LIE DERIVATIONS ON SKEW ELEMENTS IN PRIME RINGS WITH INVOLUTION

BY
ELEANOR KILLAM

Abstract

Let R be a prime ring with involution satisfying $x / 2 \in R$ whenever $x \in R$. Assume that R has two nontrivial symmetric idempotents e_{1}, e_{2} whose sum is not 1 , and that the subrings determined by e_{1}, e_{2}, $1-\left(e_{1}+e_{2}\right)$ are not orders in simple rings of dimension at most 4 over their centers. Then if L is a Lie derivation of the skew elements K into R there exists a subring A of $R, A \subseteq \bar{K}$, a derivation $D: A \rightarrow R C$, the central closure of R, and a mapping $T: R \rightarrow C$, satisfying $L=D+T$ on K and $T[\overline{K \cap A}, A]=0$.

Introduction. A Lie derivation on a ring R is a mapping $L: R \rightarrow R^{\prime}, R^{\prime}$ a ring containing R, such that L is additive and $L[x, y]=[L(x), y]+[x, L(y)]$ for all x, y in R, where $[u, v]=u v-v u$ is the Lie product. A derivation on a ring R is a mapping $D: R \rightarrow R^{\prime}, R^{\prime}$ a ring containing R, such that D is additive and $D(x y)=D(x) y+x D(y)$ for all x, y in R.

It is easily seen that if $D: R \rightarrow R^{\prime}$ is a derivation and T is an additive mapping of R into the center of R^{\prime} such that $T[R, R]=0$, then $L=D+T$ is a Lie derivation on R. Martindale [3] has shown that if R is a primitive ring, not of characteristic 2, which contains a nontrivial idempotent, and has a Lie derivation $L: R \rightarrow R$, then there exists a primitive ring R^{\prime} containing R, a derivation $D: R \rightarrow R^{\prime}$ and an additive mapping $T: R \rightarrow Z\left(R^{\prime}\right)$, the center of R^{\prime}, such that $T[R, R]=0$ and $L=D+T$. He has also noted (in conversation) that the same proof works for prime rings using the central closure for R^{\prime}. Jacobs [2] has shown the following: Let R be a simple ring with involution, of characteristic not 2 , with two nontrivial symmetric, orthogonal idempotents whose sum is not 1 . Then if L is a Lie derivation of the skew elements K into R there exists a derivation $D: R \rightarrow R$ and an additive mapping $T: R \rightarrow Z(R)$ such that $T[R, R]=0$ and $L=D+T$ on K, providing R is not isomorphic to the 4×4 matrices over a field on the 3×3 matrices over a field of characteristic 3 .

We show the following: Let R be a prime ring with involution, with $x / 2 \in R$ whenever $x \in R$, and with two symmetric orthogonal idempotents whose sum is not 1 . Then if L is a Lie derivation of the skew elements K into R there exists a derivation $D: A \rightarrow R C$, where A is a subring of $R, A \subseteq \bar{K}, R C$ is the central closure of R, and there
exists a mapping $T: R \rightarrow C$ satisfying $L=D+T$ on K and $T([\overline{K \cap A}, A])=0$, providing the subrings determined by the idempotents are not orders in simple rings of dimensions at most 4 over their centers.

In what follows R will denote a prime ring with involution; $S=\left\{x: x^{*}=x\right\}$ is the set of symmetric elements of $R ; K=\left\{x: x^{*}=-x\right\}$ is the set of skew elements of R; $R^{\prime}=R C$ is the central closure of $R ; \bar{B}$ is the subring of R generated by a subset B of R. Similar notation will be used for related rings.

Proposition 1. (Erickson [1].) Let R be a prime ring with involution. Then \bar{K} contains a nonzero *-ideal of R unless R is an order in a simple ring which is at most 4-dimensional over its center.

