LIE DERIVATIONS ON SKEW ELEMENTS IN PRIME RINGS WITH INVOLUTION

ΒY

ELEANOR KILLAM

ABSTRACT. Let *R* be a prime ring with involution satisfying $x/2 \in R$ whenever $x \in R$. Assume that *R* has two nontrivial symmetric idempotents e_1, e_2 whose sum is not 1, and that the subrings determined by e_1, e_2 , $1 - (e_1 + e_2)$ are not orders in simple rings of dimension at most 4 over their centers. Then if *L* is a Lie derivation of the skew elements *K* into *R* there exists a subring *A* of *R*, $A \subseteq \overline{K}$, a derivation $D:A \rightarrow RC$, the central closure of *R*, and a mapping $T:R \rightarrow C$, satisfying L = D + T on *K* and $T[\overline{K \cap A}, A] = 0$.

Introduction. A Lie derivation on a ring R is a mapping $L: R \to R'$, R' a ring containing R, such that L is additive and L[x, y] = [L(x), y] + [x, L(y)] for all x, y in R, where [u, v] = uv - vu is the Lie product. A derivation on a ring R is a mapping $D: R \to R'$, R' a ring containing R, such that D is additive and D(xy) = D(x)y + xD(y) for all x, y in R.

It is easily seen that if $D: R \to R'$ is a derivation and T is an additive mapping of R into the center of R' such that T[R, R] = 0, then L = D + T is a Lie derivation on R. Martindale [3] has shown that if R is a primitive ring, not of characteristic 2, which contains a nontrivial idempotent, and has a Lie derivation $L: R \to R$, then there exists a primitive ring R' containing R, a derivation $D: R \to R'$ and an additive mapping $T: R \to Z(R')$, the center of R', such that T[R, R] = 0 and L = D + T. He has also noted (in conversation) that the same proof works for prime rings using the central closure for R'. Jacobs [2] has shown the following: Let R be a simple ring with involution, of characteristic not 2, with two nontrivial symmetric, orthogonal idempotents whose sum is not 1. Then if L is a Lie derivation of the skew elements K into R there exists a derivation $D: R \to R$ and an additive mapping $T: R \to Z(R)$ such that T[R, R] = 0 and L = D + T on K, providing R is not isomorphic to the 4×4 matrices over a field on the 3×3 matrices over a field of characteristic 3.

We show the following: Let *R* be a prime ring with involution, with $x/2 \in R$ whenever $x \in R$, and with two symmetric orthogonal idempotents whose sum is not 1. Then if *L* is a Lie derivation of the skew elements *K* into *R* there exists a derivation $D:A \rightarrow RC$, where *A* is a subring of *R*, $A \subseteq \overline{K}$, *RC* is the central closure of *R*, and there

Received by the editors December 27, 1985, and, in revised form, June 24, 1986.

AMS Subject Classification (1980): 16A72

[©] Canadian Mathematical Society 1986.

LIE DERIVATIONS

exists a mapping $T:R \to C$ satisfying L = D + T on K and $T([K \cap A, A]) = 0$, providing the subrings determined by the idempotents are not orders in simple rings of dimensions at most 4 over their centers.

In what follows R will denote a prime ring with involution; $S = \{x:x^* = x\}$ is the set of symmetric elements of R; $K = \{x:x^* = -x\}$ is the set of skew elements of R; R' = RC is the central closure of R; \overline{B} is the subring of R generated by a subset B of R. Similar notation will be used for related rings.

PROPOSITION 1. (Erickson [1].) Let R be a prime ring with involution. Then K contains a nonzero *-ideal of R unless R is an order in a simple ring which is at most 4-dimensional over its center.

We now add the assumptions that $x/2 \in R$ whenever $x \in R$, and that R has two nontrivial symmetric orthogonal idempotents e_1, e_2 such that $e_1 + e_2 \neq 1$, and we set $e_3 = 1 - e_1 - e_2$ whether or not $1 \in R$.

Let $R_{ij} = e_i Re_j$, $i, j \in \{1, 2, 3\}$, and let $x_{ij} = e_i xe_j$, $x \in R$. Note that each R_{ii} is prime and $R = \Sigma \bigoplus R_{ij}$. Let K_i be the skew elements of R_{ii} and note that $K_i = e_i Ke_i$. We also assume each \overline{K}_i contains a nonzero *-ideal U_i . We use similar notation for R'. Note that $Z(R'_{ii}) = e_i C$, i = 1, 2, 3. Note that if R is a prime ring with involution such that \overline{K} contains a nonzero ideal U then $x \in R$, xK = 0 or Kx = 0 implies x = 0, and [x, K] = 0 implies $x \in Z(R)$.

