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Geometric Study of Minkowski Differences
of Plane Convex Bodies

Yves Martinez-Maure

Abstract. In the Euclidean plane R
2, we define the Minkowski difference K−Lof two arbitrary convex

bodies K, L as a rectifiable closed curve Hh ⊂ R
2 that is determined by the difference h = hK − hL

of their support functions. This curve Hh is called the hedgehog with support function h. More

generally, the object of hedgehog theory is to study the Brunn–Minkowski theory in the vector space of

Minkowski differences of arbitrary convex bodies of Euclidean space R
n+1, defined as (possibly singular

and self-intersecting) hypersurfaces of R
n+1. Hedgehog theory is useful for: (i) studying convex bodies

by splitting them into a sum in order to reveal their structure; (ii) converting analytical problems into

geometrical ones by considering certain real functions as support functions. The purpose of this paper

is to give a detailed study of plane hedgehogs, which constitute the basis of the theory. In particular: (i)

we study their length measures and solve the extension of the Christoffel–Minkowski problem to plane

hedgehogs; (ii) we characterize support functions of plane convex bodies among support functions

of plane hedgehogs and support functions of plane hedgehogs among continuous functions; (iii) we

study the mixed area of hedgehogs in R
2 and give an extension of the classical Minkowski inequality

(and thus of the isoperimetric inequality) to hedgehogs.

1 Introduction

The set Kn+1 of convex bodies of (n + 1)-Euclidean vector space R
n+1 is usually

equipped with Minkowski addition and multiplication by non-negative real num-

bers which are respectively defined by:

∀(K, L) ∈ (Kn+1)2, K + L = {u + v | u ∈ K, v ∈ L};
∀λ ∈ R+, ∀K ∈ Kn+1, λ.K = {λu | u ∈ K}.

Of course, (Kn+1, +, . ) does not constitute a vector space since we cannot subtract
convex bodies in Kn+1. Now, in the same way as we construct the group of integers
from the set of natural numbers, we can construct the real vector space (Hn+1, +, . )

of formal differences of convex bodies of R
n+1 from (Kn+1, +, . ). Then the so-called

theory of hedgehogs consists in considering Kn+1 as a convex cone of this vector space
(Hn+1, +, . ). More precisely, it consists in: (i) considering each formal difference of
convex bodies of R

n+1 as a (possibly singular and self-intersecting) hypersurface of

R
n+1 called a hedgehog; (ii) extending the mixed volume V : (Kn+1)n+1 → R to a sym-

metric (n + 1)-linear form on Hn+1; (iii) considering the Brunn–Minkowski theory
in Hn+1. For n ≤ 2, this idea goes back to a paper by H. Geppert [3] who intro-
duced hedgehogs under the German names stützbare Bereiche (n = 1) and stützbare

Flächen (n = 2), in an attempt to extend certain parts of the Brunn–Minkowski the-
ory. Later and independently, R. Langevin, G. Levitt and H. Rosenberg [7] gave a
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study of hedgehogs with a C2 support function in which hedgehogs are seen as en-

velopes parametrized by their Gauss map. The author has been working at developing

this hedgehog theory since 1985 [8–22].

The relevance of this theory can be illustrated by the following two principles:
(1) to study convex bodies by splitting them judiciously (that is, according to the

problem under consideration) into a sum of hedgehogs in order to reveal their struc-
ture; (2) to convert analytical problems into geometrical ones by considering certain
real functions on the unit sphere S

n of R
n+1 as support functions of hedgehogs (or of

“multi-hedgehogs” [7]). The first principle permitted us to invalidate an old conjec-

tured characterization of the 2-sphere [15] and the second one to give a geometrical
proof of the Sturm–Hurwitz theorem [21]. The reader will find a short introduc-
tion to the theory in [17]. For an elementary survey of hedgehogs with a C2 support
function, we refer the reader to [19].

In hedgehog theory, plane hedgehogs (i.e., Minkowski differences of convex bod-
ies of R

2) play an important role for at least three reasons: (1) the theory is of course
easier in dimension 2 than in higher dimensions, so that it is often convenient to

consider the case of plane hedgehogs first; (2) general hedgehogs (i.e., Minkowski
differences of arbitrary convex bodies of R

n+1) are defined by induction on the di-
mension, replacing support sets by support hedgehogs (see below), so that it is often
necessary to consider first the case of plane hedgehogs; (3) a classical type of proof

in the theory consists in proceeding by induction on the dimension by means of or-
thogonal projections, see for instance [8, 10, 13, 15, 16].

The purpose of this paper is to give a detailed study of hedgehogs of R
2, defined

geometrically as Minkowski differences of arbitrary convex bodies of R
2.

In Section 2, we shall define geometrically general hedgehogs of R
n+1 as Minkow-

ski differences of arbitrary convex bodies of R
n+1. This definition makes clear that a

good understanding of plane hedgehogs is a prerequisite to a study of general hedge-
hogs of R

n+1. However, Section 2 may be omitted in a first reading.

In Section 3, we shall see that plane hedgehogs can always be seen as rectifiable
closed curves having exactly one co-oriented support line in each direction. Every

h ∈ C2(S
1; R) defines a hedgehog Hh ⊂ R

2 that can be seen as the envelope of the
family of co-oriented lines with equation 〈x, u〉 = h(u), (u ∈ S

1). Note that it is
still possible to associate such an envelope Hh to every h ∈ C1(S

1; R) but it generally
cannot be interpreted as a difference of two plane convex bodies when h is only of

class C1. Such “hedgehogs” can even be fractal curves, that is, nowhere differentiable
curves of infinite length, as we shall recall at the end of the section.

In Section 4, we shall study length measures and areas of hedgehogs of R
2. The

area measure of order 1 of a convex body K ⊂ R
2 (that is, the length measure of its

boundary ∂K) is defined as a (positive) Borel measure S1(K, . ) on S
1, see [24, §4.3].

Recall that S1 is Minkowski linear, that is S1(λK+µL, . ) = λS1(K, . )+µS1(L, . ), for
all (K, L) ∈ (K2)2 and (λ, µ) ∈ R

2
+. By considering K2 as a convex cone of H2, this

notion of length measure can be extended by linearity to hedgehogs of R
2; the length

measure of a hedgehog Hh ⊂ R
2 is then a (possibly signed) Borel measure lh on S

1.
In the same way, the area of a hedgehog Hh ⊂ R

2 will be defined as an algebraic
area in order to extend the mixed area A : K2 × K2 → R, (K, L) 7−→ A(K, L) to a
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symmetric bilinear form a : H2 × H2 → R. Of course, (algebraic) length measures
and (algebraic) areas will be interpreted and studied from a geometrical point of view.

On the way, we shall prove that plane hedgehogs are determined up to transla-
tions by their length measure (which solves the Christoffel–Minkowski problem for

plane hedgehogs). Moreover, we shall characterize support functions of plane convex
bodies among support functions of plane hedgehogs and support functions of plane
hedgehogs among continuous functions.

In Section 5, we shall give an extension of the classical Minkowski inequality (and
thus of the isoperimetric inequality) to hedgehogs.

In Section 6, we shall notice that hedgehogs of R
2 do not only constitute a real vec-

tor space (H2, +, . ) but also a commutative and associative R-algebra (H2, +, . , ∗),
where ∗ is given by the convolution product of support functions. This convolution

product was introduced and studied by H. Görtler in [4, 5].