We now add the assumptions that $x / 2 \in R$ whenever $x \in R$, and that R has two nontrivial symmetric orthogonal idempotents e_{1}, e_{2} such that $e_{1}+e_{2} \neq 1$, and we set $e_{3}=1-e_{1}-e_{2}$ whether or not $1 \in R$.

Let $R_{i j}=e_{i} R e_{j}, i, j \in\{1,2,3\}$, and let $x_{i j}=e_{i} x e_{j}, x \in R$. Note that each $R_{i i}$ is prime and $R=\Sigma \oplus R_{i j}$. Let K_{i} be the skew elements of $R_{i i}$ and note that $K_{i}=e_{i} K e_{i}$. We also assume each \bar{K}_{i} contains a nonzero $*$-ideal U_{i}. We use similar notation for R^{\prime}. Note that $Z\left(R_{i i}^{\prime}\right)=e_{i} C, i=1,2,3$. Note that if R is a prime ring with involution such that \bar{K} contains a nonzero ideal U then $x \in R, x K=0$ or $K x=0$ implies $x=0$, and $[x, K]=0$ implies $x \in Z(R)$.

Lemma 1. Let $L: K \rightarrow R$ be a Lie derivation, and let $k_{i} \in K_{i}, i=1,2,3$. Then with h, i, j distinct

$$
L\left(k_{i}\right)=a_{i}+a_{i j}+a_{j i}+a_{i h}+a_{h i}+z
$$

where

$$
z \in C, \quad a_{i}=e_{i} L\left(k_{i}\right) e_{i}-z e_{i} \in R^{\prime}, \quad a_{m n}=e_{m} L\left(k_{i}\right) e_{n}, \quad m, n \in\{h, j\}, \quad m \neq n .
$$

Proof. Let $k_{i} \in K_{i}, k_{j} \in K_{j}$. Then $0=\left[k_{i}, k_{j}\right]$ so

$$
0=L\left(\left[k_{i}, k_{j}\right]\right)=\left[L\left(k_{i}\right), k_{j}\right]+\left[k_{i}, L\left(k_{j}\right)\right]=L\left(k_{i}\right) k_{j}-k_{j} L\left(k_{i}\right)+k_{i} L\left(k_{j}\right)-L\left(k_{j}\right) k_{i} .
$$

Taking the $R_{h j}$ component yields $e_{h} L\left(k_{i}\right) e_{j} k_{j}=0$. Since k_{j} was arbitrary $e_{h} L\left(k_{i}\right) e_{j}$ $=0$. Similarly $e_{j} L\left(k_{i}\right) e_{h}=0$. Taking the $R_{j j}$ component yields

$$
\begin{array}{cl}
e_{j} L\left(k_{i}\right) e_{j} k_{j}-k_{j} e_{j} L\left(k_{i}\right) e_{j}=0 & \text { so }\left[e_{j} L\left(k_{i}\right) e_{j}, K_{j}\right]=0, \\
\text { so } e_{j} L\left(k_{i}\right) e_{j} \in Z\left(e_{j j}\right) \subseteq e_{j} C, & \text { so } e_{j} L\left(k_{i}\right) e_{j}=e_{j} z_{j}
\end{array}
$$

for some $z_{j} \in C$.
Now let $0 \neq x_{j h} \in R_{j h}$, and let $x_{h j}=x_{j h}^{*}$. Then

$$
\begin{aligned}
0=L\left(\left[k_{i}, x_{j h}-x_{h j}\right]\right)= & L\left(k_{i}\right)\left(x_{j h}-x_{h j}\right)-\left(x_{j h}-x_{h j}\right) L\left(k_{i}\right) \\
& +k_{i} L\left(x_{j h}-x_{h j}\right)-L\left(x_{j h}-x_{h j}\right) k_{i} .
\end{aligned}
$$

Taking the $R_{j h}$ component yields

$$
0=e_{j} L\left(k_{i}\right) x_{j h}-x_{j h} L\left(k_{i}\right) e_{h}=z_{j} x_{j h}-x_{j h} z_{h}=\left(z_{j}-z_{k}\right) x_{j h} .
$$

Since C is a field and $x_{j h} \neq 0$ we have $z_{j}=z_{h}$. Let $z=z_{h}=z_{j}$. Then $z e_{j}+z e_{h}=$ $z\left(1-e_{i}\right)$ and $L\left(k_{i}\right)$ has the stated form.

