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ON THE IDEAL-TRIANGULARIZABILITY OF SEMIGROUPS OF
QUASINILPOTENT POSITIVE OPERATORS ON C(K )

M. T. JAHANDIDEH

ABSTRACT. It is known that a semigroup of quasinilpotent integral operators, with
positive lower semicontinuous kernels, on L2(XÒ ñ), where X is a locally compact
Hausdorff-Lindelöf space and ñ is a õ-finite regular Borel measure on X, is triangular-
izable. In this article we use the Banach lattice version of triangularizability to establish
the ideal-triangularizability of a semigroup of positive quasinilpotent integral operators
on C(K ) where K is a compact Hausdorff space.

1. Introduction. By Proposition V.6.1 of [6], each quasinilpotent positive opera-
tor T on C0(X), where X is a locally compact Hausdorff space, is decomposable and
by Theorem 3.14 of [2], T is ideal-triangularizable. It is, therefore, interesting to ask
whether or not a semigroup of quasinilpotent positive operators on C0(X) is decompos-
able or ideal-triangularizable. Some partial answers are given in [2]. In Section 3 we use
similar techniques to those used in [1] to prove the decomposability of a semigroup of
quasinilpotent integral operators on C0(X), whose kernels are positive and lower semi-
continuous. Then, in Section 4, we prove some facts, concerning the compression of an
integral operator, and use Theorem 3.13 of [2], to establish the ideal-triangularizability
of a semigroup of quasinilpotent integral operators on C(K ), where K is a compact
Hausdorff space and the kernel of each operator in the semigroup is positive and lower
semi-continuous.

2. Preliminaries. In what follows X is a locally compact Hausdorff-Lindelöf space.
By an operator on C0(X) we mean a bounded linear transformation on C0(X).

We assume familiarity with basic results concerning the Banach lattice C0(X). When
K is a compact space we know that C0(K ) = C(K ) and J is a closed ideal of C(K ) if
and only if there exists a closed subset K0 of K such that

J =
n
f 2 C(K ) : f (t) = 0 for all t 2 K0

o
Ò

(e.g. see [6, Example III.1.1]).
By S we always mean a semigroup of operators on C0(X) and by Ilat(S) we mean the

collection of all closed ideals of C0(X) which are invariant under S. We say that S is de-
composable if there exists a non-trivial J 2 Ilat(S). S is said to be ideal-triangularizable
if Ilat(S) contains a nontrivial maximal chain.
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If J1Ò J2 2 Ilat(S) and if J1 � J2, by the compression of an element T 2 S to J2ÛJ1

we mean an operator T̂: J2ÛJ1 ! J2ÛJ1 defined by

T̂( f + J1) = Tf + J1 8 f 2 J2

The collection of all compressions of operators in S to J2ÛJ1 will be denoted by Ŝ.
Let ñ be a õ-finite, regular Borel measure on X. By the Lindelöf property we may

assume that ñ(U) Ù 0 for every non-empty open subset U of X (cf. [1, Section 3]). Now
suppose U is a non-empty open subset of X and consider the restriction ñjU of ñ to U.
Since every open subset Wu of U is an open subset of X we also have

ñjU(Wu) = ñ(Wu) Ù 0

for every non-empty open subset Wu of U.
If S is a closed subset of X then we know that S is also a Lindelöf space as well as

a locally compact Hausdorff space. Consider the restriction ñjS of ñ to S and suppose
ñjS Ù 0. Once again we may assume that

ñjS(Ws) Ù 0

for every non-empty open subset Ws of S.
Suppose KT: XðX �! C is a ñðñ -measurable function such that for each f 2 C0(X)

the function Tf defined by

(Tf )(x) =
Z

KT(xÒ y) f ( y) dñ( y)Ò

belongs to C0(X). Then T is called an integral operator on C0(X) by way of ñ.