2 Genesis of Hedgehogs as Differences of Arbitrary Convex Bodies

Let us see how we can define geometrically general hedgehogs of R
n+1 as differences of

arbitrary convex bodies. To this aim, let us recall some basic facts about convex bodies
of R

n+1. (1) Every convex body K ⊂ R
n+1 is determined by its support function

hK : R
n+1 → R, u 7→ max{〈x, u〉 | x ∈ K} (which is convex and thus continuous

on R
n+1); note that hK(u) can be interpreted as the signed distance of the support

hyperplane with outer normal vector u from the origin (hK(u) < 0 if and only if u

points into the open halfspace containing the origin). (2) For u ∈ S
n, the support

set of K with normal vector u is defined as the intersection of K with its support
hyperplane with normal vector u, that is by Ku = {x ∈ K | 〈x, u〉 = hK(u)}.

Note that Ku = {hK(u)u} + Ku, where Ku is the convex body of the n-dimensional
subspace of R

n+1 that is orthogonal to u, say u⊥, with support function h ′
K

(u; v) =

limt↓0[hK(u + tv) − hK(u)]/t . (3) The boundary of K is constituted of the union

of all its support sets Ku, where u ∈ S
n. For more details, we refer the reader to the

book by R. Schneider [24].

Our definition of general hedgehogs is based on the three following remarks.

(1) In R, every convex body K is determined by its support function as the seg-
ment [−hK(−1), hK(1)], where −hK(−1) ≤ hK(1), so that the difference K − L

of two convex bodies K, L can be defined as an oriented segment of R: K − L :=
[−(hK − hL)(−1), (hK − hL)(1)]. (2) If K and L are two convex bodies of R

n+1,

then for all u ∈ S
n, their support sets Ku and Lu can be identified with convex bodies

Ku and Lu of the n-dimensional Euclidean vector space u⊥ ≃ R
n. (3) Addition of two

convex bodies K, L ⊂ R
n+1 corresponds to that of their support sets with same nor-

mal vector: (K+L)u = Ku +Lu for all u ∈ S
n; therefore, the difference K−L of two

convex bodies K, L ⊂ R
n+1 must be defined in such a way that (K−L)u = Ku −Lu

for all u ∈ S
n.

A natural way of defining geometrically general hedgehogs as differences of arbi-
trary convex bodies is therefore to proceed by induction on the dimension by extend-
ing the notion of support set with normal vector u to a notion of support hedgehog with

normal vector u.
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Figure 1

Notations and Definitions

Let Kn+1 be the set of support functions of convex bodies of R
n+1 and let Hn+1 be the

subspace spanned by Kn+1 in the real vector space of continuous real functions on
R

n+1. (Note that Hn+1 can be identified with the real vector space of formal differ-
ences of convex bodies of R

n+1.) To any h ∈ Hn+1 we associate a geometric realization

by induction on n + 1 ∈ N. For any h ∈ H1, we define the hedgehog with support
function h as the oriented segment Hh = [−h(−1), h(1)]. Given n ≥ 1, we assume
that the notion of hedgehog with support function h ∈ Hk has already been defined
for k = n. Then for any h ∈ Hn+1, we associate to each u ∈ S

n the hedgehog Hu
h of

u⊥ with support function h ′(u; v) = limt↓0[h(u + tv) − h(u)]/t . We denote by Hh

and call the hedgehog with support function h, the datum of all the support hedgehogs
Hu

h = {h(u)u} + Hu
h , where u ∈ S

n.

3 Construction of Plane Hedgehogs From Their Support Function

As we saw in Section 2, (1) the set K2 of support functions of convex bodies of R
2

spans a subspace H2 in the vector space of continuous real functions on R
2: H2 =

{hK−hL | (hK, hL) ∈ K2×K2}. (2) Each h = hK−hL ∈ H2 is the support function

of a hedgehog Hh, which can be seen as the geometrical realization of the formal
difference K − L. (3) This hedgehog Hh is obtained by associating to each u ∈ S

1,

the oriented segment σh(u) = {h(u)u} + [−h ′(u;−u⊤), h ′(u; u⊤)], where u⊤ ∈ S
1

is the unit vector such that (u, u⊤) is a direct orthonormal frame of R
2, which we

assume equipped with the standard orientation. Let us illustrate this definition of
plane hedgehogs as Minkowski differences of plane convex bodies by a very simple

example.

Example 3.1 Let K and L be the convex bodies of R
2 with support function

hK(x) = |〈x, e1〉| + |〈x, e2〉| and hL(x) = |〈x, e3〉| + |〈x, e4〉|, where 〈 · , · 〉 is the
standard inner product on R

2, (e1, e2) the canonical basis of R
2 and e3, e4 ∈ R

2 the

vectors defined by e3 =
1√

2
(e1 + e2) and e4 =

1√
2
(e1 − e2). These convex bodies

are two squares whose formal difference K − L can be realized geometrically as the
hedgehog with support function h = hK − hL as represented in Figure 1.
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Figure 2

In this section, we shall reformulate this construction of plane hedgehogs and we
shall observe that they can be seen as oriented rectifiable closed curves of R

2. But
before that, let us recall some basic facts on the particular case of hedgehogs whose

support function is of class C2 on the unit circle S
1, see for instance [13].

Let h : R
2 → R be a function whose restriction to S

1 is of class C2. Then,

(i) The function h defines a plane hedgehog Hh, that is h ∈ H2.
(ii) This hedgehog Hh can be seen as the envelope of a family of co-oriented lines

having exactly one co-oriented support line with a given unit normal vector (see

Figure 2(a), which shows the case where h(x1, x2) = x2
1−x2

2). More precisely, the
hedgehog Hh is the envelope of the family of lines with equation 〈x, u〉 = h(u),
where u ∈ S

1.
(iii) This envelope Hh admits a natural parametrization, namely the map xh : S

1 →
R

2, u(θ) = (cos θ, sin θ) 7→ xh(θ) = p(θ) u(θ) + p ′(θ) u ′(θ), where p(θ) =

h(u(θ)). Indeed, xh(θ) is the unique solution of the system

〈x, u(θ)〉 = p(θ),

〈x, u ′(θ)〉 = p ′(θ),

for all θ ∈ J = [0, 2π[. Note that xh can be interpreted as the inverse of the
Gauss map in this sense that at each regular point xh(u) of Hh, u is a normal
vector to Hh.

(iv) The algebraic area of Hh can be defined as the integral

a(h) =

∫

R2−Hh

ih(x) d£(x),

where ih(x) is the winding number of Hh around x and £ the Lebesgue measure

on R
2. The winding number ih(x) can also be seen as the algebraic intersection

number of almost every oriented half-line with origin x with Hh equipped with
its transverse orientation (this number is independent of the oriented half-line
for an open dense set of directions).

https://doi.org/10.4153/CJM-2006-025-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-025-x


Geometric Study of Minkowski Differences of Plane Convex Bodies 605

Let us recall that a convex body K ⊂ R
n+1 is said to be of class C2

+ if its bound-
ary ∂K is a C2-hypersurface of R

n+1 with positive Gauss curvature. Every hedgehog

Hh ⊂ R
n+1 with support function h ∈ C2(S

n; R) can be seen as a difference of two
convex bodies of class C2

+ since h + r is the support function of a convex body of class
C2

+ for every sufficiently large positive real number r.

Example 3.2 If p(θ) = sin 3θ (see Figure 2(b)) the algebraic area of Hh is equal to
−4π, i.e., to −2 area(D), where D is the domain delimited by Hh. The minus sign
comes from the fact that D is concave at the regular points of its boundary and the
factor 2 from the fact that the parametrization describes the curve twice.

