Contents Volume 13:1 March 1990

Dawkins, M. S. From an animal's point of view: Motivation, fitness, and animal welfare

1

Precommentary by: Singer, P. The significance of animal suffering

Open Peer Commentary

Archer, J. Ethological motivational theory as a basis		
for assessing animal suffering	12	Μ
Arluke, A. The significance of seeking the animal's		
perspective	13	N
Broom, D. M. The importance of measures of poor		N
welfare	14	14
Burghardt, G. M. Animal suffering, critical		р
anthropomorphism, and reproductive rights	14	n D
Byrne, R. W. Having the imagination to suffer, and		n n
to prevent suffering	15	K
Chapman, C. R. On the neurobiological basis of		
suffering	16	38
Dantzer, R. Animal suffering: The practical way		58
forward	17	~
DeGrazia, D. On Singer: More argument, less		Se
prescriptivism	18	_
Donnelley, S. Epistemology, ethics, and evolution	18	Sl
Dupré, J. The philosophical foundations of animal		
welfare	19	Ti
Fox, M. A. Taking the animal's viewpoint seriously	20	T
Fraser, A. F. Concepts of suffering in veterinary		Te
science	21	T
Frev. R. G. Animals, science, and morality	22	
Grav. I. A. In defence of speciesism	22	W
Hughes, B. O. & Petherick, I. C. Experimental		
investigation of animal suffering	23	W
Jackson , F. Singer's intermediate conclusion	24	W
Jamieson , D . Science and subjective feelings	25	
Magnus, D. & Thiel, P. Hidden adaptationism	26	W
Magurran A E Obtaining and applying objective	-0	
criteria in animal welfare	26	
McFarland D Suffering by analogy	20 97	P
Manch I A & Stricklin W B Consumer demand	21	Si
theory and social behavior. All chickens are not		
acual	28	A
And M Developmental experience and the	20	D
menui, m. Developmentai experience and the		D

Schull, J. Are species intelligent?

Open Peer Commentary

Clayton, P. The ontology of "intelligent species"	75
Csányi, V. Are species Gaia's thoughts?	76
Dennett, D. C. Teaching an old dog new tricks	76
Derrickson, K. C. & Greenberg, R. S. Unfortunately,	
scale and time matter	77
Ghiselin, M. T. Are libraries intelligent?	78
Hendersen, R. W. Species intelligence: Hazards of	
structural parallels	78
Johnson, M. H. Similarities and dissimilarities	
between adaptation and learning	79
Kalat, J. W. Species intelligence: Analogy without	

https://doi.org/10.1017/S0140525X00080298 Published online by Cambridge University Press
--

ificance of animal suffering	9
potential for suffering; Does "out of experience"	
mean "out of mind"?	28
Monaghan, P. Consumer demand: Can we deal with	
differing priorities?	29
Ng. YK. The case for and difficulties in using	
"demand areas" to measure changes in well-being	30
Novak M. A. & Meyer, I. S. Seeking the sources of	00
simian suffering	31
Bachlin , H. Suffering as a behaviorist views it	32
Bollin B E Science and value	32
Rowan A. N. To suffer or not to suffer? That is the	
question	33
Salzen E. A. Emotion empathy and suffering	34
Sanontzis S. F. The meaning of speciesism and the	•••
forms of animal suffering	35
Segal E F Animal well-being. There are many naths	00
to enlightenment	36
Shettleworth S. I. & Mrosovsky N. From one	00
subjectivity to another	37
Timberlake W. The attribution of suffering	38
Toates F Broadening the welfare index	40
Townsend A Pain suffering and distress	41
Turkkan I S Paradoxical experimental outcomes and	11
animal suffering	42
Walker S Natural and unnatural justice in animal	14
	43
Wall P D Who suffers?	43
Wanalsfalder F "Perceived cost" may reveal	10
frustration but not baredom	11
Widowski T Consumer demand theory and animal	11
welfare: Value and limitations	45
wenare. Value and miniations	10
Postcommentary	
Singer, P. Ethics and animals	45
Author's Response	
Dawkins, M. S. Other minds and other species	49

