CI 0.5-3.5%). Of the PERC negative patients, 291/291 (100.0%; 95% CI 98.7-100.0%) had a D-dimer test done, and 33/291 (11.3%; 95% CI 8.2-15.5%) had a CT angiogram. If PERC was used, CT/VQ imaging would have been avoided in 33/1,097 (3%; 95% CI 2.2-4.2%) patients and the D-dimer would have been avoided in 291/1,097 (26.5%; 95% CI 24.0-29.2%) patients. **Conclusion:** If the PERC rule was used in all patients with suspected PE, fewer patients would have further testing. The false negative rate for the PERC rule was low. Keywords: pulmonary embolism, D-dimer, diagnosis ## P105 Transforming emergency stroke care through innovation: Canada's first stroke ambulance L. Morrison, BScN, S. Amlani, BASc, BHSc(OT), MBA, T. Jeerakathil, MD, MSc, A. Shuaib, MD, H. Kalashyan, MD, Stroke Program Edmonton Zone, Alberta Health Services, Edmonton, AB Introduction: A two-year Stroke Ambulance (SA) pilot project was implemented at the University of Alberta Hospital (UAH) in February, 2017, the first in the world to utilize this specialized technology in a rural setting. The primary objective is to evaluate clinical and economic implications of timely SA assessment and treatment of hyperacute stroke patients who present to non-stroke centres in rural Alberta and might otherwise have received delayed treatment, or not at all, due to prolonged transfer times. Methods: A steering committee and seven working groups were established, with representation from Alberta Health Services (AHS) programs impacted, to ensure comprehensive project development and implementation. The SA portable CT scanner, point of care laboratory, and videoconference system facilitate diagnosis of stroke in the field. The multidisciplinary team includes a stroke fellow, advanced & primary care paramedics, registered nurse, CT technologist, and telestroke physician. When not dispatched, the team provides stroke expertise and patient care in the emergency department (ED) and diagnostic imaging. The service model includes suspected stroke patients presenting to non-stroke centres within a 250 Km radius of Edmonton (Phase I); patients presenting to Edmonton Zone (EZ) hospitals without CT capability and/or tPA protocols (Phase 2); and expedited transport from EZ hospitals to the UAH for urgent endovascular therapy (EVT) (Phase 3). A health economic analysis will compare stroke ambulance care with standard care. Results: The SA has responded to 54 dispatches, 13 patients thrombolyzed and 3 patients receiving EVT. Median rendezvous to CT time was 10 minutes, median rendezvous to tPA time was 21 minutes, and mean time from symptom onset to tPA was 180 minutes. There were no complications. After SA imaging and assessment, 18 patients were repatriated back to their local community hospital, avoiding unnecessary admission to tertiary care. Conclusion: Our preliminary experience demonstrates that the SA offers a novel approach to performing timely evaluation and treatment of suspected stroke from non-stroke centres and may serve as an excellent triage mechanism, reducing avoidable admissions to overcapacity tertiary care EDs. The SA team provides added value to the ED with stroke expertise and patient care. A comprehensive health economic analysis will determine cost-effectiveness and whether spread is feasible. Keywords: stroke, innovation, transforming ## P106 Systemic thrombolysis for suspected high-risk pulmonary embolism: a retrospective medical record review A. Mulla, MD, MSc, K. de Wit, MBChB, MSc, MD, McMaster University, Hamilton, ON Introduction: Current treatment guidelines advocate for the aggressive management of both high-risk and subsets of moderate-risk pulmonary embolism (PE) with fibrinolytic therapy. However, there is limited evidence on the risks and benefits of fibrinolytic therapy in PE, with mortality improvement still to be proven. This study aimed to report the incidence of major bleeding and death after thrombolysis for PE. Methods: A health records review was performed on data from two hospitals between 2007 and 2017. Pharmacy identified all patients who had received either alteplase or tenecteplase. Trained abstractors reviewed each chart to determine the indication for thrombolytic therapy. Patients were included if they received systemic thrombolysis for diagnosed or presumed PE. Data was extracted on 30-day mortality, International Society of Thrombosis and Hemostasis defined major bleeding within 30 days, premorbid anticoagulant and antiplatelet prescription, age, sex, comorbidities, renal function, history of bleeding, type and dose of thrombolytic and category of PE (high or moderate risk). Results: 1,534 patients were identified, of which 72 received systemic thrombolysis for PE. The median age was 57, 34 were male, 17 with a history of venous thrombosis and 12 with cancer. Fifty-four were classified as having high-risk PE, of whom 39 received cardiopulmonary resuscitation (CPR) when thrombolysis was administered. Formal confirmatory imagining for PE was obtained in only 23/39 patients who were in cardiac arrest. Eighteen patients were classified as moderate-risk PE. The incidence of major bleeding was 28/54 (52%, 95% CI 39-65%), and 3/18 (17%, 95% CI 6-39%) for the high and moderate risk groups respectively. There were 4 intracranial bleeds, all in the highrisk PE group. The only significant predictor of major bleeding was the need for CPR at the point of administration of the thrombolytic agent (OR 2.6, 95% CI 1.0-7.5, adjusted for age). Thirty-four patients died within 30 days (47%, 95% CI 36-59%), all in the high-risk PE group. Death was not associated with any demographic variable on univariate analysis. Death occurred in 28/39 (72%, 95% CI 56-83%) patients who received CPR and 6/33 (18%, 95% CI 9-34%) who did not. Conclusion: We found a high incidence of 30-day major bleeding and death following administration of thrombolysis for PE which will help inform future prognostic discussions in our institution. Keywords: pulmonary embolism, thrombolysis, bleeding ## P107 The development of a mentorship based, near-peer simulated resuscitation training program for medical trainees J. R. O'Leary, MSc, E. Brennan, MD, F. Gilic, MMEd, MD, Queen's University School of Medicine, Kingston, ON **Introduction:** High quality Cardiopulmonary Resuscitation (CPR) saves lives, however skill retention after standard Basic Life support (BLS) courses has been shown to be poor. Our goal was to develop a student-run, mentorship based program to allow repetitive practice of BLS skills while minimizing resource commitment and time requirements. Methods: We developed a top down training program that relied on online teaching resources, regular simulation training and near-peer feedback. First year medical students were given the opportunity to participate in the program and baseline CPR quality was documented. They were then divided into intervention and control groups. The intervention group participated in bimonthly 40-minute small group training sessions directed by senior medical students and monitored by a staff physician. The control group received no further training. At the end of the 8-month study period CPR quality was documented for all participants. Results: We included data from 54 medical students. Overall compression depth and rate were monitored using Laderall SimMan 3G(TM) high-fidelity CPR mannequins. Average rate and depth of compression were significantly improved in the intervention group relative to both the control group that did not