LEMMA 1. Let $L: K \to R$ be a Lie derivation, and let $k_i \in K_i$, i = 1, 2, 3. Then with h, i, j distinct

$$L(k_i) = a_i + a_{ij} + a_{ji} + a_{ih} + a_{hi} + z,$$

where

$$z \in C$$
, $a_i = e_i L(k_i) e_i - z e_i \in R'$, $a_{mn} = e_m L(k_i) e_n$, $m, n \in \{h, j\}$, $m \neq n$.

PROOF. Let $k_i \in K_i$, $k_j \in K_j$. Then $0 = [k_i, k_j]$ so

$$0 = L([k_i, k_j]) = [L(k_i), k_j] + [k_i, L(k_j)] = L(k_i)k_j - k_jL(k_i) + k_iL(k_j) - L(k_j)k_i.$$

Taking the R_{hj} component yields $e_h L(k_i) e_j k_j = 0$. Since k_j was arbitrary $e_h L(k_i) e_j = 0$. Similarly $e_j L(k_i) e_h = 0$. Taking the R_{jj} component yields

$$e_j L(k_i) e_j k_j - k_j e_j L(k_i) e_j = 0 \qquad \text{so } [e_j L(k_i) e_j, K_j] = 0,$$

so $e_i L(k_i) e_i \in Z(e_{ij}) \subseteq e_i C, \qquad \text{so } e_i L(k_i) e_i = e_i z_i$

for some $z_i \in C$.

Now let $0 \neq x_{jh} \in R_{jh}$, and let $x_{hj} = x_{jh}^*$. Then

$$0 = L([k_i, x_{jh} - x_{hj}]) = L(k_i) (x_{jh} - x_{hj}) - (x_{jh} - x_{hj})L(k_i) + k_i L(x_{ih} - x_{hi}) - L(x_{ih} - x_{hi})k_i.$$

Taking the R_{jh} component yields

$$0 = e_j L(k_i) x_{jh} - x_{jh} L(k_i) e_h = z_j x_{jh} - x_{jh} z_h = (z_j - z_k) x_{jh}$$

Since C is a field and $x_{jh} \neq 0$ we have $z_j = z_h$. Let $z = z_h = z_j$. Then $ze_j + ze_h = z(1 - e_i)$ and $L(k_i)$ has the stated form.

LEMMA 2. Let $L: K \to R$ be a Lie derivation, and let $x_{ij} \in R_{ij}$. Then $e_h L(x_{ij} - x_{ij}^*)e_h = ze_h$ for some $z \in C, h, i, j$ distinct.

PROOF. Let $X = x_{ij} - x_{ij}^*$ and let $k \in K_h$. Then

$$0 = L[X,k] = L(X)k - kL(X) + XL(k) - L(k)X.$$

Taking the R_{hh} component yields $0 = e_h L(X) e_h k - k e_h L(X) e_h$, so $e_h L(X) e_h \in Z(R_{hh})$, so $e_h L(X) e_h = z e_h$ for some $z \in C$.

DEFINITION 1. (a) Define a mapping $D: K \to R'$ by D is additive,

$$D(k_i) = L(k_i) - z, D(x_{ij} - x_{ij}^*) = L(x_{ij} - x_{ij}^*) - z, i \neq j,$$

where the z's are as in Lemmas 1 and 2. Note that

$$[D(k),r] = [L(k),r] \quad for \quad k \in K, \quad r \in R.$$

Also note that

$$e_i D(k)e_j = e_i L(k)e_j$$
 for $k \in K$, $i \neq j$.

(b) Define D on U_i by D is additive and

 $D(k\ell \dots m) = D(k)\ell \dots m + kD(\ell) \dots m + \dots + k\ell \dots D(m), \, k, \, \ell, \, m \in K_i.$

(c) Define D on $U_i R_{ii} U_i$ by D is additive and

$$D(u_{i}x_{ij}u_{j}) = D(u_{i})x_{ij}u_{j} + u_{i}D(x_{ij} - x_{ij}^{*})u_{j} + u_{i}x_{ij}D(u_{j}),$$

where $u_i \in U_i$, $u_j \in U_j$, $x_{ij} \in R_{ij}$, $i \neq j$. Note $(x_{ij} - x_{ij}^*)u_j = x_{ij}u_j$ and $u_i(x_{ij} - x_{ij}^*) = u_i x_{ij}$.

(d) Let $A = \sum_{i,j} (U_i + U_i R_{ij} U_j)$. Define D on A by the above with D additive.