Lemma 2. Let $L: K \rightarrow R$ be a Lie derivation, and let $x_{i j} \in R_{i j}$. Then $e_{h} L\left(x_{i j}-x_{i j}^{*}\right) e_{h}$ $=z e_{h}$ for some $z \in C, h, i, j$ distinct .

Proof. Let $X=x_{i j}-x_{i j}^{*}$ and let $k \in K_{h}$. Then

$$
0=L[X, k]=L(X) k-k L(X)+X L(k)-L(k) X .
$$

Taking the $R_{h h}$ component yields $0=e_{h} L(X) e_{h} k-k e_{h} L(X) e_{h}$, so $e_{h} L(X) e_{h} \in Z\left(R_{h h}\right)$, so $e_{h} L(X) e_{h}=z e_{h}$ for some $z \in C$.

Definition 1. (a) Define a mapping $D: K \rightarrow R^{\prime}$ by D is additive,

$$
D\left(k_{i}\right)=L\left(k_{i}\right)-z, D\left(x_{i j}-x_{i j}^{*}\right)=L\left(\dot{x}_{i j}-x_{i j}^{*}\right)-z, i \neq j,
$$

where the z 's are as in Lemmas 1 and 2. Note that

$$
[D(k), r]=[L(k), r] \quad \text { for } \quad k \in K, \quad r \in R .
$$

Also note that

$$
e_{i} D(k) e_{j}=e_{i} L(k) e_{j} \quad \text { for } \quad k \in K, \quad i \neq j
$$

(b) Define D on U_{i} by D is additive and

$$
D(k \ell \ldots m)=D(k) \ell \ldots m+k D(\ell) \ldots m+\ldots+k \ell \ldots D(m), k, \ell, m \in K_{i}
$$

(c) Define D on $U_{i} R_{i j} U_{j}$ by D is additive and

$$
D\left(u_{i} x_{i j} u_{j}\right)=D\left(u_{i}\right) x_{i j} u_{j}+u_{i} D\left(x_{i j}-x_{i j}^{*}\right) u_{j}+u_{i} x_{i j} D\left(u_{j}\right),
$$

where $u_{i} \in U_{i}, u_{j} \in U_{j}, x_{i j} \in R_{i j}, i \neq j$. Note $\left(x_{i j}-x_{i j}^{*}\right) u_{j}=x_{i j} u_{j}$ and $u_{i}\left(x_{i j}-x_{i j}^{*}\right)$ $=u_{i} x_{i j}$.
(d) Let $A=\Sigma_{i, j}\left(U_{i}+U_{i} R_{i j} U_{j}\right)$. Define D on A by the above with D additive.

Note that A is a direct sum and is a subring of R. (In particular $\left(U_{i} R_{i j} U_{j}\right)\left(U_{j} R_{j i} U_{i}\right)$ $\subseteq U_{i}$ since U_{i} is an ideal in $R_{i i}$.) Also note $A \subseteq \bar{K}$. We will show D is a derivation on A. We first need to show D is well defined on A.