63

homology	80
Leiser, D. Evolution, development, and learning in	
cognitive science	80
Lloyd, E. A. "Intelligent" evolution and neo-	
Darwinian straw men	81
MacKay, W. A. The way of all matter	82
Odling-Smee, F. J. Biotic intelligence (BI)?	83
Piattelli-Palmarini, M. Which came first, the egg-	
problem or the hen-solution?	84
Russell, P. A. "Intelligence" as description and as	
explanation	86
Salthe, S. N. Misplaced predicates and misconstrued	
intelligence	86

04
34
94
94

109

165

Wahlsten, D. Insensitivity of the analysis of variance to heredityenvironment interaction

Open Peer Commentary

glass: Distortions of heredity-environment interactions 135 Bookstein, F. L. An interaction effect is not a Henderson, N. D. Why do gene-environment 121 measurement interactions appear more often in laboratory animal Bullock, D. Methodological heterogeneity and the studies than in human behavioral genetic research? 136 anachronistic status of ANOVA in psychology 122Hirsch, J. A nemesis for heritability estimation 137 Carlier, M. & Marchaland, C. Interaction between Kempthorne, O. How does one apply statistical genotype and environment: Yes, but who truly analysis to our understanding of the development of demonstrates this kind of interaction? 123 138 human relationships? Cheverud, J. M. Inheritance and the additive genetic Kline, P. Heredity and environment: How important model 124 is the interaction? 139 Chiszar, D. A. & Gollin, E. S. Additivity, interaction, Lipp, H.-P. Flechsig's rule and quantitative behavior and developmental good sense 124 139 genetics Cicchetti, D. V. On the insensitivity of the ANOVA to interactions: Some suggested simulations Maxwell, S. E. Why are interactions so difficult to 125 detect? 140 Crow, J. F. How important is detecting interaction? 126 McGuffin, P. & Katz, R. Who believes in estimating Crusio, W. E. Estimating heritabilities in quantitative heritability as an end in itself? 141 behavior genetics: A station passed 127 Nyborg, H. Good, bad, and ugly questions about Dawes, R. M. Monotone interactions: It's even heredity 142128 simpler than that Plomin, R. Trying to shoot the messenger for his Denenberg, V. H. Effects of correlation on message 144 interactions in the analysis of variance 129 Schönemann, P. H. Inherited quality control Detterman, D. K. Don't kill the ANOVA messenger 145 problems for bearing bad interaction news 131 van Noordwijk, A. J. Variation in means and in ends 145 Dudley, R. M. Interaction and dependence prevent 132 estimation Goodall, C. One statistician's perspective 133 Author's Response Goodnight, C. J. On the relativity of quantitative Wahlsten, D. Goals and methods: The study of genetic variance components 134 146 Harrington, G. M. Through the ANOVA lookingdevelopment versus partitioning of variance

Continuing Commentary

On Searle, J. R. (1980) Minds, brains, and programs. BBS 3:417-457.			
MacQueen, K. G. Not a trivial consequence	163	Author's Response Searle, J. R. The causal powers of the brain: The necessity of sufficiency	164
On Plomin, R. & Daniels, D. (1987) Why from one another? BBS 10:1–60.	are ch	ildren in the same family so different	165
Humphreys, L. D. The obvious method of analysis of data is sometimes inadequate	165	Authors' Response Plomin, R. Why are children in the same family so	

Humphreys

different? Response to commentary by Lloyd D.

On Skarda, C. A. & Freeman, W. J. (1987) sense of the world. BBS 10:161-95.	7) How	brains make chaos in order to make	166
Krieger, D. A putative role for transient local coherence in cognitive function	167	Authors' Response Freeman, W. J. & Skarda, C. A. Chaotic dynamics versus representationalism	167
On Swerdlow, N. R. & Koob, G. F. (1987 depression: Toward a unified hypothesis 10:197–245.) Dopa of cor	mine, schizophrenia, mania, and tico-striato-pallido-thalamic function. BBS	168
 Wu, J. C., Siegel, B. V., Jr., Haier, R. J. & Buchsbaum, M. S. Testing the Swerdlow/Koob model of schizophrenia pathophysiology using positron emission tomography Sawaguchi, T. Dysfunction of the dopaminergic modulation of GABAergic circuitry in the prefrontal cortex must be involved in psychoses and movement 	169	Authors' Response Swerdlow, N. R. & Koob, G. F. Toward a unified hypothesis of cortico-striato-pallido-thalamus function?	172
disorders	170		

