
Canad. Math. Bull. Vol. 30 (3), 1987 

LIE DERIVATIONS ON SKEW ELEMENTS IN 
PRIME RINGS WITH INVOLUTION 

BY 

ELEANOR K1LLAM 

ABSTRACT. Let R be a prime ring with involution satisfying x/2 E R 
whenever x E R. Assume that R has two nontrivial symmetric idempotents 
eu e2 whose sum is not 1, and that the subrings determined by eu e2, 
1 — (e\ + e2) are not orders in simple rings of dimension at most 4 over 
their centers. Then if L is a Lie derivation of the skew elements K into R 
there exists a subring A of R, A Ç K, a derivation D :A —» RC, the central 
closure of R, and a mapping T:R -» C, satisfying L = D + T on K and 

r[Arn ,̂A] = o. 

Introduction. A Lie derivation on a ring /? is a mapping L:R —> /?', /?' a ring 
containing /?, such that L is additive and L[;t, v] = [L(jc),y] + [x,L(v)] for all x, v 
in /?, where [«, v] = uv — vu is the Lie product. A derivation on a ring R is a mapping 
D :/?—»/?',/?' a ring containing/?, such thatD is additive andD(xy) = £>(»y + xD(j) 
for all JC,y in R. 

It is easily seen that if D :R —> R' is a derivation and 7 is an additive mapping of R 
into the center of/?' such that T[/?,/?] = 0, then L = D + 7 is a Lie derivation on /?. 
Martindale [3] has shown that if R is a primitive ring, not of characteristic 2, which 
contains a nontrivial idempotent, and has a Lie derivation L : R —» /?, then there exists 
a primitive ring R' containing R, a derivation D:R —» /?' and an additive mapping 
T:/? -> Z(R'), the center of/?', such that T[R,R] = 0 and L = D + 7. He has also 
noted (in conversation) that the same proof works for prime rings using the central 
closure for /?'. Jacobs [2] has shown the following: Let R be a simple ring with 
involution, of characteristic not 2, with two nontrivial symmetric, orthogonal idem
potents whose sum is not 1. Then if L is a Lie derivation of the skew elements K into 
R there exists a derivation D :R -» R and an additive mapping T:R-^ Z(R) such that 
T[R,R] = 0 and L = D + T on K, providing R is not isomorphic to the 4 x 4 matrices 
over a field on the 3 x 3 matrices over a field of characteristic 3. 

We show the following: Let R be a prime ring with involution, with x/2 E R 
whenever x G /?, and with two symmetric orthogonal idempotents whose sum is not 1. 
Then if L is a Lie derivation of the skew elements K into R there exists a derivation 
D:A^> RC, where A is a subring of /?, A C K, RC is the central closure of/?, and there 
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exists a mapping T:R —» C satisfying L = D + T on K and T([K C\ A,A]) = 0, 
providing the subrings determined by the idempotents are not orders in simple rings of 
dimensions at most 4 over their centers. 

In what follows R will denote a prime ring with involution; S = {JC:JC* = JC} is the 
set of symmetric elements of /?; K = {JC:JC* = —JC} is the set of skew elements of /?; 
R' = RC is the central closure of/?; B is the subring of/? generated by a subset B of 
R. Similar notation will be used for related rings. 

PROPOSITION 1. (Erickson [1].) Let R be a prime ring with involution. Then K 
contains a nonzero *-ideal ofR unless R is an order in a simple ring which is at most 
4-dimensional over its center. 

We now add the assumptions that x/2 E R whenever x E R, and that R has two 
nontrivial symmetric orthogonal idempotents e\,e2 such that ex + e2 i= 1, and we set 
e3 = 1 - e\ - e2 whether or not 1 E R. 

Let R(j = etRej, i, j E {1, 2, 3}, and let xtj = etxej, x E R. Note that each Ru is 
prime and R = 2 © R^. Let K( be the skew elements of Ru and note that Kt = exKei. 
We also assume each Kt contains a nonzero *-ideal £/,-. We use similar notation for R'. 
Note that Z(/?/{) = e,-C, / = 1,2,3. Note that if R is a prime ring with involution such 
that K contains a nonzero ideal U then JC E R, XK = 0 or Kx = 0 implies x = 0, and 
[x,K] = 0 implies JC E Z(R). 

LEMMA 1. Let L:K —» R be a Lie derivation, and let kt E Kb i — 1,2,3. Then 
with h,i, j distinct 

L(kj) = a( + atj + ayi + a,-/, + ahl + z, 

z E C, a{ = eiL{ki)ei — zet E /?', #„,„ = emL(ki)en, m,n E {/*,./}, m =t n. 