Lemma 3. Let $m \in K_{h}$ and $n \in K_{i}$ or $n=x_{i j}-x_{i j}^{*}, h, i, j$ distinct. Then

$$
D(m) n+m D(n)=0=D(n) m+n D(m)
$$

Proof. $0=[m, n]$ so
$0=L([m, n])=[D(m), n]+[m, D(n)]=D(m) n-n D(m)+m D(n)-D(n) m$.
This yields

$$
D(m) n+m D(n)=n D(m)+D(n) m .
$$

By Definition 1(a) and the lemmas we have

$$
\left(e_{i}+e_{j}\right)\{D(m) n+m D(n)\}=0
$$

hence

$$
\left(e_{i}+e_{j}\right)\{n D(m)+D(n) m\}=0
$$

Also

$$
e_{h}\{n D(m)+D(n) m\}=0
$$

hence

$$
e_{h}\{D(m) n+m D(n)\}=0
$$

Therefore

$$
D(m) n+m D(n)=0=D(n) m+n D(m) .
$$

Lemma 4. Let

$$
K(i, j)=K_{i} \cup K_{j} \cup\left\{x_{i j}-x_{i j}^{*}: x \in R\right\}
$$

Define $P(y, k \ell \ldots m)$ for

$$
y=e_{h} x e_{i}, x \in R, k, \ell, \ldots, m \in K(i, j)
$$

by

$$
P(y, k \ell \ldots m)=\left[\left[\ldots\left[\left[y-y^{*}, k\right] \ell\right], \ldots\right], m\right] .
$$

Then
(a)

$$
P(y, k \ell \ldots m)=y k \ell \ldots m-m^{*} \ldots \ell^{*} k^{*} y^{*}
$$

(b)

$$
\begin{aligned}
e_{h} L\{P(y, k \ell \ldots m)\}= & e_{h} D\left(y-y^{*}\right) k \ell \ldots m+y D(k \ell \ldots m) \\
& -e_{h} D\left(m^{*} \ldots \ell^{*} k^{*}\right) y^{*} .
\end{aligned}
$$

Lemma 5. D is well defined on each U_{i}.
Proof. Assume $0=\Sigma k \ell \ldots m$ with $k, \ell, \ldots, m \in U_{i}$, and let

$$
r=\Sigma\{D(k) \ell \ldots m+k D(\ell) \ldots m+\ldots+k \ell \ldots D(m)\}
$$

Note that $r=\Sigma D(k \ell \ldots m)$ by Definition $1(\mathrm{~b})$. For each $n \in K_{j}, j \neq i$, we have

$$
r n=\Sigma k \ell \ldots D(m) n=\Sigma k \ell \ldots\{D(m) n+m D(n)\}=0
$$

using Lemma 3 and our assumption that $0=\Sigma k \ell \ldots m$. Since $r n=0$ for all $n \in K_{j}$ we have $r e_{j}=0$. Similarly $0=r e_{h}=e_{h} r=e_{j} r$. Also, for $x \in R, y=e_{h} x e_{i}$ we have

$$
0=\Sigma\left\{y k \ell \ldots m-m^{*} \ldots \ell^{*} k^{*} y^{*}\right\}
$$

since $\Sigma k \ell \ldots m=0$ implies $\Sigma m^{*} \ldots \ell^{*} k^{*}=0$. Thus by Lemma 4(a) $\Sigma P(y, k \ell \ldots m)$ $=0$ so $\Sigma L\{P(y, k \ell \ldots m)\}=0$. This implies $\Sigma y D(k \ell \ldots m) e_{j}=0$ using Lemma 4(b), the assumption $\Sigma k \ell \ldots m=0$ and $y^{*} e_{j}=0$. Thus $0=y\{\Sigma D(k \ell \ldots m)\} e_{i}=y r e_{i}$. Since x was arbitrary $\left(e_{h} R e_{i}\right) r e_{i}=0$ so $e_{i} r e_{i}=0$. Therefore every component of r is 0 and
D is well defined on each U_{i}.
Lemma 6. D is well defined on each $U_{i} R_{i j} U_{j}, i \neq j$.
Proof. Assume $0=\Sigma u x v$ where $u \in U_{i}, x \in R_{i j}, v \in U_{j}$. Let $X=x-x^{*}$ and note that $u x v=u X v$. Let $r=\Sigma\{D(u) X v+u D(X) v+u X D(v)\}$ and note that $r=\Sigma D(u x v)$ by Definition 1(c). Then for $k \in K_{h}, h \neq i, j$, we have