Let us recall how the boundary of a plane convex body K ⊂ R
2 is determined by

its support function h = hK : R
2 → R. Its boundary, say ∂K, is constituted of the

union of all its support sets Ku = {x ∈ K | 〈x, u〉 = hK(u)}, where u ∈ S
1:

∂K =

⋃

u∈S1

Ku.

For every u ∈ S
1, the convexity of h : R

2 → R implies the existence of

h ′(u; v) = lim
t↓0

h(u + tv) − h(u)

t
,

for all v ∈ R
2 (cf. [24, Remark 1.5.3]) and h ′(u; · ) is the support function of the

support set with normal vector u [24, Theorem 1.7.2], so that

Ku = {x ∈ R
2 | ∀v ∈ R

2, 〈x, v〉 ≤ h ′(u; v)}.

Now, let us see the support function h as a 2π-periodic function p on R: p(θ) =

h(u(θ)), where u(θ) = (cos θ, sin θ). The left derivative p ′
l and the right derivative

p ′
r of p are everywhere defined on R and they are respectively given by p ′

l (θ) =

−h ′(u(θ);−u ′(θ)) and p ′
r (θ) = h ′(u(θ); u ′(θ)). The calculation gives

h ′(u(θ); α u(θ) + β u ′(θ)) = α p(θ) + ε β h ′(u(θ); ε u ′(θ)),

where ε = sgn(β). Thus ∀θ ∈ J = [0, 2π[,

Ku(θ) = {x ∈ R
2 | ∀v ∈ R

2, 〈x, v〉 ≤ h ′(u(θ); v)}

= {x ∈ R
2 | ∃ t ∈ [p ′

l (θ), p ′
r (θ)], x = p(θ)u(θ) + t u ′(θ)}.

Therefore, the boundary of K is constituted of the union of all the segments
σh(θ) = [x−h (θ), x+

h (θ)], (θ ∈ J = [0, 2π[), where x−h (θ) = p(θ)u(θ) + p ′
l (θ)u ′(θ)

and x+
h (θ) = p(θ )u(θ) + p ′

r (θ)u ′(θ):

∂K =

⋃

θ∈ J

σh(θ).

Recall that this boundary ∂K is a rectifiable simple closed curve. Let us begin by
proving that for any h ∈ H2, the segments σh(θ) = [x−h (θ), x+

h (θ)], (θ ∈ J), are well
defined and still constitute a rectifiable (but not necessarily simple) closed curve. The
proof is based on the following proposition.
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Proposition 3.3 For every h ∈ H2, the following four properties are satisfied:

(i) the function p = h ◦ u, where u(θ) = (cos θ, sin θ), is Lipschitzian on R;

(ii) the function p admits a left derivative p ′
l (resp., a right derivative p ′

r ) that is con-

tinuous from the left (resp., from the right) on R, and we have

∀θ ∈ R, p ′
l (θ) = lim

α→θ−
p ′

r (α) and p ′
r (θ) = lim

α→θ+

p ′
l (α);

(iii) the family ((p ′
r − p ′

l )(θ))θ∈ J=[0,2π[ is absolutely summable;

(iv) the functions p ′
l and p ′

r are of bounded variation on I = [0, 2π].

Sketch of the Proof It is sufficient to check the result for h ∈ K2. Let us continue
with the function h = hK and with the notations we introduced above.

(i) Property (i) follows from the convexity of h, cf. [24, Theorem 1.5.1].
(ii) As hθ(t) = h(u(θ) + t u ′(θ)) is convex on R, hθ admits a left derivative (hθ) ′l

that is continuous from the left and a right derivative (hθ) ′r that is continuous from
the right and such that (hθ) ′l ≤ (hθ) ′r , cf. [24, Theorem 1.5.2]. Property (ii) follows
by expressing (hθ) ′l and (hθ) ′r in terms of the functions p, p ′

l and p ′
r .

(iii) Property (iii) results from the fact that ∂K is a rectifiable simple closed curve
that is constituted of the union of all the segments σh(θ) = [x−h (θ), x+

h (θ)], (θ ∈ J =

[0, 2π[), the relative interiors of which are pairwise disjoint.
(iv) As for every increasing sequence (θi)i≥0 of I, the segments σh(θi) are placed

in the increasing order of subscripts on the anticlockwise oriented curve ∂K, it also
follows that x−h and x+

h are of bounded variation on I. Using (i), we then deduce that
the maps p ′

l u ′ and p ′
r u ′ are also of bounded variation on I. Noting that the functions

p ′
l and p ′

r are necessarily bounded, we at last deduce Property (iv).

Given any function h in H2, let us consider the union of all the segments σh(θ) =

[x−h (θ), x+
h (θ)], (θ ∈ J = [0, 2π[). These segments, which are well defined from

property (ii), make up the image of the map

xh : Dxh
→ R

2, (θ, t) 7→ p(θ)u(θ) + tu ′(θ),

where u(θ) = (cos θ, sin θ) and p(θ) = h(cos θ, sin θ) for all θ ∈ R and where
Dxh

= {(θ, t) ∈ J × R | (t − p ′
l (θ))(t − p ′

r (θ)) ≤ 0} ∪ {(2π, p ′
l (2π))}. Note that the

points A = (0, p ′
l (0)) and B = (2π, p ′

l (2π)) satisfy xh(A) = xh(B).
Let us show how xh(Dxh

) can be seen as a closed curve of R
2. To this aim, let us

equip the set Dxh
with the metric defined by

d((θ1, t1), (θ2, t2)) =

{
|t1 − t2| if θ1 = θ2,

θ j − θi + |p ′
r (θi) − ti | + s(θi , θ j) + |t j − p ′

l (θ j)| if θi < θ j ,

where s(θi , θ j) =
∑

θi<α<θ j
|(p ′

r − p ′
l )(α)|, cf. property (iii).

Let us observe that this metric is such that

(i) the map dh : Dxh
→ R, M 7→ d(A, M) is an isometry from Dxh

onto Ih = [0, Fh],
where Fh = dh(B) = 2π +

∑
θ∈ J |(p ′

r − p ′
l )(θ)| (there is no particular difficulty

in proving this point);
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(ii) The map xh is continuous on Dxh
(reduce this point to the continuity of Dxh

→
R, (θ, t) 7→ t and make use of property (ii)).

This allows us to define the map

γh = xh ◦ d−1
h : Ih → R

2, λ 7→ xh(θ(λ), t(λ)),

where (θ(λ), t(λ)) = d−1
h (λ), and to assert that it is continuous and such that

γh(Ih) = xh(Dxh
). The curve of R

2 that it defines is closed since xh(A) = xh(B)
and we can state the following.

Theorem 3.4 For every h ∈ H2, the map γh : Ih → R
2 defines a closed curve of R

2

whose geometric realization γh(Ih) is the union of the segments σh(θ) = [x−h (θ), x+
h (θ)],

(θ ∈ J = [0, 2π[).

Definition 3.5 For every h ∈ H2, the closed curve of R
2 that is defined by

γh : Ih → R
2 is denoted by Hh and called hedgehog with support function h. Regular

parts of Hh are assumed to be equipped with the transverse orientation for which the
unit normal at γh(λ) = xh(θ(λ), t(λ)) is u(θ(λ)). For all θ ∈ J, the oriented segment
σh(θ) = [x−h (θ), x+

h (θ)] is called support hedgehog of Hh in direction u(θ).

