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A SPECIALISED CONTINUED FRACTION

A.J. VAN DER POORTEN AND J. SHALLIT

ABSTRACT ~ We display a number with a surprising continued fraction expansion
and show that we may explain that expansion as a specialisation of the continued frac-
tion expansion of a formal series A series Y ¢, X" has a continued fraction expansion
with partial quotients polynomials in X of positive degree (other, perhaps than the 0-th
partial quotient) Simple arguments, let alone examples, demonstrate that 1t 1s note-
worthy 1f those partial quotients happen to have rational integer coefficients only In
that special case one may replace the variable X by an integer > 2, that 1s one may
‘specialise’ and thereby proceed to obtain the regular continued fraction expansion of
values of the series And that 1s significant because, generally, 1t 1s difficult to obtain
the explicit continued fraction expansion of a number presented 1n different shape Our
example leads to a series with a specialisable continued fraction expansion and, a little
surprisingly, our arguments suggest that the phenomenon of specialisability for senes
of the kind appearing here may be reserved to just the special subclass of series we
happen to have stumbled upon

1. Introduction. A dozen or so years ago, one of us, heavily influenced by the cult
of Fibonacci, noticed the continued fraction expansion
(D
2722423 42 g2 g
=1[0,1,10,6,1,6,2, 14,4, 124,2,1,2,2039,1,9, 1, 1, 1, 262111, 2, 8,
1, 1, 1, 3, 1, 536870655, 4, 16, 3, 1, 3, 7, 1, 140737488347135, .. ].

The increasing sequence of very large partial quotients demands explanation; truncations
of the sum do not yield convergents and the shape of the very good approximations is
not immediately obvious. We show here that a correct context for the cited expansion
can be discovered in remarks of Mendes France and van der Poorten [6], wherein one
considers continued fractions of formal Laurent series and then specialises the variable
to an appropriate integer. Indeed, we found the arguments detailed in [4] and at that time
noticed experimentally that
(2)
XX 24X 34X 44X g
=[0,X - LX+2X+2,X° —X*+2X — |,- X +X — |, -X, - X* + X, —X°,
X +X, X - 1LX X+ 1L.X" X, XX, X, X, X"® — X5,
XX+ 1L,X XX 1,-X+1,-X?+X,,X—1,...].
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The limited number of shapes for the partial quotients, the phenomenon of self-similarity
whereby bits and pieces from early in the sequence of partial quotients reappear subse-
quently, and of most importance the fact that all of the partial quotients have rational
integer coefficients, all demand explanation and generalisation. We provide that here.

Above, and in the sequel, (F},) denotes the sequence of Fibonacci numbers defined by
the recurrence relation Fj,,, = F, + F}, and the initial values Fp = 0, F, = 1.

Not too surprisingly, the phenomenon (1) has been noticed by others; our correspon-
dence contains a letter of March, 1989 from M. J. Knight enquiring about the continued
fraction of 3=, B,

2. First principles. Our viewpoint is formal. A continued fraction is of course an

expression of the shape
1

ap +

+
a) 1

a3+.

a) +

which we denote in a space-saving flat notation by

lag,ai,a,as,...].

Everything follows from the correspondence whereby one has

ap 1 ar 1) [ay 1\ (pn P B
( 1 0)( 1 0) ( 1 O)V(qn Gt forn=0,1,2,...
if and only if

Pn _ lag,ay,...,a,) forn =0,1,2,....
n

Thus, for example, taking the transpose in the correspondence we see that

(3) [an»anflw--’al]: n
qn—1
and, taking determinants, that
_ 1
Pn4n—\ — Pn—14n = (-I)HH SO & = f_’n_l +(—l)nil"_~
4n dn—1 dn—-19n

From this last observation once sees easily that if the partial quotients a;, are polynomials
of degree at least | then the convergents pj /g, converge to a formal series in X '. These
remarks are given in [6].

The regular continued fraction expansion of a real number has partial quotients a;
that are positive integers (other than perhaps for @y which may take any integer value);
zero, negative and fractional partial quotients are termed inadmissible. Similarly, the
admissible partial quotients a, of a formal series in X' are polynomials of degree at
least 1 (except perhaps for ag).

We can readily see the following invaluable lemma:
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FOLDING LEMMA.

n
pn (' 1 ) — n—1 — -—
—+—= = |ap, W, X — = [ag, w,x — wl.
qn Xqy, qn
Here w is a convenient abbreviation for the word a,,as, . ..,a, and, accordingly, —w
denotes the word —a,, —a,—,...,—ajy.