$$
k r=\Sigma k D(u) X v=\Sigma\{k D(u)+D(k) u\} X v=0
$$

using Lemma 3 and our assumption $0=\Sigma u X v$. Therefore $e_{h} r=0$. Similarly $0=e_{j} r$ $=r e_{i}=r e_{h}$. Now let $z \in R, y=e_{h} z e_{i}$. By assumption we have

$$
0=\Sigma\left(y u X v-v^{*} X^{*} u^{*} y^{*}\right) .
$$

Thus by Lemma 4(a) $\Sigma P(y, u X v)=0$ so $0=\Sigma L\{P(y, u X v)\}$. This implies $0=$ $\sum e_{h} y D(u X v) e_{j}$ using Lemma 4(b), the assumption $\Sigma u X v=0$, and $y^{*} e_{j}=0$. Therefore $e_{h} R e_{i} r e_{j}=0$ so $e_{i} r e_{j}=0$. Thus every component of R is 0 and D is well defined on each $U_{i} R_{i j} U_{j}$.

Theorem 1. D is well defined on $A=\sum_{i, j}\left(U_{i}+U_{i} R_{i j} U_{j}\right)$.
Proof. Definition 1 and Lemmas 1, 2, 5 and 6.
Theorem 2. $D: A \rightarrow R^{\prime}$ is a derivation.
Proof. (a) It follows from Definition 1 that $D(x y)=D(x) y+x D(y)$ if $x, y \in U_{i}$.
(b) It follows from Definition 1 that $D(x y)=D(x) y+x D(y)$ if $x \in U_{i}, y \in U_{i} R_{i j} U_{j}$ or $x \in U_{i} R_{i j} U_{j}, y \in U_{j}$.
(c) If $x=\Sigma \ldots k_{i} \in U_{i}$ and $y=\Sigma \ell_{j} \ldots \in U_{j}$ then $x y=0$ so $D(x y)=0$.

$$
D(x) y+x D(y)=\Sigma\left(0+\left\{D\left(k_{i}\right) \ell_{j}+k_{i} D\left(\ell_{j}\right)\right\}\right)+0
$$

by Lemma 3 , so $D(x y)=D(x) y+x D(y)$.
(d) Similarly $D(x y)=0=D(x) y+x D(y)$ if $x \in U_{i}$ and $y \in U_{j} R_{j i} U_{i}$, or $x \in U_{i}$, $y \in U_{j} R_{j h} U_{h}$, or $x \in U_{i} R_{i j} U_{j}, y \in U_{i}$ or $x \in U_{i} R_{i j} U_{j}, y \in U_{h}$, or $x \in U_{i} R_{i j} U_{j}$, $y \in U_{i} R_{i j} U_{j}$, or $x \in U_{i} R_{i j} U_{j}, y \in U_{h} R_{h i} U_{i}$, or $x \in U_{i} R_{i j} U_{j}, y \in U_{h} R_{h j} U_{j}$, or $x \in U_{i} R_{i j} U_{j}$, $y \in U_{h} R_{h i} U_{i}$ or $x \in U_{i} R_{i j} U_{j}, y \in U_{i} R_{i h} U_{h}$.
(e) Let $u_{i} x_{i j} v_{j} \in U_{i} R_{i j} U_{j}$ and $w_{j} y_{j h} z_{h} \in U_{j} R_{j h} U_{h}, x_{j i}=x_{i j}^{*}, y_{h j}=y_{j \hbar}^{*}$. Then

$$
\begin{aligned}
D\left\{\left(u_{i} x_{i j} v_{j}\right)\left(w_{j} y_{j h} z_{h}\right)\right\}= & D\left\{u_{i}\left(x_{i j} v_{j} w_{j} y_{j h}\right) z_{h}\right\} \\
= & D\left(u_{i}\right) x_{i j} v_{j} w_{j} y_{j h} z_{h}+u_{i} D\left(x_{i j} v_{j} w_{j} y_{j h}-y_{h j} w_{j} v_{j} x_{j i}\right) z_{h} \\
& +u_{i} x_{i j} v_{j} w_{j} y_{j h} D\left(z_{h}\right) .
\end{aligned}
$$

