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A SPECIALISED CONTINUED FRACTION 

A. J. VAN DER POORTEN AND J. SHALLIT 

ABSTRACT. We display a number with a surprising continued fraction expansion 
and show that we may explain that expansion as a specialisation of the continued frac
tion expansion of a formal series: A series £ chX~h has a continued fraction expansion 
with partial quotients polynomials in X of positive degree (other, perhaps than the 0-th 
partial quotient). Simple arguments, let alone examples, demonstrate that it is note
worthy if those partial quotients happen to have rational integer coefficients only. In 
that special case one may replace the variable X by an integer > 2; that is: one may 
'specialise' and thereby proceed to obtain the regular continued fraction expansion of 
values of the series. And that is significant because, generally, it is difficult to obtain 
the explicit continued fraction expansion of a number presented in different shape. Our 
example leads to a series with a specialisable continued fraction expansion and, a little 
surprisingly, our arguments suggest that the phenomenon of specialisability for series 
of the kind appearing here may be reserved to just the special subclass of series we 
happen to have stumbled upon. 

1. Introduction. A dozen or so years ago, one of us, heavily influenced by the cult 
of Fibonacci, noticed the continued fraction expansion 

(1) 
2_1+2-2 + 2~3 + 2~5 + • • • + 2~Fh + • • • 

= [0, 1, 10, 6, 1, 6, 2, 14, 4, 124, 2, 1, 2, 2039, 1, 9, 1, 1, 1, 262111, 2, 8, 

1, 1, 1, 3, 1, 536870655,4, 16, 3, 1, 3, 7, 1, 140737488347135,...]. 

The increasing sequence of very large partial quotients demands explanation; truncations 
of the sum do not yield convergents and the shape of the very good approximations is 
not immediately obvious. We show here that a correct context for the cited expansion 
can be discovered in remarks of Mendès France and van der Poorten [6], wherein one 
considers continued fractions of formal Laurent series and then specialises the variable 
to an appropriate integer. Indeed, we found the arguments detailed in [4] and at that time 
noticed experimentally that 
(2) 

x-l+x~2 + x~3 +x-5 + • • • + x~Fh + . . • 
= [ 0 , Z - l,X2 + 2X+2,X3 -X2 + 2X- 1 , - X 3 + X - 1,-X,-X*+X,-X2, 

-X1 +X2,-X- l , X 2 - X + l , X n -X\-X3 -X,-X,X,X 1 8 - X 5 , 

-X ,X 3 + 1 , X , - X , - X - 1 , - X + 1 , - X 2 9 + X 8 , X - 1,...]. 
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1068 A. J. VAN DER POORTEN AND J. SHALLIT 

The limited number of shapes for the partial quotients, the phenomenon of self-similarity 
whereby bits and pieces from early in the sequence of partial quotients reappear subse
quently, and of most importance the fact that all of the partial quotients have rational 
integer coefficients, all demand explanation and generalisation. We provide that here. 

Above, and in the sequel, (Fh) denotes the sequence of Fibonacci numbers defined by 
the recurrence relation Fh+2 = Fh+{ + Fh and the initial values FQ = 0, F\ = 1. 

Not too surprisingly, the phenomenon (1) has been noticed by others; our correspon
dence contains a letter of March, 1989 from M. J. Knight enquiring about the continued 
fraction of T,n>\ BFn. 

2. First principles. Our viewpoint is formal. A continued fraction is of course an 
expression of the shape 

1 
aQ + 

ax + -
(2 2 + 

03 + • • • 

which we denote in a space-saving flat notation by 

[ao,a\,a2,a3,...]. 

Everything follows from the correspondence whereby one has 

(?;)("• i) - ( î i H : i £:)*»- *••>•••• 
if and only if 

— = [ao, a i , . . . ,an] for n = 0 ,1 ,2 , . . . . 

Thus, for example, taking the transpose in the correspondence we see that 

(3) [aman-U...,a\] = —— 
qn-\ 

and, taking determinants, that 

P r f n - l -Pn-rtn = ( - l ) " * ' SO ^ = E = ± + ( _ 1 ) » - ' _ J _ . 
qn qn-\ qn-\<ln 

From this last observation once sees easily that if the partial quotients ah are polynomials 
of degree at least 1 then the convergents pn/qh converge to a formal series in X 1 . These 
remarks are given in [6]. 

