [/-semiabundant
semigroup. Define the following subset:

Regu(S) = {aeS: there exist e,fe U such that eLaRf}.

Thus the elements of Regv(S) are regular, but not necessarily all regular elements of 5
belong to Regv(S). If a e ReguiS) then the set Vv(a) = {a' e V(a): a'a,aa'eU}.

Lemma 3.1. (i) In(Keg^S) x KegV(S)) = Ln{(Regv(S) x
(ii) R n (Keg^S) x Regu(S)) = Rn ((Regu(S) x Regv(S)).

Proof. We will prove (i), the proof of (ii) is similar.
Let a,beReg(S) with aLb. We indicated at the beginning of Section 2 that L^L thus

we have aLb.
Now let a,beRegv(S) with aLb. Let a'eVv(a) and i ' eF^i ) . Then a(a'a) = a implies

b(a'a) = b since a'a e [/. Similarly, b(b'b) — b implies a{b'b) = a whence aLb.

Note that the previous lemma holds in particular for elements of U. Define a relation
D on S as follows:

(a,b)eD iff there exist elements a*, af, 6*, if such that (a*,b*)eD and (af, fcf) e £•

Lemma 3.2. The relation D is an equivalence relation with D^D.
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Proof. Straightforward.

Lemma 3.3. Let S be U-semiabundant. If each H-class of S contains an element of
yiS) then:

D=D=LoR=RoL

Proof. Let (a,b)eD. Then there exist elements a{ (1 ^ i g n) such that,

aLalRa2...LanRb.

Choose a\\e ffa,,n Regv(S) (1 g i^n) so that

ala\Ra'2...La'nRb.

But by Lemma 3.1 we have aLa\Ra'2...La'nRb. But a\Ra'2... La'n implies a\Da'n so there
exists ceS such that a\LcRa'n whence aLcRb giving (a,b)eLoR. But LoRc/5 thus
D = LoR. By symmetry D = RoL.

Now let (a,b)eD then (a,b)eLoR so by a similar argument we may find an element
ceRegv(S) so that aLcRb. Now, a*Latc so a*Lc. Similarly b*Rc. Whence (a*,b*)eD.
Likewise (af,b-\)eD giving {a,b)eD so we have DsD. By Lemma 3.2, DsD which
gives D = D as required.

The above lemma is a generalisation of a result of Asibong's [1] from the theory of
abundant semigroup.

Lemma 3.4. / / l/\{0} is contained in a single D-class then Regv(S) intersects each
fl-class non-trivially.

Proof. Let aeS. Then kRath for some k,heU\{0}. Now (k,h)eD so by Howie [6,
Theorem II 3.5] there exists c and c'e V(c) such that c'c = h, cc' = k with cef}a. But then
ceRegu(S).

Lemma 3.5 In a primitive U-semiabundant semigroup with U closed under basic
products eSe = H° for all e e U\{0}.

Proof. Clearly H°^eSe. Let xeeSe with x#0. Then ex = x = xe. Now xLf for some
feU, but xe = x impliesfe=f The set U is closed under basic products so that efeU
and ef a> e. Whence e/ = 0 o r e / = e . If e/ = 0 then
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O = x(ef)=(xe)f=xf=x

contrary to our choice of x. Therefore we must have ef=e. Since fe=f we have eLf
giving xLe from the fact that L^L. We may similarly show that xRe. Thus we have
xHe as required.

We now come to our main result.

Theorem 3.6. Let S be a Rees semigroup (with respect to U). Then S is isomorphic to
a Rees matrix semigroup M°(T;I;A; P) where T is a monoid with zero and P is a
A x I-matrix such that each row of P and each column contains at least one invertible
element from T. Under the isomorphism U is mapped bijectively onto P(M).

Proof. Index the non-zero /{-classes by a set / and the non-zero L-classes by a set A
with / n A = {l}.

Let eeU\{0} then eSe is a monoid with zero and identity e. Put T=eSe. Note that
by Lemma 3.5, eSe = fi°e.

In following the proof, it may be useful to draw a (generalised) eggbox diagram of S,
with the /^-classes being represented by the rows and the Zrclasses being represented by
the columns, the intersection of the rows and the columns are precisely the ^-classes.
We label He = H11. The //-classes of Le are labelled Hn(iel) and the //-classes of Re are
labelled HIX (AeA). By Lemma 3.4, each //-class contains an element from Regv(S),
pick qxeHlxr\Regv(S) and r , e / / n r\Regv(S). If xeS then lx and px will denote
respectively left and right multiplication by the element x. We will show that the maps
Ari-.He-*Hn and pqx:Hn-*HiX are well-defined bijections. We prove this for the map krt

the proof for pqx is similar.
We begin by showing that the map Ar, is well defined. Let feU such that fR~r(. Then

we may choose (by Howie [6, Theorem II 3.5]) rje Vv(rt) such that r ,r |=/ and r'f^e. If
xHe then r,x#0, for if r,x = 0 then r|rjX = 0 whence ex = O. But ex = x so that x=0,
contradicting our choice of x. We also have that r,e#0 for r,e = r,^0. Since both r.x^O
and r,c#0 and x/?e we may apply the weak congruence condition and obtain
rixRrie = ri. We may similarly show that r,xLex = x. Thus we obtain riXeHn as
required.

The map Ar, is one-to-one, for if x,yeHe and rix = riy then r'SiX^r'sty giving ex = ey
whence x = y.

The map Xri is onto for if deHn then dkf so that by the weak congruence condition
r'jdRr'if = r'i since rjd, r | / / 0 . Also r'Xf so r>

idLfd = d since r'td,fd^0. This means that
r'ideHe. Furthermore ri(r'id) = d since fd = d.