Theorem 3.6 For every h ∈ H2, the hedgehog Hh is a rectifiable curve of R
2. Let us

denote its length by L(h). This length satisfies the inequality

L(h) ≥
∫ Fh

0

‖γ ′
h(λ)‖ dλ,

where ‖ · ‖ is the Euclidean norm on R
2.

Proof Given any partition σ = (λ0, . . . , λn) of Ih = [0, Fh], let L(σ, h) denote the
sum

n−1∑

i=0

‖γh(λi+1) − γh(λi)‖ =

n−1∑

i=0

‖xh(θ(λi+1), t(λi+1)) − xh(θ(λi), t(λi))‖.

Recall that the length of Hh can be defined by

L(h) = sup
σ

L(σ, h),

where the supremum is taken over all partitions of Ih. By definition, the curve Hh

is rectifiable if and only if it has a finite length (which means analytically that the
components of γh : Ih → R

2 are functions of bounded variation on Ih). In this case,
the derivative γ ′

h exists almost everywhere on Ih and the inequality

L(h) ≥
∫ Fh

0

‖γ ′
h(λ)‖ dλ
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holds. Consequently, it suffices to prove the existence of some real constant C such
that L(σ, h) ≤ C for every partition σ of Ih. Put u(θ) = (cos θ, sin θ) and p(θ) =

h(u(θ)) for all θ ∈ R. Writing p(α)u(α) − p(β)u(β) under the form p(α)(u(α) −
u(β)) + (p(α) − p(β))u(β) and noting that (θ(λi))n

i=0 is an increasing sequence of I,
we get at once

(A)

n−1∑

i=0

‖p(θ(λi+1))u(θ(λi+1)) − p(θ(λi))u(θ(λi))‖ ≤ 2π(ph + qh),

where ph = supθ∈I |p(θ)| and where qh is the best Lipschitz constant of p : R → R.

Similarly, we get

(B)

n−1∑

i=0

‖t(λi+1)u ′(θ(λi+1)) − t(λi)u ′(θ(λi))‖ ≤ 2πth +

n−1∑

i=0

|t(λi+1) − t(λi)|,

where th = sup({|t| | ∃θ ∈ I, (θ, t) ∈ Dxh
}). Besides, using properties (iii) and (iv)

we get

sh := sup
σ

n−1∑

i=0

|t(λi+1) − t(λi)| < +∞,

where the supremum is taken over all partitions of Ih. As L(σ, h) is less than or equal
to the sum of left-hand sides of inequalities (A) or (B), we now conclude that we can
take C = 2π(ph + qh + th) + sh.

Remark 3.7 For every h ∈ H2, let Xh : [0, L(h)] → Hh ⊂ R
2, s 7→ Xh(s) =

(X1
h(s), X2

h(s)) be the parametrization by arclength of Hh (for which the length of
every subarc Xh : [0, L] → Hh (0 ≤ L ≤ L(h)) is equal to L).This parametrization
Xh = (X1

h, X2
h) is such that X1

h and X2
h are absolutely continuous (and thus almost

everywhere differentiable) on [0, L(h)], and there exists an increasing map s 7→ θs

of [0, L(h)] into J such that, for almost every s ∈ [0, L(h)], Xh(s) ∈ σh(θs) and
X ′

h(s) = εh(s)u ′(θs), where εh(s) ∈ {−1, 1}.

Note that the length of Hh can be interpreted in terms of the 1-dimensional (outer)
Hausdorff measure Λ1 in R

2:

L(h) =

∫

R2

nh(x) dΛ1(x)

where nh(x) is the number of λ ∈ [0, Fh] such that γh(λ) = x, see [23, pp. 125–126].

Remark 3.8 In definitions and results following Proposition 3.3, we can replace H2

by the linear subspace consisting of all functions of C(S
1; R) that satisfy properties

(i)–(iv) . But we shall see later that this subspace is nothing but H2.
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Figure 3

Remark 3.9 If h : R
2 → R is a function whose restriction to S

1 is of class C1, then
we can still define Hh as the envelope of the family of lines with equation 〈x, u(θ)〉 =

p(θ), where p(θ) = h(u(θ)) . Moreover, this envelope Hh can still be parametrized
by the map xh : S

1 → R
2, u(θ) 7→ p(θ)u(θ)+ p ′(θ) u ′(θ). Indeed, xh(θ) = p(θ)u(θ)+

p ′(θ)u ′(θ) is still the unique solution of the system

〈x, u(θ)〉 = p(θ), 〈x, u ′(θ)〉 = p ′(θ),

for all θ ∈ J. But in general, this envelope Hh does not represent the difference of
two plane convex bodies. In fact, such a hedgehog can even be a fractal curve.

Theorem 3.10 ( [14]) If p(θ) = h(cos θ, sin θ) is a Möbius function of the form

p(θ) =

+∞∑

n=1

sin(βnθ)

αn
.

where β is an odd natural number and α is a real number such that α > β and β2 >
α(1 + 3π

2
), then the envelope Hh is a continuous but nowhere differentiable curve whose

length is infinite.

Figure 3 represents the fractal envelope Hh for α = 8 and β = 7.

Proposition 3.11 For every h ∈ H2, Proposition 3.3 ensures that p = h ◦ u admits

a left derivative p ′
l and a right derivative p ′

r on R. These left and right derivatives of p

admit a common derivative at almost every θ ∈ R. We shall simply denote it by p ′ ′(θ).

Proof From property (iv), p ′
l and p ′

r are of bounded variation on I and thus almost
everywhere differentiable on R. Now, property (i) ensures that p is Lipschitzian and
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thus almost everywhere differentiable on R. Therefore, p ′
l and p ′

r coincide almost
everywhere on R, so that their derivatives must also coincide almost everywhere on R.

Proposition 3.12 For every h ∈ K2, the function p(θ) = h(u(θ)) satisfies the two

following properties:

(v) p ′
l (θ) ≤ p ′

r (θ) for all θ ∈ R;

(vi) (p + p ′′)(θ) ≥ 0 for almost every θ ∈ R.

This proposition is an immediate consequence of the following characterization,
which is due to M. Kallay [6]: ∀h ∈ C(S

1; R),

(h ∈ K2) ⇔ (∀θ ∈ I, ∀α ∈
[

0,
π

2

]
, p(θ + α) + p(θ − α) ≥ 2p(θ) cos α),

where p(θ) = h(u(θ)). We just have to observe that

p ′ ′(θ) = lim
α→0

p(θ + α) + p(θ − α) − 2p(θ)

α2
.

As we shall see in Section 4 (cf. Theorem 4.12), properties (v) and (vi) do not
characterize support functions of convex bodies in H2.