The regular continued fraction expansion of a real number has partial quotients ah 

that are positive integers (other than perhaps for ao which may take any integer value); 
zero, negative and fractional partial quotients are termed inadmissible. Similarly, the 
admissible partial quotients ah of a formal series in X~] are polynomials of degree at 
least 1 (except perhaps for ao). 

We can readily see the following invaluable lemma: 
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FOLDING LEMMA. 

qn-\ Pn ( ( -D W 

qn xql 
00, W,X -

qn 

[do, W,X — W]. 

Here w is a convenient abbreviation for the word 01,02, . . . ,an and, accordingly, —w 

denotes the word —an, —an-\,..., —a\. 

For a proof, see [5] or [8]. 

The name of the lemma comes from the observation that its iterated application leads 

to a pattern of signs corresponding to the creases in a sheet of paper repeatedly folded in 

half; for details, see [8]. 

3. Our program. We shall show that the continued fraction expansion of the series 

X~l + X"2 + X~3 + X~5 + • • • + X~Fh + - - • indeed has partial quotients of limited shapes 

and that all have integer coefficients. Then we specialise by replacing X by an integer x 

with |JC| > 2, obtaining a convergent continued fraction with integral partial quotients. 

Of course, there may well be negative or zero partial quotients. But it is easily verified 

that 

(4) [ . . . , t f ,0 ,£ , . . . ] = [. . . ,« + £ , . . . ] , 

and 

(5) [ . . . ,0 , - /3] = [ . . . , « , 0 , - 1 , 1 , - 1 , 0 , / 3 ] = [ . . . , 0 - 1 ,1 , / ? - 1]; 

this yields a technique for rendering negative partial quotients positive. The case ft = 1 

will not arise below; but it is easy to verify that [ . . . , 0—1,1 ,0 ] = [... ,a — 1], and 

clearly [... ,0 , — 1] = [.. . , 0 — 1]. 

4. Calculations and guesses. Set sn = X~l + X~2 + X~3 + X - 5 + • • • + X~Fn. Com

putation reveals that 

j 2 = [0,X], 

s3 = [ 0 , X - 1 , X + 1 ] , 

s4 = [ 0 , X - 1 , X 2 + X + 1 ] , 

s5 = [ 0 , X - l,X2 + 2 X + 2 , - X 2 + X - 1], 

s6 = [ 0 , X - 1,X2 + 2 X + 2 , X 3 - X 2 + 2 X - 1,X,-X], 

s7 = [ 0 , X - 1 , X 2 + 2 X + 2 , X 3 - X 2 + 2 X - 1 , - X 3 + X - 1 , - X , X , X + 1 , X - 1], 
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s8 = [ 0 , X - 1,X2 + 2 X + 2 , X 3 - X 2 + 2 X - 1 , - X 3 + X - 1,-X,-X 4+X, 

- X 2 , X 2 , X 2 + X + 1 , X - 1], 

s9 = [ 0 , X - 1,X2 + 2X + 2,X3 - X 2 + 2 X - 1 , - X 3 + X - 1,-X,-X4 + X,-X2 , 

- X 7 + X 2 , - X - 1 , X 2 - X + 1 , - X 3 , - X 2 + X - 1,X2 + 2 X + 2 , X - 1], 

sio = [0,X - 1,X2 + 2X+ 2,X3 - X2 + 2X - 1, -X 3 +X - 1, -X, -X 4 +X, -X 2 , 

- X7 + X2, - X - 1,X2 - X + 1,XU - X 3 , -X 3 - X, -X,X, -X 5 , 

-X,X,X3 - X 2 + 2 X - 1,X2 + 2 X + 2 , X - 1], 

5ii = [ 0 , X - 1,X2 + 2X + 2 , X 3 - X 2 + 2 X - 1 , - X 3 + X - 1, -X, -X 4 + X, -X 2 , 

- X 7 + X 2 , - X - 1 ,X 2 -X+1,X U - X 3 , - X 3 - X , - X , X , X 1 8 - X 5 , 

-X ,X 3 + 1 , X , - X , - X - 1 , -X+1 ,X 8 ,X- 1,X+1,X, 

- X , - X 3 + X - 1,X3-X2 + 2 X - 1,X2+2X + 2 , X - 1]. 