For a proof, see [5] or [8].
The name of the lemma comes from the observation that its iterated application leads

to a pattern of signs corresponding to the creases in a sheet of paper repeatedly folded in
half; for details, see [8].

3. Our program. We shall show that the continued fraction expansion of the series
X'+ X 2+X3+X 3+ + X Fr+...indeed has partial quotients of limited shapes
and that all have integer coefficients. Then we specialise by replacing X by an integer x
with |x| > 2, obtaining a convergent continued fraction with integral partial quotients.
Of course, there may well be negative or zero partial quotients. But it is easily verified

that

4) [...,a,0,b,..]=1[...,a+}b,...],

and

%) [....a,—Bl=1[...,a,0,—1,1,-1,0,81 = [...,a— 1,1, —1];

this yields a technique for rendering negative partial quotients positive. The case § = 1
will not arise below; but it is easy to verify that [...,a—1,1,0] = [...,a — 1], and
clearly [...,a,—1]=[...,a—1].

4. Calculations and guesses. Sets, = X '+X 2+X 3 +X 3 +...+ X Com-
putation reveals that

s> = [0, X],

s3=[0,X—1,X+1],

s4=[0,X— LX2+X+1],

55 =[0,X — 1,X*+2X+2, - X* +X — 1],

56 = [0,X — LLX* +2X+2,X° — X* +2X — 1,X,—X],

s7=[0,X —LX+42X+2, X - X +2X— 1,-X*+X - 1,-X, X, X + 1, X — 1],
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ss = [0, X — LX2+2X+2,X — X2 42X — 1, - X+ X — 1, =X, - X* + X,
— XXX+ X+ 1,X— 1),
5o =10, X -1, X 4+2X+2.X = X*+2X —1,- X +X - 1,-X, - X* + X, - X°,
X+ XX - LX—X+1,-X, X+ X - 1L,X*+2X+2,X — 1],
510=[0,X — 1,X24+2X+2.X — X>+2X — 1,- X+ X — 1,—X, —X* + X, —X?,
X +X X - 1.X X+ 1,xX" X X - X, X, X, —X°,
— XXX X 42X — 1LX2+2X+2,X — 1],
su=[0X—LX24+2X+2. X = X2 42X — 1, - X +X — 1,-X, - X* + X, = X°,
X +X, X - 1L,X—X+1.X" X, X X, X X, X" —X°,
XX+ 1LX XX — 1, —-X+1,X3X—1,X+1,X,
XX 4+X -1 X +2X - 1,X>+2X+2,X — 1].

These, and yet more extended calculations which we eschew reporting, suggest a symme-
try in the expansion of s;, and that suggests employing the lemma and induction. Accord-
ingly we set s, = [0, f;,] with the word f}, assumed to be of even length (as indeed it ap-
pears to be for h > 7). The general theory entails that s, = [0, f,] = p/q with the polyno-

mial ¢ a constant multiple of X/, Again the data suggests the assumption that g = 4-X"*
(in fact +X* for h > 7). With this assumption, noting that F,,) — 2F, = —F),_»,,

. F P 1
Sh+l = Sp + X = p + X-Fr 2(12

and the lemma yields

—

snst = [0,/ X T2, —f]

with a nastily inadmissible partial quotient X 7 2,

At this point, one might be tempted to give up and apply the methods in [1]. However,
in hindsight, it is better to stay with the result provided directly by the Folding lemma,

namely

FD Fy s
(6) Shet = S+ X T == 5 = [0,/u, X e —q'/q).

+—
q X*Fh——lq

Here ¢’ denotes the denominator of the next to last convergent to s, and, as already
remarked, we may take ¢ = +X". This approach succeeds because ¢’ has a particularly

simple and congenial shape which, moreover, is readily found.