On Sperber, D. & Wilson, D. (1987) Préc BBS 10:697–754.	eis of R	elevance: Communication and Cognition.	177
Politzer, G. Characterizing spontaneous inferences Garnham, A. & Perner, J. Does manifestness solve problems of mutuality?	177 178	Authors' Response Sperber, D. & Wilson, D. Spontaneous deduction and mutual knowledge	179

On Glezer I. J. Jacobs, M. S. & Morgane, P. L. (1988) Implications of the "initial brain"	
concept for brain evolution in Cetacea. BBS 11:75–116.	185

Deacon, T. W. Confusing size-correlated differences with phylogenetic "progression" in brain evolution	185	Authors' Response Glezer, I. I., Jacobs, M. S. & Morgane, P. J. Allometricks: Confusion about phylogenetic	
		"progression" in brain evolution?	187

On Benbow, C. P. (1988) Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. BBS 11:169-232.

Borkowski, J. G. "Small" gender differences on the SAT: A scenario about social origins	190	Rushton, J. P. Sex, ethnicity, and hormones Hovenga, K. B. Some of the pathological assumptions	194
Bouchard, T. I., Ir., & Segal, N. L. Advanced	100	in the sciences of gender	194
mathematical reasoning ability: A behavioral genetic		Eliot, J. Spatial ability: Not enough space to make a	
perspective	191	sex difference	196
Boomsma, D. I. Does every smart boy have a smart sister?	192	Author's Response	
Petersen, A. C., Crockett, L. J. & Graber, J. Issues		Benbow, C. P. Sex differences in mathematical	
in the development of mathematical precocity	192	reasoning ability among the intellectually talented:	
Richardson, K. Go back to cognitive theory	193	Further thoughts	196

190

Contents Volume 13:2 June 1990

Näätänen, R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function

Open Peer Commentary

Banquet, J. P., Smith, M. J. & Renault, B. Bottom- up versus top-down: An alternative to the	
automatic-attended dilemma?	233
Cammann, R. Is there a mismatch negativity (MMN)	
in the visual modality?	234
Candelaria de Ram, S. The sensory basis of mind:	
Feasibility and functionality of a phonetic sensory	
store	235
Ciesielski, K. T. Variability, gnostic units and N2	236
Cowan, N. Converging evidence about information	
processing	237
Czigler, I. Is the attentional trace theory modality	
specific?	238
Deecke, L., Asenbaum, S. & Lang, W. "Context-	
related" brain DC activity during selective attention	239
Giard, MH. More in the early selection process than	
the attentional-trace mechanism?	240
Grossberg, S. Attention and recognition learning by	941
Hansen I C. Processing negativity: Comparison	
nrocess or selective processing?	949
Harter M B & Anllo-Vento I. Modality	
differences: Memory trace development or efferent	
cortical priming?	243
Iohnston W. A. & Hawley K. I. Novel popul in	
vision	244
Karmos, G. & Cséne, V. Is ERP the right key to open	
the "black box"?	245
Kranda, K. Modelling attention in man	246
Kristeva, B. & Chevne, D. Similarities between	
attentional and preparatory states	247
Libet. B. Attentional theories and conscious	
perception	247
£ £	

Michie P. T. Siddle D. A. T. & Coltheart M.	
Stimulus selection, sensory memory, and orienting	248
Miller, I. EBPs and attention: Deep data, broad	
theory	249
Okita, T. Further processing: When does it	
commence?	250
Rugg, M. D. ERPs and the fate of unattended stimuli	251
Scharf, B. The case for precocious effects of attention	
on auditory processing	252
Sereno, A. B. Searching for a neurophysiological view	
of ERP components	253
Sirevaag, E. J. & Kramer, A. F. On the structure	
and capacity of selection processes	254
Tipper, S. P. Early or late selection? Still an open	
issue	255
Ullsperger, P. & Baldeweg, T. Sensory adaptation	
and mismatch negativity	255
Underwood, G. Attention and awareness: Using the	
to-be-ignored evidence	256
Verbaten, M. N. Näätänen's auditory model from a	
visual perspective	256
Verleger, R. Top-down, fast-same, and acoustic	
perception	257
Woldorff, M. G. & Hillyard, S. A. Attentional	
influence on the mismatch negativity	258
woods, D. L. Selective auditory attention: Complex	000
processes and complex ERP generators	260