These, and yet more extended calculations which we eschew reporting, suggest a symme
try in the expansion of sh and that suggests employing the lemma and induction. Accord
ingly we set s h — [0,//J with the word//j assumed to be of even length (as indeed it ap
pears to be for h>l). The general theory entails that sh = [0,/jJ = p/q with the polyno
mial q a constant multiple of XFh. Again the data suggests the assumption that q — ±XFh 

(in fact +XF,X for h>7). With this assumption, noting that Fh+{ — 2Fh = —F^_2, 

sh+{ = sh + X~F^ = P- + 
q X ^-^q1 

and the lemma yields 

sh+l = [03fh,JTF"-\-fh] 

with a nastily inadmissible partial quotient X~Fh~2. 
At this point, one might be tempted to give up and apply the methods in [ 1 j . However, 

in hindsight, it is better to stay with the result provided directly by the Folding lemma, 
namely 

q X-F»-2q2 
(6) sh+x = sh+XTF™ =P-+ v_F_o 2 = [0,/,,X"^ 2 - q'/q]. 

Here q1 denotes the denominator of the next to last convergent to sh and, as already 
remarked, we may take q = ±XFh. This approach succeeds because q' has a particularly 
simple and congenial shape which, moreover, is readily found. 

5. The main result. We now state the main result of this paper: 

THEOREM 1. Let (F^) be the sequence of Fibonacci numbers defined by the recur
rence relation Fh+2 — Fh+\ + F h and initial conditions F Q = 0, Fi = 1. Set 

sh = X"1 + X"2 + X~3 +X"5 + • • • + X~Fh = [0,fhl 
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Then the words fa, 2 < h < 11, are given by s^ — [0,fh] as listed in §4. Let gh be the 
word ^_ 

gh =fh-\, o, -fas, ~xL^Jh^ o, -yu . 

Then for h > 11 

Sh+i = lOJh,0,-fh-4,-J&-\fh-4,0,-fh-3,X
F^,fh-3] 

= [0, gh, X
F^ , J U , 0, -/A_4, - X ^ ,/A_4, 0, - / A _3, X f ^ ,^_3] 

= [0, gA,Xf*~5 - XL*-«,^_4,0, - / A _ 3 , X ^ « j ^ 3 ] 

= [o,gMx>-\7h-ii 
and 

SoQ = X~l + X~2 +X~3 + X~5 + • • • = lim [0,gh]. 
h—>oo 

PROOF. The proof is by induction on h. The base case is h — 11. Our induction 
hypothesis also includes the assumption that Sh = [0,//J hasfh of even length for h > 7. 
This can easily be verified for 7 < h < 11 by examining the computations in §4, and its 
truth in general will follow from our computations below. 

We notice that q' is that polynomial of degree less than Fh satisfying pq' — p'q = 
— 1, with p' a polynomial also of degree less than Fh. Here we apply our convention 
whereby p/q denotes the last partial quotient and// jq' the penultimate partial quotient. 
On dividing by q2, this is 

(7) sh{qf/q)=-l/X2F>+{pf/q). 

But 
sh{sh-X~F^-2X~Fh) 

is of the shape (7) by virtue of the fact that the sequence (Fh) is strictly increasing with 
Fh^2 + Fh-\ < F h and 2F/z_1 = Fh^ + Fh. Indeed, the inequality (actually an equality 
for the sequence {Fh)) entails that in sh{sh — 2X~Fh) the only terms of degree less than 
—Fh are — X~2Fh as required, and X~2Fh~l. Subtracting X~Fh-3 from s h — 2X~Fh yields the 
additional term —X~Fh~3~Fh of degree less than — Fh which, by the recurrence relation 
just cited, cancels the offending term. Thus 

(8) q'/q = sh-X-F^-2X~F». 

Of course it happened that we noticed this from our experimental evidence, but, in hind
sight, it is apparent that q' / q can readily be found without such guidance. 