REMARK. According to [3, Section 12] there are suitable conditions under which
certain class of operators on C(X) can be represented as integral operators. As an example
it is known that each locally compact and locally continuous operator on C(X) can be
represented as an integral operator by way of a regular measure (cf. [3, Theorem 12.2]).
However, it is not known whether or not we can find a unique regular measure, by way
of which, a semigroup of such operators can be represented as an integral.

3. A decomposability theorem. In this section we establish a decomposability
theorem for a certain semigroup of quasinilpotent positive integral operators on C0(X).

LEMMA 3.1. Suppose U is a non-empty open subset of X. Then there exists a mea-
surable subset G of U of nonzero finite measure such that for any integral operator T on
C0(X) with a non-negative kernel KT:

kTk ½ kñ(G)Ò

provided KT(xÒ y) ½ k Ù 0 on E ð U for some non-empty measurable subset E of X.
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PROOF. Since X is õ-finite and ñ(U) Ù 0 we can choose a measurable subset A
of U with 0 Ú ñ(A) Ú 1. Let f = üA and apply the techniques used in the proof of
Lusin’s Theorem (cf. [4, Theorem 2.23]) to find a function g in Cc(X) with the following
properties:

(i) g(x) ½ 0 8x 2 X,
(ii) ñ(B) Ú ñ(A)Û2, where B = fx 2 X : g(x) 6= f (x)g, and

(iii) kgk1 � k fk1 = 1.
Since Cc(X) � C0(X) we have

Tg(x) =
Z

KT(xÒ y)g( y) dñ( y) ½
Z

A
KT(xÒ y)g( y) dñ( y)

So for x 2 E,
Tg(x) ½ k

² Z
A1

g( y) dñ( y) +
Z

A2

g( y) dñ( y)
¦
Ò

where A1 = fy 2 A : g( y) = f ( y) = 1g and A2 = fy 2 A : g( y) 6= f ( y)g. Since A2 � B,
ñ(A2) � ñ(B) Ú ñ(A)Û2. Hence ñ(A1) = ñ(A) � ñ(A2) Ù ñ(A)Û2 Ù 0, and

Tg(x) ½ k
n
ñ(A1) +

Z
A2

g( y) dñ( y)
o
½ kñ(A1) 8x 2 EÒ

as
R

A2
g( y) dñ( y) ½ 0, and hence Tg(x) ½ kñ(A1) for all x 2 E. Therefore;

kTgk1 = sup
n

Tg(x) : x 2 X
o
½ sup

n
Tg(x) : x 2 E

o
½ kñ(A1)

So with G = A1 we obtain

kTk = sup
n
kThk1 : khk1 � 1

o
½ kñ(G)

LEMMA 3.2. Suppose T is an integral operator on C0(X) with a non-negative kernel
KT. If KT(xÒ y) ½ k Ù 0 on a rectangle U ð U, where U is a non-empty open subset
of X, then there exists a measurable subset G of U of nonzero finite measure such that
r(T) ½ kñ(G), where r(T) refers to the spectral radius of T.

PROOF. Use Lemma 3.1 to find a measurable subset G with the stated properties
given in that Lemma.

Let K(n)
T denote the kernel of Tn. Then for xÒ y 2 U,

K(n)
T (xÒ y) =

Z
KT(xÒ t1)KT(t1Ò t2) Ð Ð ÐKT(tn�1Ò y) dt1 Ð Ð Ð dtn�1

½
Z

UðUðÐÐÐðU
kn dt1 dt2 Ð Ð Ð dtn�1 = knñ(U)n�1

Therefore
kTnk ½ knñ(U)n�1ñ(G) ½ knñ(G)nÒ

which means kTnk1Ûn ½ kñ(G) for all n, and hence r(T) ½ kñ(G).

LEMMA 3.3. If T is a quasinilpotent integral operator on C0(X) with non-negative,
lower semicontinuous kernel KT, then KT(xÒ x) = 0 for all x 2 X.
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PROOF. Suppose not and choose any x0 with KT(x0Ò x0) = 2k Ù 0. Lower semicon-
tinuity implies there is an open set U such that KT(xÒ y) ½ k for all (xÒ y) 2 U ð U.
Now apply Lemma 3.2 to obtain a subset G of U of nonzero finite measure such that
r(T) ½ kñ(G), which contradicts the fact that T is quasinilpotent.