Author's Response

Näätänen, R. Automatic and attention-dependent	
processing of auditory stimulus information	

261

289

201

Prechtl, J. C. & Powley, T. L. B-afferents: A fundamental division of the nervous system mediating homeostasis?

Open Peer Commentary

Andrews, P. L. R. & Lawes, I. N. C. Classification of		J
afferents by input not by output?	300	
Cervero, F. To classify or not to classify: That is the		ł
question	301	
Davison, J. S. & Sharkey, K. A. How does the		
B-afferent classification apply to vagal afferent		I
neurons?	301	
Engel, B. T. B-afferents: Is an anatomic definition		I
sufficient to characterize the organization of neural		
function?	302	I
Felten, D. L. & Felten, S. Y. Let afferents be		
afferents	303	N
Grundy, D. B-afferents: The basis for autonomic		
reflexes?	304	N
Haring, J. H. "What's in a name?" A case for		
redefining the autonomic nervous system	304	

Hsiao, S. Convergence of autonomic afferents at brainstem neurons: Stomach reflex and food intake	305
Jancsó, G. B-afferents: A system of capsaicin-sensitive	
primary sensory neurons?	306
Kobayashi, S. Network-structure of the peripheral	
autonomic innervation apparatus should be	
thoroughly evaluated	307
Laughton, W. B. Does form underlie function in the	
neural control of homeostasis?	308
Lawson, S. Visceral, autonomic, or just plain small	
dark neurones?	309
Lembeck, F. & Bucsics, A. Classification of peripheral	
neurones	310
Maggi, C. A. Can capsaicin be used to discriminate	
between subpopulations of B-afferents?	312
Mendell, L. Somatic spikes of sensory neurons may	
provide a better sorting criterion than the	
autonomic/somatic subdivision	312

Neuhuber, W. L. Dichotomic classification of sensory		B-afferents: A neural system with dual sensory-
neurons: Elegant but problematic	313	efferent function
Niijima, A. B-afferents: An important afferent input to		Wall, P. D. Against rigid classification
the autonomic reflexes	314	Yox, D. P. B-neurons mediating homeostasis and
Oehme, P., Krause, W. & Hecht, K.		behavior?
Neuromodulatory activity of peripherally		Zilov, V. G. What about B-afferents and homeostasis
administered substance P	315	from a systemic point of view?
Ritter, S. & Ritter, R. C. Capsaicin-sensitivity and the sensory vagus: Do these exceptions prove or		Authors' Response
disprove the B-neuron rule for autonomic afferents?	315	Prechtl, J. C. & Powley, T. L. Ontogeny, form,
Szolcsányi, J. Capsaicin-sensitive chemoceptive		function, and prediction