Combining (8) with (6) we get 

sh+x = {^fh,X-F^-q'lq} 

= [0,/A, ~{sh - X~F^ - 2X~Fh - X~F^)] 

= [0Jh,-{sh^4+X~F»->-X-F>)l 
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So all we need do is determine the continued fraction expansion of 

If h > 11, then by induction, Fh-\ — 2Fh^ = Fh^ + F/j_5, and the lemma, 

(9) sh-4 + x~F^ = [ o j u , xL*-<, -A_4] ; 

here, as is traditional, (L/j) denotes the sequence of Lucas numbers defined by LQ = 2, 
Li = 1 and L^+2 = Lh+\ +Lh (that is, Lh+\ = Fh+Fh+2)- Finally, using the folding lemma 
again, we can add — X~Fh to Sh-4+X~Fh-x and obtain the expansion of sh_4+X~Fh ' — X~Fh 

by noting that F h — 2Fh-\ — —Fh-3 and according to (6) appending the partial quotient 
X~Fh-3 - ^ ' /V That is, 

sh^ + X~F^ -X'Fh = [0Jh_4,X^,-fh-49XrF*->-q'/ql 

Here, q'/q refers to (9) in which the word following the 0-th partial quotient is of odd 
length, q = XFh-x, and we find q'/q'm virtue of 

(sh-4+lTFh-l)(-Sh-4+X~Fh-i) = X~2/Vl +p'/XFh-x 

having the appropriate shape (7). We have 

X~Fh-3 - q jq = sh-4 ~ XTFh-' + X~Fh~3 

= sh-3 - X~Fh-' - [0,/a_3, -XF*-\ -js~_3], 

where we have used F^-x — 2F/Z„3 = Fh-4, the lemma and the fact that h > 11. Thus 

^_4+JTF*-' -X-F^ - [0Jh^XLh\-K_4,0Jh^-XFh\-fh^l 

So our inductive assumptions entail for h > 11 that 

(10) sh+{ = [0,/*,0,-/A_4,-X** 4 , A _ 4 , 0 , - / , _ 3 , ^ 4 ,^-3l, 

and the principal remaining problem remains to check the initial conditions. It suffices 
to note the computations at the beginning of §4. 

To complete the proof, we apply (10) to replace/^ by 

Â-1, o, -/fc_5, -x
1*-*, A-5, o, - y u , xF*-5 Jh_49 

to explicitly reveal the partial quotients XFh~5 — Xth^. Of course it suffices to report that 
SQO is the direct limit of the expansions [0,//J but it remains useful to notice that it is the 
prefix gh offh that persists, and that it is given by 

gh+] = gh9 XF*-> -XL^\ A-4, 0, -fh_3. 

Finally, we note that from Eqs. (4) and (10), it follows that fh+\ has even length. • 
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6. Corollaries to the main result. Our main result allows us to explicitly charac
terise the partial quotients in the continued fraction for s^: 

COROLLARY 1.1. A polynomial a is a partial quotient in the expansion ofs^ if and 
only if a or -a occurs in the following list: X + 1 ; X2 ± X + 1 ; X2 + 2X + 2; X3 + 1 ; X3 + X; 
X3 - X + 1; X3 - X2 + 2X - 1; XF"; XL-2; XL-2 - XF«+\for n>\. 

COROLLARY 1.2. The large partial quotients 

2039, 262111, 536870655, 140737488347135, 75557863725914321321983,... 

in the continued fraction expansion of2~l + 2~2 + 2~3 + 2~5 + • • • differ by 1 from the 
numbers 2Lfl+l — 2Fh,forh > 4. 

PROOF. These partial quotients of course arise from the partial quotients XFh~5 — XLh-4 

after specialising X to 2. Now rendering the specialised expansion admissible (by making 
all partial quotients positive) yields the observed partial quotients. 

Theorem 1 allows us to give a new proof of the following result (see [4]), a new 
explicit irrationality measure: 

PROPOSITION 1.3. The sum 2~l +2~2 + 2~3 +2~5 + - • • converges to a transcendental 
number 

PROOF. Our remarks at equation (7) entail that 

(X~Fh-2 +X~Fh~] - X^Fh)soo = terms of degree > -Fh - Fh_4 

+ X~Fh-x ~Fh+] + terms of yet lower degree. 

The content of this observation is that there is no term of degree —2Fh_x because 2Fh_x = 
Fh +Fh_i and no term of degree — F/2_2

 — Fh+\ because Fh_2+Fh+\ — 2Fh ; and of course 

^ - 2 + ^ - 1 = Fh. 

Accordingly, we set qh = qh(X) = XFh+Fh~4(X~Fh~2 + X~Fh~] - X~Fh) and note that 
degqh — Fh + F^_4 — Fh_2 — Fh-\ + Fh_4. Then (11) asserts that there is a polynomial 
ph in the variable X so that 

degO^oo - p h ) = -(Fh_i + Fh+i -Fh- Fh^4) = - degqh - (Fh_3 + Fh_5). 