4 Length and Area Measures of Plane Hedgehogs

In Section 3, we saw that every formal difference of two convex bodies of R
2 can

be seen as a (transversely oriented) rectifiable curve, which we called a hedgehog. In

this section, we introduce and study the notions of length measure and mixed area for
hedgehogs. Whereas the length measure L(C, · ) of a convex curve C ⊂ R

2 is defined
as a (positive) Borel measure on S

1, the length measure of a hedgehog Hh ⊂ R
2 will

be defined as a (possibly signed) Borel measure lh on S
1 in order that the map Hh 7→

lh be linear. This algebraic length measure will of course be interpreted and studied
from a geometrical point of view. In the same way, the area of a hedgehog Hh ⊂ R

2

will be defined as an algebraic area in order to extend the mixed area A : K2 ×K2 →
R, (K, L) 7→ A(K, L) to a symmetric bilinear form a : H2 × H2 → R. The area of

Hh will be interpreted as the integral over R
2−Hh of the winding number ih(x) of Hh

with respect to x ∈ R
2−Hh. We shall see in Section 5 that this bilinear form satisfies a

partial extension of the Minkowski inequality A(K, L) ≥ A(K) . A(L) which leads to
a natural extension of the isoperimetric inequality to plane hedgehogs. On the way,

we shall solve the Christoffel–Minkowski problem for plane hedgehogs by giving a
necessary and sufficient condition for a (possibly signed) Borel measure on S

1 to be
the length measure of a hedgehog. Moreover, we shall characterize support functions
of plane convex bodies among support functions of plane hedgehogs and support

functions of plane hedgehogs among continuous functions.
Let us begin by recalling some basic facts concerning the area measure of order 1

of plane convex bodies, that is the length measure of plane convex curves. We shall
use notations of Section 3 and B(S

1) will denote the σ-algebra of Borel subsets of S
1.
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The area measure of order 1 of a convex body K ⊂ R
2 (that is, the length measure of

its boundary ∂K) is the (positive) Borel measure S1(K, . ) defined as follows:

(i) if K is contained in a line, then

∀Ω ∈ B(S
1), S1(K, Ω) :=

∑

u∈Ω

Length[σhK
(u)];

(ii) if K is not contained in a line, then

∀Ω ∈ B(S
1), S1(K, Ω) := Λ1

[ ⋃

u∈Ω

σhK
(u)

]
,

where Λ1 denotes the 1-dimensional (outer) Hausdorff measure in R
2. This

area measure of order 1 determines K up to a translation. More precisely (see
[24, Theorems 4.3.1; 4.3.3]), we have the following existence and uniqueness

result for plane convex bodies with prescribed area measure of order 1.

Theorem 4.1 Let m be a (positive) Borel measure on S
1. If m satisfies

(C)

∫

S1

u dm(u) = 0R2 ,

then m is the length measure of a unique (up to translations) convex body of R
2.

Recall that integral condition (C) is necessary from the translation invariance of
the area of K. Let us recall the following formula for the perimeter of a plane convex
body.

Theorem 4.2 (Barbier 1860 [1]) Let K be a convex body of R
2. The perimeter of K,

that is the length L(∂K) := S1(K, S
1) of its boundary ∂K, is given by

L(∂K) =

∫ 2π

0

p(θ) dθ,

where p(θ) = hK(cos θ, sin θ).

Remark 4.3 As is well known, if the restriction of h = hK to S
1 is of class C2, then

(i) ∂K can be parametrized by

xh : S
1 → ∂K ⊂ R

2, u(θ) = (cos θ, sin θ) 7→ xh(θ) = p(θ) u(θ) + p ′(θ)u ′(θ),

where p(θ) = h(u(θ));

(ii) xh is of class C1 on S
1 and we have ∀θ ∈ J, x ′

h(θ) = (p + p ′ ′)(θ) u ′(θ);
(iii) Rh : S

1 → R, u(θ) 7→ Rh(θ) := (p + p ′′)(θ) is non-negative and Rh(θ) can be
interpreted as the (principal) radius of curvature of Hh at xh(θ). Therefore, in
this case the length measure of ∂K is given by

∀Ω ∈ B(S
1), S1(K, Ω) =

∫

Ω

Rh dσ,

where σ is the circular Lebesgue measure on S
1.
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Algebraic Length Measure

Definition 4.4 Let Hh be a hedgehog of R
2. For every Ω ∈ B(S

1), we put

lh(Ω) := S1(K, Ω) − S1(L, Ω),

where K and L are two convex bodies of R
2 such that h = hK − hL, that is, two

convex bodies of which Hh is the difference. As hK and S1(K, · ) depend linearly on

K ∈ K
2 ⊂ H

2, this definition does not depend on the choice of (K, L) ∈ K
2 × K

2.
This signed measure lh is called the algebraic length measure of Hh. Naturally, if h is
the support function of a convex body K ∈ K2, then lh( · ) = S1(K, · ).

Definition 4.5 Let Hh be a hedgehog of R
2. The algebraic length of Hh is defined

by l(h) := lh(S
1). By the definition of lh, it follows from Theorem 4.2 that l(h) is

given by

l(h) =

∫ 2π

0

p(θ) dθ,

where p(θ) = h(cos θ, sin θ).

We shall see later in the section how lh and l(h) can be interpreted from a geometrical
point of view. The following generalization of Theorem 4.1 solves the Christoffel–

Minkowski problem for plane hedgehogs.

Theorem 4.6 Let m be a (possibly signed) Borel measure on S
1. If m satisfies

∫

S1

u dm(u) = 0R2 ,

then m is the (algebraic) length measure of a unique (up to translations) hedgehog Hh ⊂
R

2.

Proof Existence: Let m = m+ − m− be the Jordan decomposition of m:

m+
=

1

2
(|m| + m) and m−

=
1

2
(|m| − m),

where |m| is the total variation measure of m. From the assumption, there exists some
(a, b) ∈ R

2, such that:

∫

S1

u dm+(u) =

∫

S1

u dm−(u) = (a, b).

Let m f be the Borel measure given by ∀Ω ∈ B(S
1) m f (Ω) =

∫
Ω

f (u) dσ(u), where
σ is the circular Lebesgue measure and f (u(θ)) := c − 1

π (a cos θ + b sin θ), c being

some constant larger than 1
π

√
a2 + b2. The Borel measures defined by µ = m+ + m f

and ν = m− + m f are positive and such that

m = µ − ν and

∫

S1

u dµ(u) =

∫

S1

u dν(u) = 0R2 .
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Thus, from Theorem 4.1, there exists (K, L) ∈ (K2)2, such that µ = S1(K, · ) and
ν = S1(L, · ), so that

m = µ − ν = S1(K, · ) − S1(L, · ) = lh,

where h = hK − hL.

Uniqueness up to translations: Assume that h̃ = h
K̃
− h

L̃
∈ H2 is such that lh = l̃

h
,

where (K̃, L̃) ∈ (K2)2. We then have

S1(K, · ) − S1(L, · ) = S1(K̃, · ) − S1(L̃, · ).

As S1 is Minkowski linear, we thus have

S1(K̃ + L, · ) = S1(K̃, · ) + S1(L, · ) = S1(K, · ) + S1(L̃, · ) = S1(K+L̃, · ).

From Theorem 4.1, it follows that K̃+L and K+L̃ are translates of each other, so that

h
K̃+L

− h
K+L̃

is a linear form φ on R
2. As h

K+L̃
= hK + h

L̃
and h

K̃+L
= h

K̃
+ hL,

it follows that h̃ = h + φ, which completes the proof

Curvature Function

Definition 4.7 Let Hh be a hedgehog of R
2 and let σ denote the circular Lebesgue

measure on S
1. From the Lebesgue decomposition theorem, there is a unique pair of

mutually singular measures la
h and ls

h such that

lh = la
h + ls

h,

where la
h is absolutely continuous with respect to σ and ls

h mutually singular with σ.
Furthermore, from the Radon–Nykodym theorem, there is a unique Rh ∈ L1(σ) such
that

∀Ω ∈ B(S
1), la

h(Ω) =

∫

Ω

Rh dσ.

Rh ∈ L1(σ) is called the curvature function of Hh. For the sake of simplicity, we shall
often consider Rh as a function of θ ∈ R by putting Rh(θ) = Rh(u(θ)).