PROOF. Let fc, E tf„ £, E AT7, Then 0 - [ki9kj] so 

0 - L([*f,*;]) = [L(kt),kj] + [fc^L^-)] = UWj - kjLik,) + kMkj) - L(kj)kt. 

Taking the Rhj component yields ehL(kj)ejkj = 0. Since £,- was arbitrary ehL(ki)ej 
= 0. Similarly ejL(ki)eh = 0. Taking the Rn component yields 

ejL{ki)ejkj - kjejL{ki)ej = 0 so [ejL(kj)ej,Kj] = 0, 
so ejL(ki)ej E Z{en) C ^-C, so ejL(kj)ej — ejZj 

for some Zj E C. 
Now let 0 =£ JC7/I E /?y7l, and let xhj = x%. Then 

0 = L([ki9Xjh - xhj]) = L(ki) (xjh - xhj) - (xjh - xhj)L(ki) 
+ kiL(xjh - xhj) - L(xjh - xhj)ki. 

Taking the Rjh component yields 

0 = ejL(ki)xjh - xjhL{ki)eh = ZjXjh - xjhzh = {Zj - zk)xjh. 
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Since C is a field and xjh ^ Owe have z7 = zh. Let z = zh = zj. Then zej + zeh = 
z(l - et) and L(kt) has the stated form. 

LEMMA 2. LetL:K-> R be a Lie derivation, and letxi} E R{j. Then ehL(xi} — Xij)eh 

— zehfor some z E C,h,i,j distinct. 

PROOF. Let X = JC/; - x* and let /: E A'/,. Then 

0 = L[X,k] = L(X)k - kL(X) + XL(k) - L(*)X. 

Taking the Rhh component yields 0 = ehL(X)ehk - kehL(X)eh, so ehL(X)eh E Z(Rhh), 
so ehL(X)eh = zeh for some z E C. 

DEFINITION 1. (a) Define a mapping D:K -> R' by D is additive, 

D(ki) = L(ki) - z, D(Xij - x*) = L(Xjj - x*) - z, i ± j , 

where the zs are as in Lemmas 1 and 2. Note that 

[D(k), r) = [L(k),r] for k E K, rE R. 

Also note that 

ejD(k)ej = eiL(k)e} for k E K, i =£ j . 

(b) Define D on Ut by D is additive and 

D(k£ ...m)= D{k)i ...m + kD(t). . . m + .. . + kt. . . D(m), kJ,m<E AT,, 

(c) Define D on UJRJJUJ by D is additive and 

D(UiXijUj) = D{Ui)XijUj + UiD{Xij — Xij)Uj + W/X/7D(w7), 

where w, E Uh u} E £/,-, je/,- E 7?,7, / =/= y. Note (x^ — x^Uj — XyUj and W/(*/7 — xtj) 
— UiXjj. 

(d) Let A = S,-,y (£/,- + UiRijUj). Define D on A by the above with D additive. 

Note that A is a direct sum and is a subring of R. (In particular (UiRuUj)(UjRjiUi) 
C Ui since Ut is an ideal in Ru.) Also note A QK. We will show D is a derivation on 
A. We first need to show D is well defined on A. 

LEMMA 3. Let m E Kh and n E Kt or n = xtj — x*,h,i, j distinct. Then 

D(m)n + mD(n) = 0 = D(n)m + nD(m). 

PROOF. 0 = [m,n] so 

0 = L([m,n]) = [D(m),n] + [m,D(rt)] = D(m)n - nD(m) + mZ)(n) - D(n)m. 

This yields 

D(m)n + mD(n) = nD(m) + D(n)m. 

By Definition 1(a) and the lemmas we have 
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(et + ej){D(m)n + mD(n)} = 0 

hence 

(e, + ej){nD(m) + D(n)m} = 0 

Also 

eh{nD{m) + D{n)m) = 0 

hence 

eh{D(m)n + mD(/i)} = 0. 

Therefore 

D(m)n + mD(n) = 0 = D(n)m + #iD(m). 

LEMMA 4. Lef 

AT(/, 7) = Ki U AT, U {*„• - JC*:JC E /?}. 

De/we?P(;y,W...m)/0r 

y = £fr*£/> j c £ / ? , ^ , f , . . . , m 6 /£(/, 7) 

by 

P(y,k£...m) = [[...[\y-y*,k]e],...]9m]-

Then 

(a) P(y, ke...m)=yke...m- m*... €*fc*y*. 