Falk, D. Brain evolution in Homo: The "radiator" theory

Open	Peer	Comme	entary
------	------	-------	--------

 Open Peer Commentary Abitol, M. M. The multiple obstacles to encephalization Barton, R. A. Brain evolution in <i>Homo</i>: The "hood" theory Bingham, G. P. The role of a behavior in evolution Bortz, W. M. 2d Exercise as prime mover and a cool brain Brace, C. L. The brain drain as a means of cooling hot heads Brengelmann, G. L. Brain cooling via emissary veins: Fact or fancy? Brinnel, H. Selective brain cooling: A multidisciplinary concept Cabanac, M. Beardedness, baldness, and northern climate Caputa, M. On the possible evolution of brain cooling system in <i>Homo</i>: Sweating versus panting Dean, M. C. Venous drainage of the brain Fialkowski, K. B. Heat stress as a factor in the 	344 345 346 347 348 349 350 351 351 352	 Grüsser, OJ. Aristotle redivivus? Multiple causes and effects in hominid brain evolution Hargens, A. R. & Meyer, JU. Upright posture and cranial hemodynamics in humans and other "tall" animals Holloway, R. L. Falk's radiator hypothesis Jerison, H. J. Welcome light on a hot topic Kimbel, W. H. The radiator hypothesis: A theory in "vein" Krantz, G. S. Relating brains, blood, and bipedalism Limber, J. Have cooler heads prevailed? Scheibel, A. B. Boiling over in the great rift valley Senut, B. Overheated brains: Radiation of radiators? Smith, B. H. The cost of a large brain Wheeler, P. E. The influence of thermoregulatory selection pressures on hominid evolution Whiten, A. Causes and consequences in the evolution of hominid brain size Zihlman, A. The problem of variation 	356 359 360 360 361 362 363 364 364 365 366 366 367 367
 Fialkowski, K. K. Heat stress as a factor in the preadaptative approach to the origin of the human brain Finlay, B. L. Master Mechanic, may I? Evolutionary permission versus evolutionary pressure Foley, R. The causes of brain enlargement in human evolution 	352 353 354	Author's Response Falk, D. Evolution of a venous "radiator" for cooling the cortex: "Prime releaser" of brain evolution in <i>Homo</i>	368

316

317

317

318

318

333

383

Continuing Commentary

On Rao, K. R. & Palmer, J. (1987) The anomaly called psi: Recent research and criticism. BBS 10:539-643. 383

On Alcock, J. E. (1987) Parapsychology: Science of the anomalous or search for the soul? BBS 10:553-643.

 Hövelmann, G. H. The versatility of "metaphors" Hubbard, T. L. Scientific reduction and the possibility of parapsychology: Parallels from cognitive psychology MacKay, D. G. Why facts neither speak for themselves nor resolve the psi controversy: The view from the rational epistemology Snow, P. Small statistical aberrations and mutual 	383 384 385	 Authors' Responses Rao, K. R. & Palmer, J. Researching data and searching for theory Alcock, J. E. Parapsychology: Science of the anomalous or search for nonmaterial aspects of human existence 	387 390
information	387		

Gómez, J. C. Causal links, contingencies, and the			
comparative psychology of intelligence	392		
Rilling, M. Comparing representations between			
species intelligently	392	Author's Response	
Vauclair, J. Wanted: Cognition	393	Macphail, E. M. Comparative psychology: New	
Walker, S. F. Specious comparisons versus		experimental findings, not new approaches, are	
comparative epistemology	394	needed	395
On Smolensky, P. (1988) On the proper t	treatme	ent of connectionism. BBS 11:1–74.	399
Searle, I. B. Models and reality	399		
Goel. V. Smolensky's proper treatment of	000		
connectionism: Having it both ways	400		
Varela, F. T. & Sanchez-Leighton, V. On observing	100		
emergent properties and their compositions	401		
Oden, G. C. Connectionism: Self-abuse is improper			
treatment	402		
McNaughton, N. Evolution and connectionism	402		
Massaro, D. W. The psychology of connectionism	403		
Reggia. I. A. Level of analysis is not a central issue	406	Author's Response	
Verschure, P. F. M. J. Smolensky's theory of mind	407	Smolensky, P. In defense of PTC	407

On Macphail, E. M. (1987) The comparative psychology of intelligence. BBS 10:645-695.

391

On Whiten, A. & Byrne, R. W. (1988) T	'actical o	deception in primates. BBS 11:233–273.	412
Whitehead, J. M. Gaining access to the black box Gómez, I. C. Primate tactical deception and	413	Authors' Response	
sensorimotor social intelligence	414	Whiten, A. & Byrne, R. W. Mind and causality	415

On Logue, A. W. (1988) Research on self-control: An integrating framework. BBS 11:665– 709. 419

Lea, S. E. G. & Tarpy, R. M. Extending the evolutionary and economic analysis of intertemporal choice	419	Author's Response Logue, A. W. Economical self-control	420
choice	419	Logue, A. W. Economical self-control	420