Suppose S is a semigroup of quasinilpotent integral operators on C0(X) such that every
operator in S has a non-negative, lower semicontinuous kernel. By using Lemma 2.3
and an argument similar to the proof of [1, Theorem 3.4] we can show that there exists
an open set V of finite measure such that the subspace

J =
n

f 2 C0(X) : f = 0 on XnV
o
Ò

is invariant under S. Since C0(X) is a Banach lattice and since J is a closed ideal of C0(X),
we conclude that S is decomposable. We summarize this observation in the following
theorem and use the procedure given in the proof of [1, Theorem 3.4] to give a sketch of
its proof.

THEOREM 3.4. Let S be a semigroup of quasinilpotent integral operators on C0(X)
by way of ñ, such that every operator in S has a non-negative, lower semicontinuous
kernel. Then S is decomposable.

SKETCH OF PROOF. If S = f0g, with any open subset V of X, the closed ideal
J = f f 2 C0(X) : f (t) = 0 for all t 2 X n Vg is invariant under S. Otherwise choose
T 2 S, with T(x0Ò y0) Ù 0 for some (x0Ò y0) 2 X ð X, and use the lower semicontinuity
of its kernel and Lemma 3.3 to find two open subsets U0 and V0 of X with the following
properties:

(i) U0 \ V0 = ;,
(ii) KS( yÒ x) = 0 whenever S 2 S and (xÒ y) 2 U0 ð V0,

(iii) x0 2 U0 and y0 2 V0.
Now for each x 2 U0 define

Wx =
n
t 2 X : KS(tÒ x) = 0 for all S 2 S

o
and observe that it is a closed subset of X that includes V0. We distinguish two cases:

(1) ñ(X n Wx) = 0 for every x 2 U0. In this case put V = U0 and observe that

KS(xÒ y) = 0 8(xÒ y) 2 (X n V)ð VÒ

whenever S 2 S.
(2) ñ(X nWx) 6= 0 for some x 2 U0. In this case cut U0 down and relabel if necessary,

to assume this x is x0. Put V = X n Wx0 and show that

KS(xÒ y) = 0 8(xÒ y) 2 Wx0 ð (X n Wx0 )Ò

whenever S 2 S.
In each case verify that the closed ideal

J =
n

f 2 C0(X) : f (t) = 0 for all t 2 X n V
o

is invariant under S.
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4. An ideal-triangularizability theorem. Under suitable conditions, we can say
more about a semigroup S, of quasinilpotent integral operators on C0(X), each of whose
members has a non-negative lower semicontinuous kernel. To do this we need the
following lemmas.

LEMMA 4.1. Let X be a locally compact normal space and let ñ be a finite regular
Borel measure on X. Let X0 be a nonempty compact subset of X and let h0 2 C(X0). Then,
given î Ù 0 there exists a closed subset A of B = X nX0 and a continuous extension h of
h0 to X such that the following hold:

(a) ñ(B n A) � î.
(b) h(x) = 0 for all x 2 A.
(c) jh(x)j � kh0k1 for all x 2 X.

PROOF. First use Tietze Extension Theorem [4, Theorem 20.4] to find a continuous
extension g of h0 to X such that kgk1 = kh0k1 for all x 2 X. Then use the regularity
of ñ to find a compact subset A of B with ñ(B n A) � î. This can be done as ñ is also
a finite measure. Since X is a Hausdorff space A is a closed subset of X. Now use the
normality of X and the fact that A\X0 = ; to find a continuous function f on X such that
f (A) = f0g, f (X0) = f1g, and 0 � f (x) � 1 for all x 2 X. Finally define h = f g. Then h is
a continuous function on X,