Looking at the middle term we have

$$
\begin{aligned}
u_{i} D\left(x_{i j} v_{j} w_{j} y_{j h}-y_{h j} w_{j} v_{j} x_{j i}\right) z_{h}= & u_{i} D\left\{\left(x_{i j} v_{j}-v_{j} x_{j i}\right)\left(w_{j} y_{j h}-y_{h j} w_{j}\right)\right. \\
& \left.-\left(w_{j} y_{j h}-y_{h j} w_{j}\right)\left(x_{i j} v_{j}-v_{j} x_{j i}\right)\right\} z_{h} \\
= & u_{i} D\left[x_{i j} v_{j}-v_{j} x_{j i}, w_{j} y_{j h}-y_{h j} w_{j}\right] z_{h} \\
= & u_{i} D\left(x_{i j} v_{j}-v_{j} x_{i j}\right) w_{j} y_{j h} z_{h} \\
& +u_{i} x_{i j} v_{j} D\left(w_{j} y_{j h}-y_{h j} w_{j}\right) z_{h}
\end{aligned}
$$

$$
\begin{aligned}
= & u_{i} D\left[x_{i j}-x_{j i}, v_{j}\right] w_{j} y_{j h} z_{h} \\
& +u_{i} x_{i j} v_{j} D\left[w_{j}, y_{j h}-y_{h j}\right] z_{h} \\
= & u_{i} D\left(x_{i j}-x_{j i}\right) v_{j} w_{j} y_{j h} z_{h} \\
& +u_{i} x_{i j} D\left(v_{j}\right) w_{j} y_{j h} z_{h}+u_{i} x_{i j} v_{j} D\left(w_{j}\right) y_{j h} z_{h} \\
& +u_{i} x_{i j} v_{j} w_{j} D\left(y_{j h}-y_{h j}\right) z_{h}
\end{aligned}
$$

using the definition of D (with Lemmas 1 and 2.) Thus

$$
D\left\{\left(u_{i} x_{i j} v_{j}\right)\left(w_{j} y_{j h} z_{h}\right)\right\}=D\left(u_{i} x_{i j} v_{j}\right) w_{j} y_{j} y_{j h} z_{h}+u_{i} x_{i j} v_{j} D\left(w_{j} y_{j h} z_{h}\right)
$$

(f) Let $x \in U_{i} R_{i j} U_{j}, y \in U_{j} R_{j i} U_{i}$ and let $r=D(x) y+x D(y)-D(x y)$. For $k \in U_{h}$ we have

$$
r k=x D(y) k+x y D(k)-x y D(k)-D(x y) k=x D(y k)-D\{(x y) k\}=0
$$

so $r e_{h}=0$. Similarly $0=e_{h} r=e_{j} r=r e_{j}$. Now let $z \in U_{i} R_{i h} U_{h}$. Then

$$
\begin{aligned}
r z & =D(x) y z+x D(y) z+x y D(z)-x y D(z)-D(x y) z \\
& =D(x) y z+x D(y z)-D\{(x y) z\}=D\{x(y z)\}-D\{(x y) z\} \\
& =0
\end{aligned}
$$