Contents Volume 13:3 September 1990

Tsotsos, J. K. Analyzing vision at the complexity level

Open Peer Commentary

• •			
Cave, K. R. The theory and practice of attention	445	are no green elephants	453
Desimone, R. Complexity at the neuronal level	446	Strong, G. W. Algorithmic complexity analysis does	
Dickinson, B. W. Computation, complexity, and		not apply to behaving organisms	453
systems in nature	447	Treisman, A. Search and the detection and integration	
Eagleson, R. Task-dependent constraints		of features	454
on perceptual architectures	447	Uhr, L. Some important constraints on complexity	455
Eklundh, IO. What are the insights gained		Uttal, W. R. On brains and models	456
from the complexity analysis?	448	Wolfe, J. M. Complexity, guided search, and the data	457
Heathcote, A. & Mewhort, D. I. K. Is unbounded		Zucker, S. W. Adaptation and attention	458
visual search intractable?	449		
Krueger, L. E. & Tsay, CY. Analyzing vision			
at the complexity level: Misplaced complexity?	449		
Kube, P. R. Complexity is complicated	450		
Lowe. D. G. Probability theory as an alternative			
to complexity	451	Author's Response	
Mohnhaunt, M. & Neumann, B. Support for an		Tsotsos, I. K. A little complexity analysis goes	
intermediate pictorial representation	452	a long way	458
intermediate Preteria representation		a long may	-30

Hanson, S. J. & Burr, D. J. What connectionist models learn: Learning and representation in connectionist networks

Open Peer Commentary

Barash, S. Relatively local neurons in a distributed	
representation: A neurophysiological perspective	489
Bridgeman, B. What connectionists learn:	
Comparisons of model and neural nets	491
Brown, G. D. A. & Oaksford, M. Representational	
systems and symbolic systems	492
Chater, N. Connectionism and classical computation	493
Golden, R. M. Are connectionist models just statistical	
pattern classifiers?	494
Haberlandt, K. Expose hidden assumptions	
in network theory	495
Hendler, J. But what is the substance of connectionist	
representation?	496
Jordan, M. I. A non-empiricist perspective	
on learning in layered networks	497
Kruschke, J. K. How connectionist models learn: The	
course of learning in connectionist networks	498
Lamberts, K. & d'Ydewalle, G. What can	
psychologists learn from hidden-unit nets?	499
Langley, P. Approaches to learning and representation	500
Levelt, W. J. M. On learnability, empirical	
foundations, and naturalness	501
Maki, W. S. Toward a unification of conditioning	
and cognition in animal learning	501
Munsat, S. Keeping representations at bay	502
Pavel, M. Learning from learned networks	503

Phillips, W. A., Hancock, P. J. B. & Smith, L. S.	
representations	505
Rager , J. E. The analysis of the learning needs	
to be deeper	505
Sharkey, N. E. There is more to learning than meets	
the eye (or ear)	506
Suppes, P. Problems of extension, representation,	
and computational irreducibility	507
Timberlake, W. Connectionist models: Too little	
too soon?	508
Toulouse, G. Advances in neural network theory	509
Van Gelder, T. Connectionist models learn what?	509
Weaver, M. & Kaplan, S. Connectionist learning	
and the challenge of real environments	510

Siegel, R. M. Is it really that complex? After all, there

Author's Response

Hanson, S. J. Learning and representation: Tensions at the interface

511

519

423

471

Previc, F. H. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications

542

Open Peer Commentary

Abrams, R. A. Does visual-field specialization really have implications for coordinated visual-motor behavior?

Bracewell, R. M. Seeing double: Dichotomizing	
the visual system	543
Brannan, J. R. The benefits and constraints of visual	
processing dichotomies	544