h( y) = f ( y)g( y) = 1 Ð h0( y) = h0( y) for all y 2 X0Ò

h(t) = f (t)g(t) = 0 Ð g(t) = 0 for all t 2 AÒ

and

jh(x)j = f (x) Ð jg(x)j � jg(x)j � kh0k1 for all x 2 X

LEMMA 4.2. Assume all the conditions of Lemma 4.1 and let K be a bounded inte-
grable function on X ð X. Then given è Ù 0, there exists a continuous extension h of h0

to X such that þþþþZX
K(xÒ t)h(t) dñ(t) �

Z
X0

K(xÒ t)h0(t) dñ(t)
þþþþ � è

for all x 2 X.

PROOF. Put î = èÛ(Mkh0k1), where M is a bound for K, and use Lemma 4.1 to find
a continuous extension h of h0 to X with the stated properties given in Lemma 4.1. Then
Z

X
K(xÒ t)h(t) dñ(t) =

Z
X0

K(xÒ t)h(t) dñ(t) +
Z

A
K(xÒ t)h(t) dñ(t) +

Z
BnA

K(xÒ t)h(t) dñ(t)

=
Z

X0

K(xÒ t)h0(t) dñ(t) +
Z

BnA
K(xÒ t)h(t) dñ(t)Ò

for any x 2 X, and henceþþþþZX
K(xÒ t)h(t) dñ(t) �

Z
X0

K(xÒ t)h0(t) dñ(t)
þþþþ � Z

BnA
jK(t)j Ð jh(t)j dñ(t)

� Mkh0k1ñ(B n A) � îMkh0k1 = è
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for all x 2 X.
The following lemma is known and was implicitly used in [5]. For completeness we

state and prove it here.

LEMMA 4.3. Let K be a compact Hausdorff space and let J be a closed ideal in
C(K ). Then the quotient C(K )ÛJ can be canonically identified with C(K 0) where K 0 is
a suitable closed subset of K .

PROOF. Since J is a closed ideal of C(K ), there exists a closed, and hence compact,
subset K 0 of K such that

J =
n
f 2 C(K ) : f (t) = 0 for all t 2 K0

o


Define ö: C(K 0) ! C(K )ÛJ by ö( f0) = f + J, where f is a continuous extension of f0
to K . Tietze’s Extension Theorem and the structure of J imply that ö is well defined,
and it can be easily verified that ö is linear, one-to-one, onto, and ö�1( f + J) = f0, where
f0 = f jK 0 .

We show that kö( f0)k = k f0k1. First observe that for each f 2 C(K ) and g 2 J

sup
n
j( f + g)(x)j : x 2 K

o
= sup

²n
j( f + g)(x)j : x 2 K nK0

o
[
n
j f (x)j : x 2 K0

o¦
Ò

and hence k f0k1 � k f + gk1 for all g 2 J. This shows that k f0k1 � k f + Jk. On the
other hand, if we use Tietze’s Extension Theorem to find a continuous extension h of f0
to K with khk1 = k f0k1, then

k f + Jk = kh + Jk � khk1 = k f0k1

Thus ö is an isometric isomorphism from C(K 0) to C(K )ÛJ.

LEMMA 4.4. Suppose K is a compact Hausdorff space and ñ is a regular Borel
measure on K . Let T be an integral operator on C(K ) with a bounded kernel KT. If
J 2 Ilat(T), then the operator T̂: C(K )ÛJ ! C(K )ÛJ can be identified with an integral
operator.