(b) ehL{P(y, kt...m)} = ehD(y - y*)k€ . . . m + yD(*€ . . . m) 
- ehD(m* . . .€*£*)y*. 

LEMMA 5. D is well defined on each £/,-. 

PROOF. Assume 0 = 2fc€ . . . m with &,€ , . . . , m G £/,-, and let 

r = 2{D(Jt)€...m + JfcD (€ ) . . . m + . . . + H . . .D( /n )} . 

Note that r = SD(/:€. . . m) by Definition 1(b). For each n Ei Kj, j =£ i, we have 

r/i = lk€...D(m)n = 2Jfc€.. .{D(/n)n + mD(«)} = 0 

using Lemma 3 and our assumption that 0 = 2fc€ . . . m. Since m = 0 for all n E £, 
we have re} = 0. Similarly 0 = reh = e/,r = e,-r. Also, for JC E /?, y = ehxet we have 

0 = Z{yk€ . . . m - m* . . . €*£*y*} 

since E H . . . m = 0 implies Era* . . . €*£* = 0. Thus by Lemma 4(a) ^P(y, k€ ... m) 
= 0 so 2L{P(v, fc€ . . . m)} = 0. This implies 2,yD(k£ . . . m)ey = 0 using Lemma 4(b), 
the assumption 2&€ . . . m = 0 andy*e, = 0. Thus 0 = y{LD(k£ . . . m)}e, = yret. Since 
JC was arbitrary (ehRei)rei = 0 so ^re, = 0. Therefore every component of r is 0 and 
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D is well defined on each £/,-. 

LEMMA 6. D is well defined on each UiRyUj, i =É j . 

PROOF. Assume 0 = SWJCV where u E Ui9 x E Rij9 v E £/,-. Let X = JC — JC* and note 

that uxv = uXv. Let r = 2{D(w)Xv + uD(X)v + wXD(v)} and note that r = 2D(WJCV) 

by Definition 1(c). Then for k E Kh, h i= i, j , we have 

fcr = LkD(u)Xv = Z{kD(u) + D(k)u}Xv = 0 

using Lemma 3 and our assumption 0 = 2wXv. Therefore ehr = 0. Similarly 0 = e}r 

= ret = reh. Now let z E R, y = ehzet. By assumption we have 

0 = l(yuXv - v*X*«*y*)-

Thus by Lemma 4(a) 2P(y,wXv) = 0 so 0 = ZL{P(y, uXv)}. This implies 0 = 

^2ehyD(uXv)ej using Lemma 4(b), the assumption EwXv = 0, and y*ej = 0. Therefore 

ehReirej = 0 so e/re,- = 0. Thus every component of R is 0 and D is well defined on 

each UiRijUj. 

THEOREM 1. D is well defined on A = 2,,,- (£/,• + UiRijUj). 

PROOF. Definition 1 and Lemmas 1, 2, 5 and 6. 

THEOREM 2. D:A-+ R' is a derivation. 

PROOF, (a) It follows from Definition 1 thatD(jcy) = D(x)y + xD(y) if JC, y E £/,. 

(b) It follows from Definition 1 thatD(jcy) = D(x)y + xD(y) if JC E £/,-, y E ty/^t/y 

or JC E t/f-/?l7f/7-, y E £/,-. 

(c) If JC = 2 . . . *,- 6 £/,- and y = 2€,- . . . E £/,- then jcy = 0 so D(jcy) = 0. 

D(x)y + jcD(y) = 2 (0 + {D(kt)tj + **©(€,•)}) + 0 

by Lemma 3, so D(jcy) = D(jc)y + JcD(y). 

(d) Similarly D(jcy) = 0 = D(jc)y + JcD(y) if JC E U, and y E UjRjiUh or JC E Uh 

y E UjRjhUh, or JC E UiRijUj, y E Ut or x E £/,•/?„•£/;, y E {/*, or JC E UiR^Uj, 

y E f/^yf/y, or JC E ty/^-t/,-, y E £/*/?/>,•£/„ or JC E £/,/?„•£/;, y E UhRhjUjy or JC E £/,/?„•£/,, 

y E I/^-t / ,- or x E £/,/?,,£/,, y E I / ^ t / * . 