Remark 4.8 The curvature function of Hh is such that

Rh(θ) = lim
α↓0

la
h([θ, θ + α])

α
,

for almost every θ ∈ R. If the restriction of h to S
1 is a function of class C2 then

Rh(θ) = (p + p ′ ′)(θ), where p(θ) = h(u(θ)), for every θ ∈ R and Rh(θ) can be
interpreted as the (principal) radius of curvature of Hh at xh(θ) (see Remark 3.9 for
notations).
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Absolute Length Measure

Definition 4.9 For every hedgehog Hh ⊂ R
2, let Lh denote the total variation of lh,

that is the (positive) Borel measure |lh| defined by:

∀Ω ∈ B(S
1), Lh(Ω) = sup

(Ωi )i∈ℑ∈P(Ω)

∑

i∈ℑ
|lh(Ωi)|,

where P(Ω) denotes the set of all partitions (Ωi)i∈ℑ of Ω. This Borel measure Lh is
called the absolute length measure of Hh. Naturally, if h ∈ K2, then Lh is the length
measure S1(K, · ), where K is the convex body with support function h.

Remark 4.10 Let Hh be a hedgehog of R
2 and let σ denote the circular Lebesgue

measure on S
1. From the Lebesgue decomposition theorem, there is a unique pair of

mutually singular measures La
h and Ls

h such that

Lh = La
h + Ls

h,

where La
h is absolutely continuous with respect to σ and Ls

h mutually singular with σ.
It is an easy exercise to check that these measures La

h and Ls
h are respectively the total

variations |la
h| and |ls

h| of la
h and ls

h, so that we have in particular,

∀Ω ∈ B(S
1), La

h(Ω) =

∫

Ω

|Rh| dσ.

Remark 4.11 As it will be checked at the end of the section, for every h ∈ H2,

Lh(S
1) is the (absolute) length L(h) of the rectifiable curve of Hh.

Length Function

For every h ∈ H2, let us define a length function Lh : I = [0, 2π] → R as follows: for
every θ ∈ I, let Lh(θ) denote the length of the rectifiable curve

γh : [0, λ−(θ)] → R
2, λ 7−→ xh(θ(λ), t(λ)) = p(θ(λ))u(θ(λ)) + t(λ)u ′(θ(λ)),

where λ−(θ) = dh(θ, p ′
l (θ)), with notations of Section 3. In other words, Lh(θ)

denotes the length of the subarc of Hh beginning at x−h (0) and ending at x−h (θ). In

the case where h = hK ∈ K2, we thus have Lh(θ) = Lh(u([0, θ[)), for all θ ∈ I. This
length function Lh is obviously increasing and thus of bounded variation. Therefore,
Lh admits a decomposition of the form

Lh = jh + rh + sh,

where jh is a jump function (with a derivative equal to 0 except for an at most count-

able set of jump discontinuities), rh an absolutely continuous function and sh a con-
tinuous singular function (with a derivative equal to 0 almost everywhere). This
decomposition is unique provided these three functions are required to be equal to 0
at θ = 0.
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Let us consider the case where h = hK ∈ K2. In this case, the length measure
Lh : B(S

1) → R of ∂K is (inherited from) the Lebesgue–Stieltjes measure, say µh,

associated with the increasing and left continuous function Lh:

∀Ω ∈ B(S
1), Lh(Ω) = µh(Ω J),

where Ω J = {θ ∈ J|u(θ) ∈ Ω}. Moreover, the unique decomposition of Lh into
discrete, absolutely continuous and continuous singular parts (with respect to the
circular Lebesgue measure σ on S

1) then corresponds to the decomposition Lh =

jh + rh + sh (in which jh, rh and sh are required to be equal to 0 at θ = 0). Let us notice

that in this case

(i) the jump function jh is given by

jh(θ) =

∑

0≤α<θ

(p ′
r (α) − p ′

l (α))

(remember that p ′
r − p ′

l ≥ 0 from Proposition 3.12(v)), so that the discrete part
of Lh is given by

∀Ω ∈ B(S
1), Jh(Ω) :=

∑

α∈Ω J

(p ′
r (α) − p ′

l (α));

(ii) the absolutely continuous part of Lh is the measure La
h, given by

∀Ω ∈ B(S
1), La

h(Ω) =

∫

Ω

Rh dσ

(note that the curvature function Rh is σ-almost everywhere ≥ 0 from Re-

mark 4.8);
(iii) the continuous singular part of Lh is a positive measure on B(S

1), so that the
continuous singular function sh is increasing on I.

Characterization of Support Functions of Plane Convex Bodies Among All Support
Functions of Plane Hedgehogs

Let us prove the following characterization of support functions of plane convex bod-

ies among support functions of plane hedgehogs.

Theorem 4.12 Let h ∈ H2. We have h ∈ K2 if and only if the three following

conditions are satisfied:

(i) p ′
r − p ′

l ≥ 0 on I;

(ii) Rh ≥ 0 σ-almost everywhere on S
1;

(iii) the continuous singular part of the length function Lh is increasing on I.

Proof It follows from the previous study that these three conditions are necessary.
Let us check that they are also sufficient. Let us assume that these three conditions
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are satisfied and denote by Lsh
the (measure inherited from the) Lebesgue–Stieltjes

measure associated with the continuous singular part of Lh. Then, the Borel measure

lh : B(S
1) → R, Ω 7→

∫

Ω

Rh dσ +
∑

α∈Ω J

(p ′
r (α) − p ′

l (α)) + Lsh
(Ω),

where Ω J = {θ ∈ J | u(θ) ∈ Ω}, is positive. Moreover, as it is of the form L f − Lg ,
where ( f , g) ∈ (K2)2, it satisfies

∫

S1

u dm(u) = 0R2 .

Therefore, Theorem 4.1 ensures that there exists some k ∈ K2 such that Lk = lh and

Theorem 4.6 that Hh and Hk must be translates, which completes the proof.

Remark 4.13 It follows from the previous study that the perimeter of a convex body
K ⊂ R

2 is given by

L(∂K) =

∫ 2π

0

(p + p ′ ′)(θ) dθ +
∑

θ∈ J

(p ′
r (θ) − p ′

l (θ)) + Lsh
( J),

where h = hK and p(θ) = h(u(θ)), Lsh
denoting the Lebesgue–Stieltjes measure

associated with the continuous singular part of Lh. Let us give an example where

L(∂K) >

∫ 2π

0

(p + p ′′)(θ) dθ +
∑

θ∈ J

(p ′
r (θ) − p ′

l (θ)).

To this aim, let us consider the odd function f : R → R that satisfies

f (t) =

{
s(t) if 0 ≤ t ≤ 1,

1 if t ≥ 1,

where s is the Cantor–Lebesgue function on [0, 1]. Now define h : R
2 → R by

∀(x, y) ∈ R
2,

h(x, y) =

{
|x| if y = 0,

|y|(1 +
∫ x/y

1
f (t) dt) if y 6= 0.

It is then easy to check that h is the support function of a centered convex body
K ⊂ R

2 for which the required inequality is satisfied.
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Vector Length Measure

For every h ∈ H2, let us define a vector length measure
−→
lh : B(S

1) → R
2 whose

components are (inherited from) the signed Lebesgue–Stieltjes measures associated
with the components of the map x−h : I → R

2 (which are left continuous func-

tions of bounded variation). As noted in Remark 3.7, the arclength parametriza-
tion Xh : [0, L(h)] → Hh ⊂ R

2 is almost everywhere differentiable on [0, L(h)] and
there exists an increasing map s 7→ θs of [0, L(h)] into J such that, for almost every
s ∈ [0, L(h)], Xh(s) ∈ σh(θs) and X ′

h(s) = εh(s)u ′(θs), where εh(s) ∈ {−1, 1}. It is

easy to check that

∀Ω ∈ B(S
1),

−→
lh (Ω) =

∫

Ωh

X ′
h(s) ds =

∫

Ωh

εh(s)u ′(θs) ds,

where Ωh = {s ∈ [0, L(h)]|u(θs) ∈ Ω}.