Note that A is a direct sum and is a subring of R. (In particular $(U_i R_{ij} U_j)(U_j R_{ji} U_i)$ $\subseteq U_i$ since U_i is an ideal in R_{ii} .) Also note $A \subseteq \overline{K}$. We will show D is a derivation on A. We first need to show D is well defined on A.

LEMMA 3. Let
$$m \in K_h$$
 and $n \in K_i$ or $n = x_{ij} - x_{ij}^*, h, i, j$ distinct. Then

$$D(m)n + mD(n) = 0 = D(n)m + nD(m).$$

PROOF. 0 = [m, n] so

0 = L([m, n]) = [D(m), n] + [m, D(n)] = D(m)n - nD(m) + mD(n) - D(n)m.This yields

$$D(m)n + mD(n) = nD(m) + D(n)m.$$

By Definition 1(a) and the lemmas we have

1987]

$$(e_i + e_j)\{D(m)n + mD(n)\} = 0$$

hence

$$(e_i + e_j)\{nD(m) + D(n)m\} = 0$$

Also

$$e_h\{nD(m) + D(n)m\} = 0$$

hence

 $e_h\{D(m)n + mD(n)\} = 0.$

Therefore

$$D(m)n + mD(n) = 0 = D(n)m + nD(m).$$

LEMMA 4. Let

 $K(i, j) = K_i \cup K_j \cup \{x_{ij} - x_{ij}^* : x \in R\}.$

Define $P(y, k\ell \dots m)$ for

$$y = e_h x e_i, x \in R, k, \ell, \ldots, m \in K(i, j)$$

by

$$P(y,k\ell\ldots m) = [[\ldots [[y - y^*,k]\ell],\ldots],m]$$

Then

(a)
$$P(y,k\ell\ldots m) = yk\ell\ldots m - m^*\ldots \ell^*k^*y^*$$

(b)
$$e_h L\{P(y, k\ell \dots m)\} = e_h D(y - y^*)k\ell \dots m + yD(k\ell \dots m) - e_h D(m^* \dots \ell^* k^*)y^*.$$

LEMMA 5. D is well defined on each U_i .

PROOF. Assume $0 = \sum k \ell \dots m$ with $k, \ell, \dots, m \in U_i$, and let

$$r = \sum \{ D(k)\ell \dots m + kD(\ell) \dots m + \dots + k\ell \dots D(m) \}.$$

Note that $r = \sum D(k\ell \dots m)$ by Definition 1(b). For each $n \in K_i$, $j \neq i$, we have

$$rn = \Sigma k\ell \dots D(m)n = \Sigma k\ell \dots \{D(m)n + mD(n)\} = 0$$

using Lemma 3 and our assumption that $0 = \sum k\ell \dots m$. Since rn = 0 for all $n \in K_j$ we have $re_j = 0$. Similarly $0 = re_h = e_h r = e_j r$. Also, for $x \in R$, $y = e_h xe_i$ we have

$$0 = \Sigma \{ yk\ell \dots m - m^* \dots \ell^* k^* y^* \}$$

since $\Sigma k\ell \dots m = 0$ implies $\Sigma m^* \dots \ell^* k^* = 0$. Thus by Lemma 4(a) $\Sigma P(y, k\ell \dots m)$ = 0 so $\Sigma L\{P(y, k\ell \dots m)\} = 0$. This implies $\Sigma yD(k\ell \dots m)e_i = 0$ using Lemma 4(b), the assumption $\Sigma k\ell \dots m = 0$ and $y^*e_i = 0$. Thus $0 = y\{\Sigma D(k\ell \dots m)\}e_i = yre_i$. Since x was arbitrary $(e_h Re_i)re_i = 0$ so $e_ire_i = 0$. Therefore every component of r is 0 and

[September

D is well defined on each U_i .

LEMMA 6. D is well defined on each $U_i R_{ij} U_j$, $i \neq j$.

PROOF. Assume $0 = \sum uxv$ where $u \in U_i$, $x \in R_{ij}$, $v \in U_j$. Let $X = x - x^*$ and note that uxv = uXv. Let $r = \sum \{D(u)Xv + uD(X)v + uXD(v)\}$ and note that $r = \sum D(uxv)$ by Definition 1(c). Then for $k \in K_h$, $h \neq i$, j, we have

$$kr = \sum kD(u)Xv = \sum \{kD(u) + D(k)u\}Xv = 0$$

using Lemma 3 and our assumption $0 = \sum uXv$. Therefore $e_h r = 0$. Similarly $0 = e_j r$ = $re_i = re_h$. Now let $z \in R$, $y = e_h ze_i$. By assumption we have

$$0 = \Sigma(yuXv - v^*X^*u^*y^*).$$

Thus by Lemma 4(a) $\Sigma P(y, uXv) = 0$ so $0 = \Sigma L\{P(y, uXv)\}$. This implies $0 = \Sigma e_h y D(uXv)e_j$ using Lemma 4(b), the assumption $\Sigma uXv = 0$, and $y^*e_j = 0$. Therefore $e_h Re_i re_j = 0$ so $e_i re_j = 0$. Thus every component of *R* is 0 and *D* is well defined on each $U_i R_{ij} U_j$.