5. The main result. We now state the main result of this paper:

THEOREM 1.  Let (Fy) be the sequence of Fibonacci numbers defined by the recur-

rence relation Fy., = Fyy + F), and initial conditions Fy = 0, F| = 1. Set

=X+ X 24X 4 X1 x =104,
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Then the words f;, 2 < h < 11 are given by s, = [0,f,] as listed in §4 Let g;, be the
word

@ =f 10, ~fi 5, = X" fi 5, 0, —fy 4
Then for h > 11

Shel = [0 ﬁl 0 Aﬁt 4"XLh 4’.](;1 4> 0’ "f}1 S’XF 49fh 3]
= [O’ghaXFh 5’ﬁ1 4’0’ _fh 4’_XLh 4’fh 4’09 ‘f}1 .%XFh 4»f}1 3]
= 10,80 X" " = X" 4 fi 4,0~ 3. XS 3]

= [0’ gh+]aXFh 4’.fh 3]»

and
So =X "+X T+X P+X S+ = lm [0,g]
00

PROOF  The proof 1s by induction on & The base case 1s & = 11 Our induction
hypothesis also includes the assumption that s, = [0, f},] has f, of even length for h > 7
Thus can easily be venfied for 7 < h < 11 by examining the computations mn §4, and 1ts
truth 1n general will follow from our computations below

We notice that ¢’ 1s that polynomual of degree less than F, sausfying pg’ — p'q =
-1, with p’ a polynomual also of degree less than Fj, Here we apply our convention
whereby p /¢ denotes the last partial quotient and p’ /¢’ the penultimate partial quotient
On dividing by ¢°, this 1s

(7 sud /q) = —1/X*F +(p'/q)
But
su(sy — X Fro—2x iy

1s of the shape (7) by virtue of the fact that the sequence (F},) 1s strictly increasing with
Fy 2+ Fy, < Fyand 2F, | = F, 3 + F, Indeed, the mequality (actually an equality
for the sequence (F},)) entails that in s,(s;, — 2X F1) the only terms of degree less than
—F, are —X % asrequired, and X 2+ 1 Subtracting X 7 from s, —2X ©* yields the
additional term —X F» 3 i of degree less than —F), which, by the recurrence relation
just cited, cancels the offending term Thus

®) q/g=s—X " —2x "

Of course 1t happened that we noticed this from our experimental evidence, but, 1n hind
sight, 1t 1s apparent that ¢’ / g can readily be found without such guidance
Combining (8) with (6) we get
swet = 101 X 2 —¢'/q]
=10, fi —(sp =X Frv—2x B —x )
=[0.fn—(sp a+X © 1 =X )
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So all we need do is determine the continued fraction expansion of
—(Spog+ X T =X,

If h > 11, then by induction, F,_| — 2F;,_4 = F,_3 + F),_s, and the lemma,

) Shea + X = [0, fia, X4 —fial;

here, as is traditional, (L;) denotes the sequence of Lucas numbers defined by Ly = 2,
Ly = land Ly, = Ly, +L,, (thatis, Ly, = Fy+ Fj,). Finally, using the folding lemma
again, we can add —X # tos,_4+Xf» ' and obtain the expansion of s;,_4+X [ 1 —X T
by noting that F, — 2F),_) = —F},_3 and according to (6) appending the partial quotient
XFny—g'/q. That is,

Shea+ X0 XTF = [0, fig, X5, —f g X T —4'/ql.

Here, ¢ /q refers to (9) in which the word following the O-th partial quotient is of odd
length, ¢ = X" 1, and we find ¢’/ q in virtue of

(Sna + X ) (=sp g+ X Py = X 2F0 4 p [ xFn
having the appropriate shape (7). We have
X —g'Jg=spa— X4 X B
=sp3— X =10, f3, =X 4,“};}3],
where we have used F, | — 2F,_3 = F}_4, the lemma and the fact that 4 > 11. Thus
Sha X X 0 fy X O fi s X fy ),

So our inductive assumptions entail for 2 > 11 that

(10) Siat = [0,y 0, —fias =X 4 fir 0,0, i3, X" 4 fiy 3],

and the principal remaining problem remains to check the initial conditions. It suffices
to note the computations at the beginning of §4.
To complete the proof, we apply (10) to replace fj, by

o~ .
S 1,0, =5, =X 5,0, —fra X5 s,

to explicitly reveal the partial quotients X" s — X% +_ Of course it suffices to report that
S 18 the direct limit of the expansions [0, f;] but it remains useful to notice that it is the
prefix gj, of f, that persists, and that it is given by

_ F Ly s ¢ .
8het = & X" =X fua, 0, —fh 3.