Remark 4.14 If the restriction of h to S
1 is of class C2, then we have of course

∀Ω ∈ B(S
1),

−→
lh (Ω) =

∫

Ω J

x ′
h(θ) dθ =

∫

Ω J

Rh(θ)u ′(θ)dθ,

where Ω J = {θ ∈ J|u(θ) ∈ Ω}.

Proposition 4.15 For every h ∈ H2, we have d
−→
lh (u) = u⊤ dlh(u), where u⊤ ∈ S

1 is

the unit vector such that (u, u⊤) is a direct orthonormal frame of R
2, which we assume

equipped with the standard orientation.

Proof By linearity, it suffices to prove it for h ∈ K2. Let l be the Lebesgue measure
on [0, L(h)] and let uh : [0, L(h)] → S

1 be the measurable map defined by uh(s) =

u(θs). For h ∈ K2, lh is nothing but the image measure of l by uh, so that:

∀Ω ∈ B(S
1),

∫

Ω

u⊤ dlh(u) =

∫

Ωh

u ′(θs) ds =
−→
lh (Ω),

where Ωh = {s ∈ [0, L(h)]|u(θs) ∈ Ω}.

Geometrical Interpretation of lh and Lh for h ∈ H2

The following result ensures that the absolute length measure (resp., the algebraic
length measure) of Hh can indeed be interpreted as the length measure of Hh (resp.,
the length measure of Hh counted with the sign of εh(s) = 〈X ′

h(s), u ′(θs)〉).

Theorem 4.16 Let h ∈ H2. The algebraic length measure of Hh is given by

∀Ω ∈ B(S
1), lh(Ω) =

∫

Ωh

εh(s) ds,

where Ωh = {s ∈ [0, L(h)] | u(θs) ∈ Ω} and εh(s) = sgn(〈X ′
h(s), u ′(θs)〉).
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Proof From Proposition 4.15, we have indeed ∀Ω ∈ B(S
1),

lh(Ω) =

∫

Ω

〈u⊤ d
−→
lh (u)〉

=

∫

Ωh

〈u ′(θs), X ′
h(s)〉 ds

=

∫

Ωh

εh(s) ds,

where 〈 · , · 〉 denotes the standard inner product on R
2.

Algebraic Area

For every h ∈ H2, let us define the algebraic area of Hh as the integral

a(h) =

∫

R2−Hh

ih(x) d£(x),

where ih(x) is the winding number of Hh around x ∈ R
2 − Hh and £ the Lebesgue

measure on R
2.

Theorem 4.17 For every h ∈ H2, we have

a(h) =
1

2

∫

S1

h(u) dlh(u).

The quadratic form a : H2 → R, h 7−→ a(h) satisfies: ∀h ∈ H2,

a(h) =
1

2

∫ 2π

0

(
p2 − (p ′)2

)
(θ) dθ,

where p(θ) = h(u(θ)).

Proof Let us define the body of Hh as the set

Kh = Hh ∪ {x ∈ R
2 − Hh | ih(x) 6= 0}.

Given m ∈ R
2, let us consider Kh as a part of the image of ∆h = [0, 1] × [0, L(h)]

under the map

Xm
h : ∆h −→ R

2, (r, s) 7−→ m + r(Xh(s) − m).

We shall say that a half-line L ⊂ R
2 with origin m is transverse to Hh if, for every

s ∈ [0, L(h)] such that Xh(s) ∈ L, the vector X ′
h(s) exists and is transverse to L. Now,

almost every x ∈ Xm
h (∆h) belongs to such a half-line and in this case ih(x) is given by

ih(x) =

∑

(r,s)∈Eh(x)

ih(r, s),
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where Eh(x) = (Xm
h )−1(x) and ih(r, s) = sgn[〈Xh(s)−m, u(θs)〉εh(s)], that is ih(r, s) =

sgn[pm(θs)εh(s)] where pm(θ) = p(θ) − 〈m, u(θ)〉. We thus have

a(h) =

∫∫

R2−Hh

ih(x1, x2) dx1dx2

=

∫∫

∆h

ih(r, s)
∣∣∣det

[ ∂Xm
h

∂r
(r, s),

∂Xm
h

∂s
(r, s)

]∣∣∣ drds

=

∫∫

∆h

det[Xh(s) − m, rX ′
h(s)] drds

=

∫∫

∆h

rpm(θs)εh(s) drds

=

∫ 1

0

r dr

∫ L(h)

0

pm(θs)εh(s) ds

=
1

2

∫

S1

(h(u) − 〈m, u〉) dlh(u)

=
1

2

∫

S1

h(u) dlh(u),

since
∫

S1 u dlh(u) = 0R2 . Therefore, the map a : H2 → R is a quadratic form.

As the relation

a(h) =
1

2

∫ 2π

0

(p2 − (p ′)2)(θ) dθ

is well known for h ∈ K2 (see [25, p. 188]), we can thus claim that it remains true
for every h ∈ H2.

Corollary 4.18 Let a : (H2)2 → R, (h, k) 7−→ a(h, k) be the symmetric bilinear form

obtained by polarizing a : H2 → R. For every (h, k) ∈ (H2)2, a(h, k) may be inter-

preted as an algebraic mixed area of Hh and Hk and can be given by

a(h, k) =
1

2

∫

S1

(h(u) dkh(u) + k(u) dhh(u)) =
1

2

∫ 2π

0

(p q − p ′q ′)(θ) dθ,

where p(θ) = h(u(θ)) and q(θ) = k(u(θ)).

Remark 4.19 Another way to prove the relation

a(h) =
1

2

∫ 2π

0

(p2 − (p ′)2)(θ) dθ

is to consider a(h) as the difference of two areas. Indeed, it is easy to check that
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(i) the integral ∫ 2π

0

p(θ)2

2
dθ

can be seen as the area of the pedal curve of Hh with respect to the origin. Recall that
this pedal curve, say P(Hh), is defined as follows: to each xh(θ, t) ∈ Hh, we assign the

foot P(xh(θ, t)) = p(θ)u(θ) of the perpendicular from the origin to the support line
of Hh at xh(θ, t). Naturally, the area a[P(Hh)] of the pedal curve P(Hh) is defined by

a[P(Hh)] :=

∫

R2−P(Hh)

iP(Hh)(x) d£(x),

where iP(Hh)(x) is the winding number of P(Hh) around x ∈ R
2 − P(Hh) and £ the

Lebesgue measure on R
2;

(ii) the integral ∫ 2π

0

p ′(θ)2

2
dθ

can be seen as the area of the image of Σh = {(θ, t) ∈ Dh × R | t(t − p ′(θ)) < 0},

where Dh = {θ ∈ J | p ′(θ) exists}, under the map

T : Σh → R
2, (θ, t) 7−→ p(θ)u(θ) + tu ′(θ).

This area a[T(Hh)] is of course defined by:

a[T(Hh)] :=

∫

T(Σh)

th(x) d£(x),

where th(x) = Card({(θ, t) ∈ Σh | T(θ, t) = x}) and can be given by

a[T(Hh)] =

∫∫

Σh

∣∣∣det
[ ∂T

∂θ
(θ, t),

∂T

∂t
(θ, t)

]∣∣∣ dθdt.