Now define a A x/-matrix P = (pXi) over eSe by putting pXi = qxri. Note that by
Lemma 2.12 either qxr~0 or qxrteRqxr> Lr. = Hl{. In either case pXieeSe. We need to
show that for each iel there exists AeA such that qxrt is invertible in eSe. Since S is
[/-semiabundant there exists / e U such that fRrt and we suppose fLqx some AeA. By
Howie [6, Theorem II 3.5] there exists q'xe V(qx)n Hr. and there exists r'ieV{ri)n>Hqx

such that
Qx<l'x = e, q'tfx=f, r'j^e and r/^f.

Note first that qxr{¥=0, for ^^^ = 0 implies q'xqxri = O, that is /r, = 0 so that r, = 0 a
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contradiction. Thus we have q^jeHn. Similarly r j ^ e ^ n - It is straightforward to
check that the element r\q\ is the (group) inverse of qxr( in eSe so that pXi is invertible.

We may similarly show that for each <leA there exists iel such that the element qxrt

is invertible.
Thus far we have shown, in particular, that M°(T;I, A;P) is a Rees matrix semigroup

where P is regular.
We may now define a map 0:S->M°{T;I,A;P) by putting 0(0)=0 and if s is a

non-zero element, where seHiX and xeHe is the unique element such that rtxqx = s, then
define 0(s) = (i, x, X). It is clear that 0 is a bijection and easy to check that it is a
homomorphism.

Finally note that (6\U): U-+P(M), for if feftanU then ri(r'iq'x)qx=f2 so that
\

Corollary 3.7.

0{Reg(J(S)) = I xG(eSe)°x A.

Proof. Let reRcg^S) with JjKrLg where h,geU and let 0(r) = (i,x,A) so that
r = rixqx. By Howie [6, Theorem II 3.5] we may find inverses r'eV(r), q'xeV(qx) and
r;-eK(r,)such that

n' = h, r'r = g, r{r\ = h, r'f^e, qxq'x = e and q'xqx=g.

It is easy to check that x = r\rq'x and that it has the (group) inverse qxr'ri in eSe.
Now let x be invertible in eSe with inverse x~l. Then the element rtxqx for any r, and

<jA belongs to Regu(S): for choosing q'x and rj as above (with r replaced by rtxqx) it is
straightforward to check that q^x'^'jS Vu(rixqx).

Corollary 3.8. The matrix P has the property that every non-zero entry is invertible iff
Regu(S) is a subsemigroup of S.

Proof. If all non-zero entries of P are invertible and (i,x,A), (j,y,(i)eRegu{9(S)) then
by the previous corollary x and y are invertible in eSe. Also pXj=0 or is itself invertible
so that in either case xpXjyeG(eSe)° whence (i,x,X)(j,y,fi)eRegv(S)). Thus Regv{S) is a
subsemigroup of S.

Conversely suppose that Regv(S) is a subsemigroup and let qxrt^Q. Then
qxrtfeRegy(S) and qxrteeSe so that qxrieHe whence qxrtHe by Lemma 3.1. Thus. qxr( is
invertible.

The following corollary is now immediate from Corollary 3.8 and Lemma 1.9.

Corollary 3.9. (i) A Rees semigroup is isomorphic to a Rees matrix semigroup over a
monoid with zero adjoined iff it satisfies the congruence condition.

(ii) A Rees semigroup is isomorphic to a Rees matrix semigroup over a monoid with zero
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adjoined and in which every non-zero entry of P is invertible iff it satisfies the congruence
condition and Regv(S) is a subsemigroup.

The semigroups S of Corollary 3.9 (ii) may characterised as follows: S is a semigroup
with zero 0 having a subsemigroup T which is completely O-simple (with OeT)
furthermore S is £(T) —semiabundant and satisfies the congruence condition (or
equivalently eSe is a semigroup with zero adjoined for some non-zero element eeE(T)).
This provides an alternative characterisation of the semigroups of Theorem 3.4 [8].

A [/-semiabundant semigroup S is called reduced if of = wl on U.

Lemma 3.10. Let S be U-semiabundant with U closed under basic products. Then S is
reduced iff each L-class and each R-class contains a unique element from U.

Proof. Let S be reduced and suppose that eLf where e,f e U. By Lemma 3.1 eLf so
that ef=e and/e=/. But ef = e iff eco'f. By assumption this gives ecff, that \sfe = e. But
then e=fe=f.

Conversely let each L-class and each /H-class contain a unique element from U. If
e,f e U with ecff then ef e U, since U is closed under basic products and efRe. But this
implies ef Re, so that ef = e whence eco'f. The inclusion in the other direction is similar.

The following is immediate:

Lemma 3.11. A Rees matrix semigroup is reduced iff each row and each column of P
contains a unique invertible element.

To conclude this section we give some well-known results in terms of our approach:

Proposition 3.12. Let S be a Rees semigroup with eeU\{0} then,

(i) S is abundant iffeSe is abundant.
(ii) S is regular iffeSe is regular.

(iii) S is inverse iff S is reduced, eSe is inverse and Regu(S) is a subsemigroup.

Proof, (i) Proposition 2.11 and Lemma 2.10 [9].
(ii) Theorem 4 (13].
(iii) Theorem 6 [13].

Finally we note that the results of this paper may be generalised to incorporate the
results of Steinfeld [16]. A special case of this more general result extends that obtained
by Batbedat and Reilly [3]: they consider square Rees matrix semigroups over monoids
with zero adjoined having locally regular sandwich matrices.
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