Finally, we note that from Eqs. (4) and (10), it follows that f,,, has even length. =
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6. Corollaries to the main result. Our main result allows us to explicitly charac-
terise the partial quotients in the continued fraction for su:

COROLLARY 1.1. A polynomial a is a partial quotient in the expansion of s, if and
only ifa or —a occurs in the following list: X+ 1; X> £X+1; X2 +2X+2; X3 +1; X> +X;
X —X+1; X = X2 42X — 1; XFn; Xtw2 s X2 — XFuet | forn > 1.

COROLLARY 1.2.  The large partial quotients

2039, 262111, 536870655, 140737488347135, 75557863725914321321983,...
in the continued fraction expansion of 2~' + 272 + 273+ 275 + ... differ by 1 from the
numbers 2k — 260 for h > 4.

PROOF. These partial quotients of course arise from the partial quotients X5 — X%+
after specialising X to 2. Now rendering the specialised expansion admissible (by making
all partial quotients positive) yields the observed partial quotients.

Theorem 1 allows us to give a new proof of the following result (see [4]), a new
explicit irrationality measure:

PROPOSITION 1.3.  The sum2 ' +2 7242734273+ - - converges to a transcendental
number.

PROOF.  Our remarks at equation (7) entail that

(X2 g x~Fir — X~ Fiys o = terms of degree > —F), — Fj,_4

+ X Fr17Fkr 4 terms of yet lower degree.

(11)

The content of this observation is that there is no term of degree —2F),_, because 2F,_; =
Fj,+F,_3 and no term of degree —F},_, — F},, because F,_,+F,,; = 2F}; and of course
Fr o+ Fyp | =Fj.

Accordingly, we set g, = gp(X) = XFFrs(X=Fr2 4 X=Frr — X~Fi) and note that
degqgn = Fp+ Fy_4 — Fy_» = Fj_| + Fj_4. Then (11) asserts that there is a polynomial
Py, in the variable X so that

deg(gnsoo — pn) = —(Fh1 + Fppy — F — Fj_4) = —deggy — (Fj_3+ F)_s).

By easy arguments detailed in [6], it follows that p,, / gy 1s a convergent to 5., and that
the next partial quotient has degree F_3 + F)_s.
Setop = (1 + \/5)/2 and note that as h — oo

(Fp_3+Fy_5) [ (Fy1+F_g) — ("2 +0" ) /(6" 149" ™) = (67+1) [ (¢*+¢) ~ 0.427.

It follows that on specialising X to 2 we have a sequence of rational approximations
p;,(2)/q;,(2) so that for sufficiently large h

2714224234204+ — P2/ qu(2)| < an(2)24,
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proving our assertion by Roth’s Theorem (9]

REMARK 14  On speciahising X to an integer x with |x| > 4 one immediately has

the nearest integer continued fraction expansion for the corresponding transcendental
number

COMMENT 1 5 The number ¢, forh = 0,1,  of partial quotients in the word f},>
(after cancellations) happens to satisfy the recurrence relation

Theto = 21349 — thag + 2tpee — Hpys + 2tpiq + 2t — 21y,

with mmitial conditions 1,2,2,3,5,8, 10, 14,20,30 The characteristic polynomial of the
recurrence sequence 1S

(X — DX+ DX® —2X7 +2X0 —2X° +2X° — 2X% +2X — 2),

withdominantroot A = 1 3706175926  So the number of terms grows approximately
like

7 Generalisations. Careful inspection of our arguments suggests that the proper-
ties of the Fibonacci numbers actually used above are that the sequence (F}) 1s strictly
increasing with Fy,_» + F, | < F, and 2F, | = F,_3 + F},, and of course that the initial
partial quotients computed at §6 have integer coefficients It follows immediately that,
subject to the last condition—but it seems to be satisfied as soon as we choose an appro-
priate starting point for the sequence (1n our example we started with F,), our arguments
apply to strictly increasing Lucas sequences generally

Generally, 1t 1s plain that, at worst, any denominators that do occur amongst the co-
efficients of the partial quotients are composed of just finitely many different primes In
more formal terminology, the phenomenon that we have called specialisability 1s a mat-
ter of good reduction everywhere, whilst, more generally, one has good reduction almost
everywhere That 1s, our expansion in Theorem 1 makes sense for every finite base field
F, With an inapproprate starting point the expansion makes sense for almost every such
base field For example, starting with F leads to bad reduction only at p = 2

A little more seems evident and we state 1t confidently as a conjecture

CONJECTURE 2 Let (T,,) be an increasing sequence of nonnegative integers satis-
fying a recurrence relation
Thia = Thea 1+ Thpa2+  +Tpwithd > 1,
and set
sp=X ToaXx Torg X ooy X7 5, =10,1,]

Then, subject to appropriate initial conditions on the Ty, the words ty, consist of poly-
nomials with integer coefficients, which is to say that s, has a specialisable continued
fraction expansion

REMARK  The point 1s that 1t 1s easy to see that we have 27, = Ty, + T}, 4 and
T, »+T, < T, Moreover, our computations show that for small d = 3,4,5,6, and
mitial values 0, ,0, 1 the commencing partial quotients are specialisable
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Before giving some additional vindication, including some details of the proof for the
cases d = 3 and d = 4, we mention a related but independent proposition (cf. [4]).