To prove the second relation of Theorem 4.17, it then suffices to observe that for

£-almost every x ∈ R
2 − (Hh ∪ P(Hh)), we have ih(x) = iP(Hh)(x) − th(x).

Characterization of Support Functions of Plane Hedgehogs Among Continuous Func-
tions

Theorem 4.20 Functions of H2 are exactly functions of C(S
1; R) that satisfy proper-

ties (i)–(iv) of Proposition 3.3.

Proof We already know that functions of H2 satisfy these four conditions. It re-
mains to check that if h ∈ C(S

1; R) satisfies properties (i)–(iv), then h ∈ H2. Let
h ∈ C(S

1; R) be such a function. As noticed in Remark 3.8, it defines a closed rec-
tifiable curve Hh ⊂ R

2. Let lh : B(S
1) → R be the signed Borel measure inherited
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from the Lebesgue–Stieltjes measure associated with the following left continuous
function of bounded variation:

L
ε
h : J = [0, 2π[ → R, θ 7→

∫ Lh(θ)

0

εh(s) ds,

where the length function Lh(θ) of Hh is defined as in the case where h ∈ H2 and
where εh(s) = sgn(〈X ′

h(s), u ′(θs)〉) (see Remarks 3.7 and 3.8), that is, ∀Ω ∈ B(S
1),

lh(Ω) := µLε
h
(Ω J),

where µLε
h

is the Lebesgue–Stieltjes measure associated to Lε
h on J and where Ω J =

{θ ∈ J | u(θ) ∈ Ω}. This signed Borel measure lh : B(S
1) → R satisfies

∫

S1

u dlh(u) = 0R2 .

Indeed, we have

∫

S1

u⊤ dlh(u) =

∫ L(h)

0

εh(s)u ′(θs) ds

=

∫ L(h)

0

X ′
h(s) ds

= Xh(L(h)) − Xh(0),

since components of Xh are absolutely continuous on [0, L(h)], see Remark 3.8.
Therefore, lh is the algebraic length measure of a unique (up to translations) hedge-

hog of H f ⊂ R
2, where f ∈ H2. Now, if

−→
lh : B(S

1) → R
2 denotes the vector mea-

sure whose components are (inherited from) the signed Lebesgue–Stieltjes measures
associated with the components of x−h : I → R

2 (which are left continuous functions

of bounded variation), then ∀θ ∈ I,

x−h (θ) − x−h (0) =
−→
lh (Ωθ)

=

∫ Lh(θ)

0

X ′
h(s) ds =

∫ Lh(θ)

0

εh(s)u ′(θs) ds

=

∫

Ωθ

u⊤ dlh(u) =

∫

Ωθ

u⊤ dl f (u)

=
−→
l f (Ωθ) = x−f (θ) − x−f (0),

where Ωθ = u([0, θ[). So, for all θ ∈ I, we have x−h (θ) = x−f (θ) + x , where x =

(x−h − x−f )(0), and thus h(θ) = f (θ) + 〈x, u(θ)〉, so that h ∈ H2.

The following result can be seen as a particular case of Theorem 4.6:
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Proposition 4.21 If ρ : R → R is a 2π-periodic function that is summable on I =

[0, 2π] and such that
∫ 2π

0
ρ(θ)u(θ)dθ = 0, then there exists a plane hedgehog Hh ⊂ R

2

whose curvature function satisfies Rh(θ) = ρ(θ) for almost every θ ∈ I.

Proof Our proof is a mere adaptation of [6, Theorem 4]. Using the characterization
of functions in H2, it consists in proving that

p(θ) =

∫ θ

0

ρ(α) sin(θ − α) dα,

is a 2π-periodic Lipschitzian function on R which admits an absolutely continuous
derivative on I that satisfies (p + p ′ ′)(θ) = ρ(θ) for almost every θ ∈ I. A first

calculation shows that p admits an absolutely continuous derivative on I, namely

p ′(θ) =

∫ θ

0

ρ(α) cos(θ − α) dα,

and a second one that (p + p ′′)(θ) = ρ(θ) for almost every θ ∈ I. The integral

condition
∫ 2π

0
ρ(θ)u(θ) dθ = 0 ensures that p is 2π-periodic on R.

Of course, Proposition 4.21 gives only an existence result: there is no uniqueness.
For instance, if Hh ⊂ R

2 is any polygonal hedgehog, then p(θ) = h(u(θ)) satisfies
(p + p ′′)(θ) = 0 for almost every θ ∈ I.

5 Geometric Inequalities for General Plane Hedgehogs

The following theorem gives an extension to hedgehogs of the classical Minkowski

inequality (and thus of the isoperimetric inequality) for plane convex bodies:

Theorem 5.1

(i) If h ∈ H2 is such that l(h) = 0, then a(h) ≤ 0.

(ii) If ( f , g) ∈ (H2)2 is such that a(g) > 0, then a( f , g)2 ≥ a( f ) · a(g). In particular,

∀h ∈ H2, 4πa(h) ≤ l(h)2.

Proof (i) If the restriction of h to S
1 is a function of class C2, this is only Wirtinger’s

inequality. If h = hK − hL, where (K, L) ∈ K2 × K2, then we can proceed as
follows. We know there exist sequences (Kn) and (Ln) of plane convex bodies of
class C2

+ that converge respectively towards K and L with respect to the Hausdorff

metric on K
2 [2]. Recall that convergence of plane convex bodies with respect to the

Hausdorff metric is equivalent to uniform convergence on S
1 of the corresponding

support functions [24]. Let (hn) be the sequence defined by ∀n ∈ N, hn = fn −
1

2π l( fn), where fn = hKn
− hLn

. Using the assumption l(h) = 0, we check at once

that (hn) converges uniformly towards h on S
1. Now, ∀n ∈ N, l(hn) = 0 and thus

a(hn) ≤ 0 from Wirtinger’s inequality. Using the bilinearity of the algebraic mixed
area and the continuity of quermassintegrals on K2 (see [24]), we deduce that a(h) =

limn→+∞ a(hn) ≤ 0.
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(ii) Since a(g) > 0, we have l(g) 6= 0. Let τ be the trinomial defined on R by

τ (t) := a( f + tg) = a( f ) + 2ta( f , g) + t2a(g).

If a( f , g)2 < a( f ) a(g), then τ (t) has no real root and the assumption a(g) > 0

implies that τ (t) > 0 for all t ∈ R. But this is impossible since there exists λ ∈ R

such that l( f + λg) = l( f ) + λl(g) = 0, which implies τ (λ) ≤ 0 from (i).

6 Convolution

Differences of convex bodies of R
2 do not only constitute a real vector space (H2, +, · )

but also a commutative and associative R-algebra. Indeed, as noticed by H. Görtler
[4, 5], we can define the convolution product of two plane hedgehogs H f and Hg of

R
2 as the plane hedgehog whose support function is given by

( f ∗ g)(u(θ)) =
1

2π

∫ 2π

0

f (θ − α)g(α) dα,

for all θ ∈ I; and we can check at once that (H2, +, · , ∗) is then a commutative and
associative algebra. H. Görtler also noticed that the convolution product of two plane
convex bodies is still a plane convex body. The interest of convolution of hedgehogs
is that properties of one factor are often transmitted to the product. Of course, we

think immediately of regularity properties but we can also mention the following: to
be centered (centrally symmetric with center at the origin), to be projective (i.e., to
have an antisymmetric support function), to be of constant width. Note that we can
also define a convolution product on the real vector space of hedgehogs of R

n+1 for

n ≥ 2, but this product is then non commutative.
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