Breitmeyer, B. G. Ups and downs of the visual field:		Marsolek, C. J. Why the computations must not	
Manipulation and locomotion	545	be ignored	554
Bruce, C. J. & MacAvoy, M. G. Response field biases		Osaka, N. Peripheral lower visual fields: A neglected	
in parietal, temporal, and frontal lobe visual areas	546	factor?	555
Bryden, M. P. & Underwood, G. Twisting the world		Siegel, R. M. Properties of neurons in the dorsal	
by 90°	547	visual pathway of the monkey	555
Butter, C. M. Functional specialization in the visual		Strong, G. W. Different regions of space or different	
system: Retinotopic or body centered?	548	spaces altogether: What are the dorsal/ventral	
Chalupa, L. M. & White, C. A. Visual information		systems processing?	556
in the upper and lower visual fields may be		Williams, R. W. The primary visual system does not	
processed differently, but how and why remains		care about Previc's near-far dichotomy. Why not?	557
to be established	549	Young, A. W. Only half way up	558
Crewther, D. P. The ups and downs of visual fields	550		
Findlay, J. M. Ecology and functional specialization:			
The whole is less than the sum of the parts	551		
Goodale, M. A. & Graves, J. A. Pigeons, primates,			
and division of labor in the vertebrate visual system	551		
Heilman, K. M., Bowers, D. & Shelton, P. Attention			
to near and far space: The third dichotomy	552		
Kinsbourne, M. & Duffy, C. J. The role of dorsal/		Author's Response	
ventral processing dissociation in the economy		Previc, F. H. Visual processing in three-dimensional	
of the primate brain	553	space: Perceptions and misperceptions	559

Continuing Commentary

On Dennett, D. C. (1983) Intentional systematic paradigm" defended. BBS 6:343-390.	tems i	n cognitive ethology: The "Panglossian	577
Amundson, R. Doctor Dennett and Doctor Pangloss: Perfection and selection in biology and psychology	577	Author's Response Dennett, D. C. Dr. Pangloss knows best	581

On Dennett, D. C. (1988) Précis of The	Intentio	onal Stance. BBS 11:495–546.	582
De Gelder, B. The matter of other minds	582	Author's Response Dennett, D. C. Abstracting from mechanism	583

On Turkkan, J. S. (1989) Classical conditioning: The new hegemony. BBS 12:121-179. 584

Goudie , A. J. Opponent processes in classical conditioning. The jury is still out	584	Author's Response	
Kirsch, I. The placebo effect as a conditioned response: Failures of the "litmus test"	585	Turkkan, J. S. The search for convincing experimental tests of conditioned drug effects	586

Contents Volume 13:4 December 1990

Searle, J. R. Consciousness, explanatory inversion, and cognitive science

McDermott, D. Zombies are people, too	617
antological prison	619
Pow C Constituent constituent and the reality of mind	600
Resented D M On being accessible to	020
Rosential, D. M. On being accessible to	601
Consciousness	021
Schull, J. When functions are causes	622
Shevrin, H. Unconscious mental states do have an	
aspectual shape	624
Skarda, C. A. The neurophysiology of consciousness	
and the unconscious	625
Taylor, C. The possibility of irreducible intentionality	626
Ter Meulen, A. The causal capacities of linguistic	
rules	626
Uleman, J. S. & Uleman, J. K. Unintended thought	
and nonconscious inferences exist	627
Underwood, G. Conscious and unconscious	
representation of aspectual shape in cognitive science	628
Velmans, M. Is the mind conscious, functional, or	
both?	629
Young, A. W. Consciousness, historical inversion, and	
cognitive science	630
Zelazo, P. D. & Reznick I. S. Ontogeny and	
intentionality	631
Editorial Commontony	620
	002
Author's Hesponse	
Searle, J. R. Who is computing with the brain?	632

Hodgkin, D. & Houston, A. I. Selecting for the con in

Penrose, R. Précis of The Emperor's New Mind: Concerning computers, minds, and the laws of physics