PROPOSITION 2.1.  Let x > 2 be an integer. Then the numbers x~ Togx Tigx g ..
are transcendental.

PROOE.  We see, by following the argument presented in Corollary 1.2, that the prod-
uct
(X*Th d g X Than oo g x T X Th)%0

consists of terms with exponents > —T},_, ,— T}, there then is a gap, and the remaining
terms have degree < —T),_ 441 — Thyy-
Accordingly, we set

qn = qp(X) = XTntTha z(Xf'l), dggx T —-X_T”)

and note thatdeg g, = Tj, + Ty,_4—» — T,—4. Thus there is a polynomial pj, in the variable
X so that

deg(qnsoo — Pn) = —((Thas1 + Tnat) — (Ty + Thq 2))
—deg gn — ((Th-as1 + That) — QTh-q 2+ 2T} — Tj_4))
—deggn — (Th—gs1 — 2Ty 4-2)-

I

Hence p,, / qn, s a convergent to s, and the next partial quotient has degree T},_4.; —
2Th g2

Let 7 denote the unique zero of X¢ — X¢~! — ... — 1 outside the unit circle (cf. [7]),
and note that as h — 00, we have

(Thast = 2T a2/ (Th a2+ Th —Thg) — (7 =2) /(" =7+ 1) = 0> 0.
It follows that on specialising X to x we have a sequence of rational approximations
Pu(x)/ qx(x) so that for sufficiently large A

-7

T e T = p(0)/ gu(0)] < gu(x) ),

proving our claim.

REMARK. The size of 7 can be conveniently estimated by 74*' — 27¢ + 1 = 0, so
2>7>2- @4 —d/r).

EVIDENCE IN SUPPORT OF THE CONJECTURE.  We may suppose that |#,| is odd for all
appropriately large A, for if not we can substitute [...,a] = [...,a — 1, 1] and deal with
the inadmissible partial quotient later by the rule [...,a,1,68] = [...,a+1,—3 — 1] as
explained in §3. The cryptic notation below is that already explained and employed in
86. Thus to begin with we have

St = Su + X 0 = [0,1,, =X — ¢/ /q]
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because T, — 27, = —T,_4 Moreover,
(a1 + Xy =X =Xy = X4l g
shows that we are next to append the continued fraction expansion of

X Tha *q'/q =1 — X~ Lo _x—Toa _ x—Toan

— Sn\d—2 +X7Tn d+1 + - +X*Tn 1 ¥X7Tn

But
—Tn anl — Ty a1 —2T, i
Sp—d— + Xt ={0,1,_g_p, —X'" 2 —ty_g-2],

that 1s, we apply the Folding lemma explicitly.
For large d we now note that

_(Sn~d~2+XJT" HY (s gn — x T #y = X 2T, g +[7//(1

and T, 440 — 2T, _4s1 = —T,,_2441 together entail that computing the continued fraction
expansion of s,_y_ + X » ' + X~ Tn 2 15 a matter of appending the expansion of

(12) Sn—d—2 _x Than T = Sn72d+X7T" w2 + X a2 _x T

We need not slip ever deeper 1into a mire of increasing complexity as the case d = 3
tllustrates too amply. Indeed 1n that case the right hand side of (12) 1s just

Sp_s X T _xThs = S — X Tn2

and 1ts expansion 18

[0, 56, X7 > "2 0, —1, ]
Then for d = 3 1t only remains to deal with subtracting X~7» Fortunately, by
RCEED aUERD GUBCIED GUEE SUDED eulEEY I

with the operative observation being that 27,_» = T,,_; + T, 5, this 1s just a matter of
appending the expanston of

