THE ORDER OF CERTAIN DIRICHLET SERIES

CHUNG-MING AN

(Received 28 August 1969)
Communicated by B. Mond

This paper is a continuation of [1] ${ }^{1}$. We shall use the same notations as those in [1]. Let $F(X) \in R[X], X=\left(X_{1}, \cdots, X_{n}\right)$, be a polynomial of degree $d>0$ and $h(x) \in S P\left(R^{n}\right)$, i.e. $h(x)$ is the sum of a polynomial and a Schwartz function. We shall consider Dirichlet series of the type

$$
Z(h, F, s)=\sum_{v \in Z^{n}-N_{F}} h(v) F(v)^{-s}, \quad s=\sigma+t i,
$$

where $N_{F}=\left\{x \in \boldsymbol{R}^{n}: F(x)=0\right\}$. We proved, in [1], that $Z(h, F, s)$ is regular for $\sigma>(n+p) / d$ and possesses the analytic continuation to the whole s-plane when $F_{d}(x)$ (the highest homogeneous part of $\left.F(X)\right) \neq 0$ for $x \neq 0$. In this paper, we shall say the following.

$$
Z(h, F, s)=O\left(|t|^{k(n+1)} e^{\pi|t|}\right), \quad \text { for } \sigma_{1} \geqq \sigma \geqq \sigma_{2}>\frac{n+p-k}{d} .
$$

Let $h(x)$ be a Schwartz function and K be a suitable positive integer. Put

$$
J_{2}(s)=\int_{|x| \geq K} h(x) F(x)^{s} d x
$$

From the proof of $[1$, Theorem 1], we see that

$$
J_{2}(s)=O\left(e^{\pi|t|}\right), \quad \text { for }|\sigma| \leqq \sigma_{2}
$$

where σ_{2} is a positive real number and

$$
J_{2}(s)=O(1), \quad \text { for }|\sigma| \leqq \sigma_{2},
$$

when $F(x)>0$ for $|x| \geqq K$.
Let $G(X) \in \boldsymbol{R}[X]$ be a polynomial of degree p and

$$
I(s)=\int_{|x| \geqq K} G(x) F(x)^{s} d x
$$

[^0]We can rewrite $I(s)$ as

$$
I(s)=\sum_{u=0}^{p} I_{u}(s)
$$

where

$$
I_{u}(s)=\int_{|x| \geqq K} G_{u}(x) F(x)^{s} d x
$$

and $G_{u}(X)$ is the homogeneous part of $G(X)$ of degree u. Following Mahler's method [2], we get

$$
I_{u}(s)=\sum_{q=0}^{k-1}\left(\frac{s}{q}\right) M_{q}(s)+N_{k}(s)
$$

where

$$
\begin{aligned}
& M_{q}(s)=\int_{S^{n-1}} \int_{K}^{\infty} G_{u}(w) F_{d}(w)^{s} R(r w)^{q} r^{n+u+d s-1} d r d w \\
& N_{k}(s)=\int_{S^{n-1}} \int_{K}^{\infty} \int_{0}^{1} k\binom{s}{q} G_{u}(w) F_{d}(w)^{s} R(r w)^{k} r^{n+u+d s-1} \\
&\{1+\tau R(r w)\}^{s-k}(1-\tau)^{k-1} d \tau d r d w
\end{aligned}
$$

and

$$
R(x)=\frac{F_{d-1}(x)+\cdots+F_{0}(x)}{F_{d}(x)}, \quad \text { for } x \neq 0
$$

Then, it is easy to see that, for $\beta_{2} \leqq \sigma \leqq \beta_{1}<-(n+u-k) / d$,

$$
N_{k}(s)=O\left(|t|^{k} e^{\pi|t|}\right)
$$

and

$$
M_{q}(s)=O\left(e^{\pi \mathrm{ft} \mid}\right)
$$

We have $(s / q)=O\left(|t|^{k}\right)$ for $\beta_{2} \leqq \sigma \leqq \beta_{1}<-(n+p-k) / d$. Hence

$$
I(s)=O\left(|t|^{k} e^{\pi|t|}\right) \quad \text { for } \beta_{2} \leqq \sigma \leqq \beta_{1}<-\frac{n+p-k}{d}
$$

Put, for suitable K as in [1, Theorem 1],

$$
V_{1}=\left\{v \in Z^{n}:-K+1 \leqq v_{i} \leqq K, \text { for all } i=1, \cdots, n\right\}, V_{2}=Z^{n}-V_{1}
$$

We see that

$$
Z(h, F, s)=Z_{1}(h, F, s)+Z_{2}(h, F, s)
$$

where

$$
\begin{aligned}
& Z_{1}(h, F, s)=\sum_{v \in V_{1}-N_{F}} h(v) F(v)^{-s} \\
& Z_{2}(h, F, s)=\sum_{v \in V_{2}} h(v) F(v)^{-s}
\end{aligned}
$$

It follows immediately that

$$
Z_{1}(h, F, s)=O\left(e^{\pi|t|}\right), \quad \text { for } \sigma_{1} \geqq \sigma \geqq \sigma_{2}>\frac{n+p-k}{d}
$$

If we apply the generalized Euler's summation formula [1, Lemma 2] and use Mahler's method, we shall have the following.

$$
Z_{2}(h, F, s)=O\left(|t|^{k(n+1)} e^{\pi|t|}\right), \quad \text { for } \sigma_{1} \geqq \sigma \geqq \sigma_{2}>\frac{n+p-k}{d} .
$$

Hence, we obtain

$$
Z(h, F, s)=O\left(|t|^{k(n+1)} e^{\pi|t|}\right), \quad \text { for } \sigma_{1} \geqq \sigma \geqq \sigma_{2} \geqq \frac{n+p-k}{d}
$$

Furthermore, we may assume that $F(X)$ is homogeneous and $n>1$. Since the n-sphere S^{n-1} is connected, we see that either $F(x)>0$ for all $x \neq 0$ or $F(x)<0$ for all $x \neq 0$. Without loss of generality, we may assume $F(x)>0$ for all $x \neq 0$. Thus

$$
Z(h, F, s)=O\left(|t|^{k(n+1)}\right), \quad \text { for } \sigma_{1} \geqq \sigma \geqq \sigma_{2}>\frac{n+p-k}{d}
$$

References

[1] An, Chung-ming, On a generalization of Gamma function and its application to certain D richlet series (Dissertation, University of Pennsylvania, 1969).
[2] Mahler, K., 'Ưber einer Satz von Mellin', Math. Ann. 100 (1928), 384-395.

Department of Mathematics
Johns Hopkins University

[^0]: ${ }^{1}$ The results in [1] have appeared in the Bulletin of the American Mathematical Society, May, 1969.