THEOREM 1. D is well defined on $A = \sum_{i,j} (U_i + U_i R_{ij} U_j)$.

PROOF. Definition 1 and Lemmas 1, 2, 5 and 6.

THEOREM 2. $D: A \rightarrow R'$ is a derivation.

PROOF. (a) It follows from Definition 1 that D(xy) = D(x)y + xD(y) if $x, y \in U_i$. (b) It follows from Definition 1 that D(xy) = D(x)y + xD(y) if $x \in U_i, y \in U_iR_{ij}U_j$ or $x \in U_iR_{ij}U_i, y \in U_j$.

(c) If $x = \sum \ldots k_i \in U_i$ and $y = \sum \ell_i \ldots \in U_i$ then xy = 0 so D(xy) = 0.

$$D(x)y + xD(y) = \sum (0 + \{D(k_i)\ell_j + k_iD(\ell_j)\}) + 0$$

by Lemma 3, so D(xy) = D(x)y + xD(y).

(d) Similarly D(xy) = 0 = D(x)y + xD(y) if $x \in U_i$ and $y \in U_jR_{ji}U_i$, or $x \in U_i$, $y \in U_jR_{jh}U_h$, or $x \in U_iR_{ij}U_j$, $y \in U_i$ or $x \in U_iR_{ij}U_j$, $y \in U_h$, or $x \in U_iR_{ij}U_j$, $y \in U_iR_{ij}U_j$, or $x \in U_iR_{ij}U_j$, $y \in U_hR_{hi}U_i$, or $x \in U_iR_{ij}U_j$, $y \in U_hR_{hj}U_j$, or $x \in U_iR_{ij}U_j$, $y \in U_hR_{hi}U_i$ or $x \in U_iR_{ij}U_j$, $y \in U_iR_{hi}U_h$.

(e) Let $u_i x_{ij} v_j \in U_i R_{ij} U_j$ and $w_j y_{jh} z_h \in U_j R_{jh} U_h$, $x_{ji} = x_{ij}^*$, $y_{hj} = y_{jh}^*$. Then

$$D\{(u_{i}x_{ij}v_{j})(w_{j}y_{jh}z_{h})\} = D\{u_{i}(x_{ij}v_{j}w_{j}y_{jh})z_{h}\}$$

= $D(u_{i})x_{ij}v_{j}w_{j}y_{jh}z_{h} + u_{i}D(x_{ij}v_{j}w_{j}y_{jh} - y_{hj}w_{j}v_{j}x_{ji})z_{h}$
+ $u_{i}x_{ij}v_{j}w_{j}y_{jh}D(z_{h}).$

Looking at the middle term we have

$$u_{i}D(x_{ij}v_{j}w_{j}y_{jh} - y_{hj}w_{j}v_{j}x_{ji})z_{h} = u_{i}D\{(x_{ij}v_{j} - v_{j}x_{ji})(w_{j}y_{jh} - y_{hj}w_{j}) - (w_{j}y_{jh} - y_{hj}w_{j})(x_{ij}v_{j} - v_{j}x_{ji})\}z_{h}$$

$$= u_{i}D[x_{ij}v_{j} - v_{j}x_{ji}, w_{j}y_{jh} - y_{hj}w_{j}]z_{h}$$

$$= u_{i}D(x_{ij}v_{j} - v_{j}x_{ij})w_{j}y_{jh}z_{h}$$

$$+ u_{i}x_{ij}v_{j}D(w_{j}y_{jh} - y_{hj}w_{j})z_{h}$$

348

LIE DERIVATIONS

$$= u_i D[x_{ij} - x_{ji}, v_j] w_j y_{jh} z_h + u_i x_{ij} v_j D[w_j, y_{jh} - y_{hj}] z_h = u_i D(x_{ij} - x_{ji}) v_j w_j y_{jh} z_h + u_i x_{ij} D(v_j) w_j y_{jh} z_h + u_i x_{ij} v_j D(w_j) y_{jh} z_h + u_i x_{ij} v_i w_j D(y_{jh} - y_{hj}) z_h$$

using the definition of D (with Lemmas 1 and 2.) Thus

$$D\{(u_{i}x_{ij}v_{j})(w_{j}y_{jh}z_{h})\} = D(u_{i}x_{ij}v_{j})w_{j}y_{j}y_{jh}z_{h} + u_{i}x_{ij}v_{j}D(w_{j}y_{jh}z_{h})$$