By easy arguments detailed in [6], it follows that ph/qh is a convergent to Soo and that 
the next partial quotient has degree Fh_3 + Fh^5. 

Set <j> = (1 + v//5)/2 and note that as h —> oo 

(Fh_3+Fh_5)/(Fh_l+Fh^) -> ((/> / /"3+</>^5)/(^1+^-4) = W>2+D/«>V) « 0.427. 

It follows that on specialising X to 2 we have a sequence of rational approximations 
ph(2)/qh(2) so that for sufficiently large h 

\2~{ + 2~2 + 2"3 + 2"5 + • • • -Ph(2)/qh(2)\ < qh(2y2A\ 
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proving our assertion by Roth's Theorem [9]. 

REMARK 1.4. On specialising X to an integer x with |JC| > 4 one immediately has 

the nearest integer continued fraction expansion for the corresponding transcendental 

number. 

COMMENT 1.5. The number th for h = 0 , 1 , . . . of partial quotients in the wordfh+2 

(after cancellations) happens to satisfy the recurrence relation 

h+\o = 2th+9 — ffc+8 + 2th+e — 4th+5 + 2th+4 + 2th+\ — 2th, 

with initial conditions 1 ,2 ,2 ,3 ,5 ,8 ,10,14,20,30. The characteristic polynomial of the 

recurrence sequence is 

(X - 1)(X + 1)(X8 - 2X1 + 2X6 - 2X5 + 2X3 - 2X2 + 2X - 2), 

with dominant root À = 1.3706175926 So the number of terms grows approximately 

like \h. 

7. Generalisations. Careful inspection of our arguments suggests that the proper

ties of the Fibonacci numbers actually used above are that the sequence (Fh) is strictly 

increasing with Fh-2 + Fh-\ < F h a n d 2Fh^\ — Fh-?> + Fh, and of course that the initial 

partial quotients computed at §6 have integer coefficients. It follows immediately that, 

subject to the last condition—but it seems to be satisfied as soon as we choose an appro

priate starting point for the sequence (in our example we started with F2), our arguments 

apply to strictly increasing Lucas sequences generally. 

Generally, it is plain that, at worst, any denominators that do occur amongst the co

efficients of the partial quotients are composed of just finitely many different primes. In 

more formal terminology, the phenomenon that we have called specialisability is a mat

ter of good reduction everywhere; whilst, more generally, one has good reduction almost 

everywhere. That is, our expansion in Theorem 1 makes sense for every finite base field 

Fp. With an inappropriate starting point the expansion makes sense for almost every such 

base field. For example, starting with Fo leads to bad reduction only at p = 2. 

A little more seems evident and we state it confidently as a conjecture. 

CONJECTURE 2. Let (Tn) be an increasing sequence of nonnegative integers satis

fying a recurrence relation 

Th+d = Th+d-\ + Th+d-2 + -- + Th with d > 1, 

and set 

sn = X~Td + X ~ T M + X~Td+2 + • • • + X~Tn ; sn = [0, tn]. 

Then, subject to appropriate initial conditions on the Th, the words th consist of poly

nomials with integer coefficients, which is to say that Soo has a specialisable continued 

fraction expansion. 

REMARK. The point is that it is easy to see that we have 2Th — Th+\ + Th-d
 a n d 

Th-2 + Th-\ < Th . Moreover, our computations show that for small d — 3 , 4 , 5 , 6 , . . . and 
initial values 0 , . . . , 0,1 the commencing partial quotients are specialisable. 
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Before giving some additional vindication, including some details of the proof for the 
cases d — 3 and d = 4, we mention a related but independent proposition (cf. [4]). 

PROPOSITION 2.1. Letx>2be an integer. Then the numbers x~T° +JC ~T{ +x~T2 + • • • 
are transcendental. 

PROOF. We see, by following the argument presented in Corollary 1.2, that the prod
uct 

(X~Th-d +X~Th-^ + • • • +X~Thl -X~Th)soo 

consists of terms with exponents > —Th^d_2 — Th , there then is a gap, and the remaining 
terms have degree < —Th_d+\ — Th+\. 

Accordingly, we set 

qh = qh(X) = XTh+Th-d-2(X~Th-d + • • • + X~Th ' - X~Th) 

and note that deg qh — Th + Th_d_2 — Th-d- Thus there is a polynomial ph in the variable 
X so that 

degO^oo - p h ) = -((Th-d+] + Th+{)- (Th + Th^2)) 

= -degqh - ((Th_d+l + Th+X) - (2Th_d_2 + 2Th - Th-dj) 

= -degqh - (Th_d+l - 2Th^2). 