(e) Let w^v,- E ty/^-I/, and w ^ z * E UjRjhUh, xjt = x*, yhj = yfa. Then 

D{(UiXijVj)(Wjyjhzh)} = D{ui(XijVjWjyjh)zh} 

= D(Ui)XijVjWjyjhzh + UiDiXijVjWjyjh - yhjWjVjXji)zh 

+ UiXijVjWjyjhD(zh). 

Looking at the middle term we have 

UiDiXijVjWjyjh - yhjWjVjXji)zh = M/D{(JC0V7- - v ^ ) ( w , ^ A - y^w,) 
- (wyy7/7 - y/,ywy)U/yv7- - VjXji)}zh 

= UiD[XijVj - VjXji,WjyJh - yhjWj]zh 

= UiD(XijVj - VjXij)Wjyjhzh 

+ UiXijVjD(Wjyjh - yhjWj)zh 
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= UiD[Xij - Xji,Vj]Wjyjhzh 

+ UiXijVjDiWj^yjh - yhj]zh 

= UiD(Xij - Xji)VjWjyjhzh 

+ UiXijDiv^WjyjhZh + UiXijVjD(Wj)yjhzh 

-4- UiXijVjWjDiyjh - yhj)zh 

using the definition of D (with Lemmas 1 and 2.) Thus 

D{(UiXijVj)(Wjyjhzh)} = D(UiXijVj)Wjyjyjhzh + UiXijVjD(Wjyjhzh). 

(f) Let x E UiRijUj, y E £/,•/?,-,•£/, and let r = D(x)y + xD(y) - D(xy). For k E Uh 

we have 

r* = xD(y)k + xyD(Â:) - JcyD(fc) - D(xy)& - J C D ( ^ ) - D{{xy)k} = 0 

so reA = 0. Similarly 0 = ehr = e^r = rer Now let z E UiRihUh. Then 

rz = Z)(jc);yz + xD(y)z + xyD(z) - xyD(z) - D(xy)z 

= D(x)yz + xD(jz) - D{(^v)z} = D{JC();Z)} - D{{xy)z} 

= 0 

so rei = 0. Similarly e,r = 0 so r = 0. 

Thus D is a derivation on A. 

DEFINITION 2. De/we T on R by T(x) = {{L{x - JC*) - D(x - JC*)}. 

THEOREM 3. T:R -> C w additive, L = D + T on K, and T([K fl A,A]) = 0. 

PROOF. T is additive since L and Z) are, and T:R —» C by the definition of D. 

If JC E AT then JC - JC* = 2x. So L = D 4- T on AT. 

Let k, m E AT fl A. Then 

L([fc,m]) - [D(ik),m] + [k,D(m)] = D([k,m]) 

using Definition 1(a) and Theorem 2. Thus T([K H A,K n A]) = O.lfs = s* E S H 

A then s - s* = 0 so 7 ( J ) = |{L(,s - s*) - D(s - s*)} = 0. But [K H A,S H A] 

Ç 5 H A so r([/T fl A , 5 fl A]) = O. Hence T([K D A, A]) = 0 since A = S D A + 

A' fl A. Assume T([(K (1 A)N,A]) = 0. If * , , . . . , * * + , e A H A and r E A then 

[k\. .. k^+\9r\ — k\. . . kfij+ \r — rk\.. . k^+ \ — k\(k2 • • - k^+ \r) 

- (k2.. .kN+xr)kx + (*2-. .*jv+i)(f*i) ~ (rkl)(k2.. . ^ + 1 ) 
E [ATI A,A] + [ ( A H A)",A] 

This implies T([(AT H A f ,A]) = 0 for all N so T([K fl A,A]) = 0. 

Putting the above together we have the following. 

THEOREM. Let R be a prime ring with involution with x/2 E R whenever x E R. If 

R has two non-trivial symmetric orthogonal idempotents e\,e2 with e\ + e2 =É 1, 

e3 = 1 — e\ — e2, such that each Kh contains a nonzero *-ideal Uh i = 1 ,2 ,3 , then, 

letting A = S(t / / + UiRijUj), for each Lie derivation L:K —>• R, there is a derivation 
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D\A —» RC, and an additive mapping T:R —» C, vv/Y/i L — D -\r T on K and 
T([K HA,A]) = 0. 

If R is simple then £/,- = /?„ and UiRyUj = RaR^R^ = R(j so A = R, and we have 
the existence of a derivation D on R and an additive mapping T on R with L = 
D + ron/f , 7:/?->Z, r([/?,/?]) = 0, providing dim A//Z,-> 4, i = 1,2,3. As noted 
earlier Jacobs has more complete results for R simple in his dissertation. 
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