Sue+ X T2 XTrpxTee
because T,, — 27,1 = T,_4 But

—T, Ty 2 — T, 4—2T, .
Sh—6 + X ‘+ X t = [0’ t}’l*()’ -X 4 6’ “'tn 6
T, »—2T, Ty 4 2T, <
4X 2 ' 4,1)1*6,X N 69 —In 6]
Now by

g+ X T+ X T ) (s, g+ X Tt X Ty =X T2 4y g
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and T,_; — 2T,_» = T,—s, we have only to append the continued fraction expansion of
Spg+X T o x ey x s =5 x Tz,
When some dust has settled we see that for d = 3
Suet = [0, 1,0, 15, =XT0 2705 1 50,1, 6, XTn 27T,
13) — 16,0yt =X e
— XTI g X e 60, X g,

The reader will notice an obvious cancellation as well as the practicability, much as
in Theorem 1, of determining the portion of the expansion that remains invariant with
increasing n.

Yet more succinctly, when d = 4 the right hand side of (12) is

Spg+ X Tre —xT
which we expand by two folds. We note that
—(ne+ X T+ X T (s = X T X T X Ty = X T2 pl /g,
whence adding X~ 7~ ' is a matter of appending the expansion of
Spe— X TrraX Ty —x s xTe =g, ga X Ty —x Tz,
After appending one fold, that leads us to appending the continued fraction expansion of
Sng+ X Toax =5 4 x T,

which is again just a fold. Subtracting X~7* now turns out to be a matter of appending
the expansion of

Sn76“X7T" o X g X T2 _x ToigxTs = s,,,7+X7T" s X Tnagx T2 x T 1

which is of a level of complication with which we have already dealt. We do not trouble
the printer with an explicit statement of the eventual result.

Bemusingly, the case of larger d is rather different. The success of the program out-
lined above appears eventually to rely on the expansions of sums such as

se X Tt g X k= 1,...,d—1

being specialisable. So that we may glimpse this we give some cursory details of the case
d = 5. Here the right hand side of (12) is

Sn-10 X TnsgxTir _xToa

and when, after an easy fold, we attempt to add X~ 7 7 we find ourselves endeavouring
to expand

Sn_10 _x by _xTin = Su_14 +X g x o _x Ty,

This is an ‘and so on’ which seems to terminate in the manner indicated above. ]
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8 Remarks and reflections. The results given here are an interesting consequence
of mathematical experimentation The numerical observation (1) raised questions first
answered by the experimental result (2) Ultimately Theorem 1 proves (2) En route we
were led to experiments that suggest results as in Conjecture 2 There we prove (13) for
the case d = 3 and say enough to have proved the conjecture for d = 4 For the rest
we give only a glimpse at, and less than a sketch of, a possible proof Indeed, we are not
entirely confident that we are recommending a viable program

The pattern in (2) 1s only just vivid enough to be able to deduce something of the
genre of Theorem 1 by eye With increasing d the experimental data 1s almost hopelessly
complicated and the arguments suggested after Conjecture 2 become correspondingly
the more 1nstructive

Whatever, 1t seems clear that Theorem 1 could not have been guessed and would not
have been motivated without computer aid The computations yielding (1) are almost
infeasible by hand, and those yielding (2) are totally impractical without machine help

Generally, on being shown (2) one might well guess the following Suppose (Uj) 1s
a 1nteger recurrence sequence, that 1s the solution of a linear homogeneous recurrence

relation

Upin = $1Upin 1+ +5,U, h=0,1,
with integer coefficients s;, , s, and integer imitial values Uy, , U, | Suppose further
that the sequence (Uy) 1s strictly increasing with limy, o Upyy / U, = p > 1 Then the
series

X Vax Urax Vg

has a specialisable continued fraction expansion

With p > 2 this 1s trivially true by the folding lemma, perhaps with the qualification
that we must omit some 1nitial terms of the series to ensure that always Uy, /U, > 2
(and then p = 2 will do), ¢f [2,3,10,11] However, when 1 < p < 2 we have not as yet
noticed any examples, except for the cases, relying on the identity 2U,,, = Upypyy + Up,
discussed here We do not know what weight to give to our negative evidence It 1s not
utterly compelling because 1t 1s clear that any conjecture as above must be adjusted to
allow the sequence to start with some term subsequent to Uy On the other hand the
evidence given 1n support of Conjecture 2 suggests that our present techniques are not
up to constructing favourable examples, 1f there are any
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and would have suggested how to avoid its remaining infelicities. I shall miss Ross
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