Hence ph/'qh is a convergent to SOQ and the next partial quotient has degree Th~d+\ — 

ITh-d-l-
Let r denote the unique zero of Xd — Xd~l — • • • — 1 outside the unit circle (cf. [7]), 

and note that as h —> oo, we have 

(Th_d+l - 2Th_d_2)/(Th_d_2 + Th - Th_d) - (r3 - 2)/(rd+2 - r2 + 1) = 6 > 0. 

It follows that on specialising X to x we have a sequence of rational approximations 
Ph(*)/qh(x) s o that for sufficiently large h 

\X-Ti +X-T2 +J-73 + . . .-ph(x)/qh(x)\ < qh(x)-{2+e\ 

proving our claim. 

REMARK. The size of r can be conveniently estimated by r^+1 — 2r^ +1 = 0, so 
2>T>2-(2d-d/r)-x. 

EVIDENCE IN SUPPORT OF THE CONJECTURE. We may suppose that \th\ is odd for all 
appropriately large h, for if not we can substitute [...,a] = [..., a — 1,1] and deal with 
the inadmissible partial quotient later by the rule [..., a, 1, /?] = f..., a + 1, — (3 — 1] as 
explained in §3. The cryptic notation below is that already explained and employed in 
§6. Thus to begin with we have 

sn+ï = sn +X-7-1 = [ 0 , ^ , - J r 7 ^ - q'/q] 
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because Tn+\ — 2Tn = —Tn_d. Moreover, 

-(*„_! +X-T»)(sn_{ -X-T»-X-T»^) = X~2T» +p'/q 

shows that we are next to append the continued fraction expansion of 

-X~T"-d - q'/q = sn^{ - X'Tn - X~T^d - X~T-d-1 

= *n~d-2 + )TTn-™ + • • • + X-Tn-1 ~ X~Tn . 

But 
sn~d-2 + A — Lu> ln-d~2, A » tn-d-2U 

that is, we apply the Folding lemma explicitly. 
For large d we now note that 

-{sn-d-2 + X-Tn~d+x){sn^2-X-T^) =X-2T"^ +p'/q 

and Tn_d+2 — 2Tn^d+\ = —rn_2j+i together entail that computing the continued fraction 
expansion of sn-^-2 + X~Tn-d+l + X~Tn-d+2 is a matter of appending the expansion of 

(12) sn-d-2 - X~Tn-M - XT7»-™ = sn^d + X~T^+2 + • • • + X~T"-d~2 - xrT"-d+i. 

We need not slip ever deeper into a mire of increasing complexity as the case d — 3 
illustrates too amply. Indeed in that case the right hand side of (12) is just 

s„_ 5 -x~T»- 2 -x-T»s = Sn.6-xrT«-* 

and its expansion is 

Then for d = 3 it only remains to deal with subtracting X~ln. Fortunately, by 

-(*„_5 + x~T-2 + xrT*->)fe_6 + r - r - 2 - x-T*->) = x - 2 7 - + p'/q, 

with the operative observation being that 2Tn^2 — Tn-\ + rn_5, this is just a matter of 
appending the expansion of 

sn-6 + X~Tn-2 -X~Tn-1 + XTTn-\ 

because Tn — TTn~\ = Tn^. But 

Now by 
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and Tn-\ — 2Tn-2 — Tns, we have only to append the continued fraction expansion of 

sn-6+X~7"4 -X~7-2 +X~T" 5 = sn-4 ~X~Tn 2. 

When some dust has settled we see that for d = 3 

sn+i = [0jn,0jn^-XT^-2T"\-Tn^0jn^XT^~2T"\ 

(13) - £-6, 0, tn-6, -X^" 2 7 ' - ' , -ï~_6, 

- xT»^2T»-\ tn_6,xT^-2T*-\ -/~_6, o, tn^xT»-i-2T»-\ - ï ~_ 4 ] . 

The reader will notice an obvious cancellation as well as the practicability, much as 
in Theorem 1, of determining the portion of the expansion that remains invariant with 
increasing n. 