so $r e_{i}=0$. Similarly $e_{i} r=0$ so $r=0$.
Thus D is a derivation on A.
Definition 2. Define T on R by $T(x)=\frac{1}{2}\left\{L\left(x-x^{*}\right)-D\left(x-x^{*}\right)\right\}$.
THEOREM 3. $T: R \rightarrow C$ is additive, $L=D+T$ on K, and $T([\overline{K \cap A}, A])=0$.
Proof. T is additive since L and D are, and $T: R \rightarrow C$ by the definition of D. If $x \in K$ then $x-x^{*}=2 x$. So $L=D+T$ on K.
Let $k, m \in K \cap A$. Then

$$
L([k, m])=[D(k), m]+[k, D(m)]=D([k, m])
$$

using Definition 1(a) and Theorem 2. Thus $T([K \cap A, K \cap A])=0$. If $s=s^{*} \in S \cap$ A then $s-s^{*}=0$ so $T(s)=\frac{1}{2}\left\{L\left(s-s^{*}\right)-D\left(s-s^{*}\right)\right\}=0$. But $[K \cap A, S \cap A]$ $\subseteq S \cap A$ so $T([K \cap A, S \cap A])=0$. Hence $T([K \cap A, A])=0$ since $A=S \cap A+$ $K \cap A$. Assume $T\left(\left[(K \cap A)^{N}, A\right]\right)=0$. If $k_{1}, \ldots, k_{N+1} \in K \cap A$ and $r \in A$ then

$$
\begin{aligned}
{\left[k_{1} \ldots k_{N+1}, r\right]=} & k_{1} \ldots k_{N+1} r-r k_{1} \ldots k_{N+1}=k_{1}\left(k_{2} \ldots k_{N+1} r\right) \\
& -\left(k_{2} \ldots k_{N+1} r\right) k_{1}+\left(k_{2} \ldots k_{N+1}\right)\left(r k_{1}\right)-\left(r k_{1}\right)\left(k_{2} \ldots k_{N+1}\right) \\
& \in[K \cap A, A]+\left[(K \cap A)^{N}, A\right]
\end{aligned}
$$

This implies $T\left(\left[(K \cap A)^{N}, A\right]\right)=0$ for all N so $T([\overline{K \cap A}, A])=0$.
Putting the above together we have the following.
Theorem. Let R be a prime ring with involution with $x / 2 \in R$ whenever $x \in R$. If R has two non-trivial symmetric orthogonal idempotents e_{1}, e_{2} with $e_{1}+e_{2} \neq 1$, $e_{3}=1-e_{1}-e_{2}$, such that each \bar{K}_{i}, contains a nonzero $*$-ideal $U_{i}, i=1,2,3$, then, letting $A=\Sigma\left(U_{i}+U_{i} R_{i j} U_{j}\right)$, for each Lie derivation $L: K \rightarrow R$, there is a derivation
$D: A \rightarrow R C$, and an additive mapping $T: R \rightarrow C$, with $L=D+T$ on K and $T([\overline{K \cap A}, A])=0$.

If R is simple then $U_{i}=R_{i i}$ and $U_{i} R_{i j} U_{j}=R_{i i} R_{i j} R_{j j}=R_{i j}$ so $A=R$, and we have the existence of a derivation D on R and an additive mapping T on R with $L=$ $D+T$ on $K, T: R \rightarrow Z, T([R, R])=0$, providing $\operatorname{dim} R_{i} / Z_{i}>4, i=1,2,3$. As noted earlier Jacobs has more complete results for R simple in his dissertation.

Acknowledgement. I wish to thank W. S. Martindale III for suggesting the topic and for a number of discussions concerning it.

References

1. T. S. Ericson, The Lie Structure in Prime Rings with Involution, J. Algebra 21 (1972), pp. 523-534.
2. D. R. Jacobs, Lie Derivations on the Skew Elements of Simple Rings with Involution, Ph.D. dissertation, University of Massachusetts, 1973.
3. W. S. Martindale III, Lie Derivations of Primitive Rings, Mich. Math. J. 11 (1964), pp. 183-187.

Department of Mathematics and Statistics
University of Massachusetts
Amherst, Massachusetts 01003