(f) Let $x \in U_i R_{ij} U_j$, $y \in U_j R_{ji} U_i$ and let r = D(x)y + xD(y) - D(xy). For $k \in U_h$ we have

$$rk = xD(y)k + xyD(k) - xyD(k) - D(xy)k = xD(yk) - D\{(xy)k\} = 0$$

so $re_h = 0$. Similarly $0 = e_h r = e_j r = re_j$. Now let $z \in U_i R_{ih} U_h$. Then

$$rz = D(x)yz + xD(y)z + xyD(z) - xyD(z) - D(xy)z$$

= D(x)yz + xD(yz) - D{(xy)z} = D{x(yz)} - D{(xy)z}
= 0

so $re_i = 0$. Similarly $e_i r = 0$ so r = 0.

Thus D is a derivation on A.

DEFINITION 2. Define T on R by $T(x) = \frac{1}{2} \{ L(x - x^*) - D(x - x^*) \}.$

THEOREM 3. $T: R \to C$ is additive, L = D + T on K, and $T([\overline{K \cap A}, A]) = 0$.

PROOF. T is additive since L and D are, and $T: R \to C$ by the definition of D. If $x \in K$ then $x - x^* = 2x$. So L = D + T on K. Let $k, m \in K \cap A$. Then

$$L([k,m]) = [D(k),m] + [k,D(m)] = D([k,m])$$

using Definition 1(a) and Theorem 2. Thus $T([K \cap A, K \cap A]) = 0$. If $s = s^* \in S \cap A$ then $s - s^* = 0$ so $T(s) = \frac{1}{2} \{ L(s - s^*) - D(s - s^*) \} = 0$. But $[K \cap A, S \cap A] \subseteq S \cap A$ so $T([K \cap A, S \cap A]) = 0$. Hence $T([K \cap A, A]) = 0$ since $A = S \cap A + K \cap A$. Assume $T([(K \cap A)^N, A]) = 0$. If $k_1, \ldots, k_{N+1} \in K \cap A$ and $r \in A$ then

$$[k_1 \dots k_{N+1}, r] = k_1 \dots k_{N+1}r - rk_1 \dots k_{N+1} = k_1(k_2 \dots k_{N+1}r) - (k_2 \dots k_{N+1}r)k_1 + (k_2 \dots k_{N+1})(rk_1) - (rk_1)(k_2 \dots k_{N+1}) \in [K \cap A, A] + [(K \cap A)^N, A]$$

This implies $T([(K \cap A)^N, A]) = 0$ for all N so $T([\overline{K \cap A}, A]) = 0$. Putting the above together we have the following.

THEOREM. Let R be a prime ring with involution with $x/2 \in R$ whenever $x \in R$. If R has two non-trivial symmetric orthogonal idempotents e_1, e_2 with $e_1 + e_2 \neq 1$, $e_3 = 1 - e_1 - e_2$, such that each \overline{K}_i , contains a nonzero *-ideal U_i , i = 1, 2, 3, then, letting $A = \Sigma(U_i + U_i R_{ij} U_j)$, for each Lie derivation L: $K \rightarrow R$, there is a derivation

349

1987]

 $D:A \to RC$, and an additive mapping $T:R \to C$, with L = D + T on K and $T([\overline{K \cap A}, A]) = 0$.

If R is simple then $U_i = R_{ii}$ and $U_i R_{ij} U_j = R_{ii} R_{ij} R_{jj} = R_{ij}$ so A = R, and we have the existence of a derivation D on R and an additive mapping T on R with L = D + T on $K, T: R \rightarrow Z, T([R, R]) = 0$, providing dim $R_i/Z_i > 4$, i = 1, 2, 3. As noted earlier Jacobs has more complete results for R simple in his dissertation.

ACKNOWLEDGEMENT. I wish to thank W. S. Martindale III for suggesting the topic and for a number of discussions concerning it.

REFERENCES

T. S. Ericson, *The Lie Structure in Prime Rings with Involution*, J. Algebra **21** (1972), pp. 523-534.
 D. R. Jacobs, *Lie Derivations on the Skew Elements of Simple Rings with Involution*, Ph.D. dissertation, University of Massachusetts, 1973.

3. W. S. Martindale III, Lie Derivations of Primitive Rings, Mich. Math. J. 11 (1964), pp. 183-187.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS 01003