Yet more succinctly, when d = 4 the right hand side of (12) is 

sn-8+X-T"*-X-T»\ 

which we expand by two folds. We note that 

- f e _ 6 + XTT"-> +X-r-2)(jII_6 -XT7» 7 + X~7"3 - JT r - 2 ) = X~27"2 +pf/q, 

whence adding X~7n-] is a matter of appending the expansion of 

sn-6 - X~Tnl + ]TT»-3 - JT 7- 2 - XT7»-6 = JW_8 + X_7;-3 - X"7-2. 

After appending one fold, that leads us to appending the continued fraction expansion of 

sn-s + x-T»-3 +x~Tn-1 = sn-j + jr7»-3, 

which is again just a fold. Subtracting X~7n now turns out to be a matter of appending 
the expansion of 

sn-6 -X~7"-" +X-7"-3 +X~7"-2 -X~7«-] +X~7"-5 = s„_7 +X-7»-5 +X~7" 3 +X~7"-2 -X~7"-1, 

which is of a level of complication with which we have already dealt. We do not trouble 
the printer with an explicit statement of the eventual result. 

Bemusingly, the case of larger d is rather different. The success of the program out
lined above appears eventually to rely on the expansions of sums such as 

sk+XT7k+2 + • • • + X~7k+d 2 k=l,...,d-l 

being specialisable. So that we may glimpse this we give some cursory details of the case 
d = 5. Here the right hand side of (12) is 

Sn-io+X-7"-* +X~7"7 - X-7"* 

and when, after an easy fold, we attempt to add X~Tn~1 we find ourselves endeavouring 
to expand 

sn-\o-xr7»-* -xr7»-" =^_l4 + x-^'- ,2 +xr7»-" -x-7»-\ 

This is an 'and so on' which seems to terminate in the manner indicated above. • 
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8. Remarks and reflections. The results given here are an interesting consequence 
of mathematical experimentation. The numerical observation (1) raised questions first 
answered by the experimental result (2). Ultimately Theorem 1 proves (2). En route we 
were led to experiments that suggest results as in Conjecture 2. There we prove (13) for 
the case d — 3 and say enough to have proved the conjecture for d — 4. For the rest 
we give only a glimpse at, and less than a sketch of, a possible proof. Indeed, we are not 
entirely confident that we are recommending a viable program. 

The pattern in (2) is only just vivid enough to be able to deduce something of the 
genre of Theorem 1 by eye. With increasing d the experimental data is almost hopelessly 
complicated and the arguments suggested after Conjecture 2 become correspondingly 
the more instructive. 

Whatever, it seems clear that Theorem 1 could not have been guessed and would not 
have been motivated without computer aid. The computations yielding (1) are almost 
infeasible by hand, and those yielding (2) are totally impractical without machine help. 

Generally, on being shown (2) one might well guess the following: Suppose (£4) is 
a integer recurrence sequence, that is the solution of a linear homogeneous recurrence 
relation 

Uh+n = s{Uh+n-i + • • • + snUh h = 0 , 1 , . . . , 

with integer coefficients s\,...,sn and integer initial values UQ,..., Un- \. Suppose further 
that the sequence (Uh) is strictly increasing with Hindoo Uh+\/Uh = p > I. Then the 
series 

x-
u° + x-Ui +x~U2 + --

has a specialisable continued fraction expansion. 
With p > 2 this is trivially true by the folding lemma, perhaps with the qualification 

that we must omit some initial terms of the series to ensure that always Uh+\/Uh > 2 
(and then p — 2 will do); cf. [2,3,10,11]. However, when 1 < p < 2 we have not as yet 
noticed any examples, except for the cases, relying on the identity 2Uh+n = Uh+n+\ + U^ 
discussed here. We do not know what weight to give to our negative evidence. It is not 
utterly compelling because it is clear that any conjecture as above must be adjusted to 
allow the sequence to start with some term subsequent to UQ. On the other hand the 
evidence given in support of Conjecture 2 suggests that our present techniques are not 
up to constructing favourable examples, if there are any. 
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DEDICATION. Whilst this paper was being completed my colleague and research as
sistant Ross Talent tragically died in a car accident. In the course of the 18 months that I 
worried about the problems settled here, Ross helped by listening patiently. Ross shared 
an office with Jeff Shallit during Jeff's visit to Macquarie University when we finally 
learned how to explain the curious expansion (1). Ross would have read this manuscript 
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and would have suggested how to avoid its remaining infelicities. I shall miss Ross 
grievously. AvdP 
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