Open Peer Commentary

		riougani, D. u Houston, In a beleeting for the con m	
Boolos, G. On "seeing" the truth of the Gödel		consciousness	668
sentence	655	Johnson, J. L., Ettinger, R. H. & Hubbard, T. L.	
Boyle, F. Algorithms and physical laws	656	A long time ago in a computing lab far, far away	670
Breuel, T. M. AI and the Turing model of		Kentridge, R. W. Parallelism and patterns of thought	670
computation	657	Libet, B. Time-delays in conscious processes	672
Butterfield, J. Lucas revived? An undefended flank	658	Lutz, R. Quantum AI	672
Chalmers, D. J. Computing the thinkable	658	MacLennan, B. The discomforts of dualism	673
Davis, M. Is mathematical insight algorithmic?	659	Madsen, M. S. Uncertainty about quantum mechanics	674
Dennett, D. C. Betting your life on an algorithm	660	Manaster-Ramer, A., Savitch, W. J. & Zadrozny, W.	
Doyle, J. Perceptive questions about computation and		Gödel redux	675
cognition	661	McDermott, D. Computation and consciousness	676
Eagleson, R. Computations over abstract categories of		Mortensen, C. The powers of machines and minds	678
representation	661	Niall, K. K. Steadfast intentions	679
Eccles, J. C. Physics of brain-mind interaction	662	Perlis, D. The emperor's old hat	680
Garnham, A. Don't ask Plato about the emperor's		Roeper, T. Systematic, unconscious thought is the	
mind	664	place to anchor quantum mechanics in the mind	681
Gigerenzer, G. Strong AI and the problem of		Roskies, A. Seeing truth or just seeming true?	682
"second-order" algorithms	663	Smithers, T. The pretender's new clothes	683
Gilden D. L. & Lappin, J. S. Where is the material of		Stanovich, K. E. And then a miracle happens	684
the emperor's mind?	665	Taylor, M. M. The thinker dreams of being an	•
Glymour, C. & Kelly, K. Why you'll never know		emperor	685
whether Roger Penrose is a computer	666	Tsotsos, J. K. Exactly which emperor is Penrose	
Higginbotham, J. Penrose's Platonism	667	talking about?	686

Varela, F. J. Between Turing and quantum mechanics		Zytkow, J. M. Minds beyond brains and algorithms	691
there is body to be found	687		
Waltz, D. & Pustejovsky, J. Penrose's grand unified			
mystery	688		
Wilensky, R. Computability, consciousness, and		Author's Response	
algorithms	690	Penrose, R. The nonalgorithmic mind	692

Pinker, S. & Bloom, P. Natural language and natural selection

Open Peer Commentary

Bates, E. & MacWhinney, B. Welcome to	
functionalism	727
Broadwell, G. A. Linguistic function and linguistic	
evolution	728
Catania, A. C. What good is five percent of a	
language competence?	729
Frazier, L. Seeing language evolution in the eye:	
Adaptive complexity or visual illusion?	731
Freyd, J. J. Natural selection or shareability?	732
Gopnik, M. A Rube Goldberg machine par excellence	734
Hornstein, N. Selecting grammars	735
Hurford, J. R. Beyond the roadblock in linguistic	
evolution studies	736
Jackendoff, R. What would a theory of language	
evolution have to look like?	737
Kingston, J. Five exaptations in speech: Reducing the	
arbitrariness of the constraints on language	738
Kluender, K. R. Lessons from the study of speech	
perception	739
Lewontin, R. C. How much did the brain have to	
change for speech?	740
Lieberman, P. "Not invented here"	741
Limber, J. Language evolved – So what's new?	742
Lindblom, B. Adaptive complexity in sound patterns	743
Magnus, D. Causal stories	744
Maratsos, M. Middle positions on language, cognition,	

viaraisus, mi. miuuic	positions on language,	cognition,	
and evolution			744

Newmeyer, F. J. Natural selection and the autonomy	
of syntax	745
Ninio, A. The genome might as well store the entire	
language in the environment	746
Otero, C. P. The emergence of homo loquens and the	
laws of physics	747
Pesetsky, D. & Block, N. Complexity and adaptation	750
Piattelli-Palmarini, M. An ideological battle over	
modals and quantifiers	752
Premack, D. On the coevolution of language and	
social competence	754
Ridley, M. Arbitrariness no argument against	
adaptation	756
Sober, E. Anatomizing the rhinoceros	764
Sperber, D. The evolution of the language faculty:	
A paradox and its solution	756
Studdert-Kennedy, M. This view of language	758
Tomasello, M. Grammar yes, generative grammar no	759
Tooby, J. & Cosmides, L. Toward an adaptationist	
psycholinguistics	760
Ulback, I. Why chimps matter to language origin	762
Wilkins, W. & Dumford, J. In defense of exaptation	763

707

Authors' Response

Pinker, S. & Bloom, P. Issues in the evolution of the	
human language faculty	765