PROOF. Suppose K 0 is a closed, and hence a compact, subset of K such that

J =
n
f 2 C(K ) : f (t) = 0 for all t 2 K 0

o


Since K 0 is a Borel subset of K , the restriction ñ0 of ñ to K0 is well defined. Since KT

is also bounded and measurable on K 0 ðK0, we can define T0 on C(K 0) by

T0 f0( y) =
Z

K 0

KT( yÒ t) f0(t) dñ0(t) 8y 2 K 0

We claim that T0 = ö�1T̂ö, where ö is as in Lemma 4.3, and hence T̂ can be identified with
the kernel operator T0. To prove the claim, let f0 2 C(K 0). Then ö�1T̂ö( f0) = (Tf )jK 0 ,
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where f is any continuous extension of f0 to K . Let è Ù 0 and use Lemma 4.2, with
X = K , X0 = K 0, and h0 = f0, to find an extension h of f0 to K such thatþþþþZK

KT( yÒ t)h(t) dñ(t) �
Z

K 0

KT( yÒ t) f0(t) dñ(t)
þþþþ � èÒ

for all y 2 K 0. Since

(Tf )jK 0 ( y) = (Th)jK 0 ( y) =
Z

K
KT( yÒ t)h(t) dñ(t)

and
T0f0( y) =

Z
K 0

KT( yÒ t) f0(t) dñ0(t) =
Z

K 0

KT( yÒ t) f0(t) dñ(t)Ò

for each y 2 K 0, kö�1T̂ö( f0) � T0( f0)k1 � è, and hence ö�1T̂ö = T0, as desired.

LEMMA 4.5. Assume all the conditions of Lemma 4.4. Then TjJ can be identified with
an integral operator.

PROOF. Let K 0 be as in the Proof of Lemma 4.4. Put U = K nK 0, then U is locally
compact and J is isomorphic to C0(U). In fact ú: J ! C0(U) defined by ú( f ) = f jU is an
isometric isomorphism. Now for each g 2 C0(U) we have

úTjJú
�1g = úTjJf = (Tf )jU Ò

where f 2 J is such that f jU = g. But Tf (x) = 0, for all x 2 K 0, and, for each x 2 U,

Tf (x) =
Z

K
KT(xÒ t) f (t) dñ(t) =

Z
U

KT(xÒ t)g(t) dñU (t)Ò

whereñU is the restriction ofñ to U, hence TjJ can be identified with an integral operator
on C0(U).

We are now ready to state and prove the main result of this paper.

THEOREM 4.6. Let K be a compact Hausdorff space and let ñ be a regular Borel
measure on K . Suppose S is a semigroup of quasinilpotent integral operators on C(K )
by way of ñ, each of whose members has a non-negative bounded lower-semicontinuous
kernel. Then S is ideal-triangularizable.

PROOF. By Theorem 3.4, S is decomposable. Let J1Ò J2 2 Ilat(S) with J1 ² J2 and
dim(J2ÛJ1) ½ 2. Let Ŝ be the compression of S to C(K )ÛJ1. By Lemma 4.4, each T̂ 2 Ŝ
can be identified with an integral operator on C(K 0) by way of the regular Borel measure
ñjK 0 , where K 0 is a closed subset of K such that

J1 =
n
f 2 C(K ) : f (t) = 0 for all t 2 K 0

o


By Lemma 4.5, since J2ÛJ1 2 Ilat Ŝ for each T̂ 2 Ŝ, each T̂j(J2ÛJ1) can be identified with
a non-negative integral operator on C0(U0) by way of the regular Borel measure ñjU0 ,
where U0 = K 0 nK 00 and K 00 is a closed subset of K 0 such that

J2ÛJ1 ≤
n

f0 2 C(K 0) : f0(t) = 0 for all t 2 K 00

o
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Since, for each T 2 S, the compression of dTjJ2 of TjJ2 to J2ÛJ1 is T̂j(J2ÛJ1), and since for

such T, T̂j(J2ÛJ1) is a quasinilpotent operator, the semigroup

SJ2 = fT̂j(J2ÛJ1) : T̂ 2 Ŝg

can be identified with a semigroup of quasinilpotent integral operators on C0(U0) each
of whose members has a nonnegative lower-semicontinuous kernel. Therefore; SJ2 is
decomposable by Theorem 3.4. This shows that S is compressionally decomposable.
Therefore S is ideal-triangularizable by Theorem 3.13 of [2].
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