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Wind blowing over the ocean surface can be treated as a turbulent boundary layer
over a multiscale rough surface with moving roughness elements, the waves. Large-
eddy simulation (LES) of such flows is challenging because LES resolves wind–wave
interactions only down to the grid scale, ∆, while the effects of subgrid-scale (SGS)
waves on the wind need to be modelled. Usually, a surface-layer model based on the
law of the wall is used; but the surface roughness has been known to depend on
the local wind and wave conditions and is difficult to parameterize. In this study, a
dynamic model for the SGS sea-surface roughness is developed, with the roughness
corresponding to the SGS waves expressed as αw σ

∆
η . Here, σ∆η is the effective

amplitude of the SGS waves, modelled as a weighted integral of the SGS wave
spectrum based on the geometric and kinematic properties of the waves for which five
candidate expressions are examined. Moreover, αw is an unknown dimensionless model
coefficient determined dynamically based on the first-principles constraint that the total
surface drag force or average surface stress must be independent of the LES filter
scale ∆. The feasibility and consistency of the dynamic sea-surface roughness models
are assessed by a priori tests using data from high-resolution LES with near-surface
resolution, appropriately filtered. Also, these data are used for a posteriori tests of
the dynamic sea-surface roughness models in LES with near-surface modelling. It is
found that the dynamic modelling approach can successfully capture the effects of
SGS waves on the wind turbulence without ad hoc prescription of the model parameter
αw. Also, for σ∆η , a model based on the kinematics of wind–wave relative motion
achieves the best performance among the five candidate models.

Key words: turbulence modelling, turbulent boundary layers, wind–wave interactions

1. Introduction
The physics of wind-waves and the interactions between wind turbulence and ocean

waves play essential roles in many important geophysical phenomena and engineering
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applications. They determine the exchange of mass, momentum and heat between the
atmosphere and the oceans, crucial for shaping our understanding and prediction of
weather and global climate. Wave and wind loads are vital to the safety and operation
of surface ships and offshore structures. Knowledge of wind and wave fields forms the
basis for the design and operation of offshore wind farms and wave energy converters.
The wind-wave kinematics also have significant influence on the transport of pollutants
such as oil slicks at sea surfaces.

The flow-over-wave-surface problem has been an active research topic. Many
theoretical studies (Phillips 1957; Miles 1957, 1993; Janssen 1991; Belcher & Hunt
1993, among others) have focused on explaining the mechanism of wind–wave
generation and growth. Meanwhile, the quantification of wind–wave energy and
momentum transfer and wavefield evolution has relied substantially on field and
laboratory measurements (Dobson 1971; Elliott 1972; Snyder et al. 1981; Hristov,
Miller & Friehe 2003; Donelan et al. 2006; Peirson & Garcia 2008, among many
others).

In addition to theoretical and experimental studies, numerical simulations of wind
turbulence over waves have contributed substantially to our understanding. Early
studies focused on the Reynolds-averaged Navier–Stokes (RANS) equations (e.g.
Townsend 1972; Gent & Taylor 1976; Al-Zanaidi & Hui 1984; van Duin & Janssen
1992; Mastenbroek et al. 1996), yielding many interesting and valuable findings.
However, the results were found to be quite sensitive to the choice of turbulence
closure for the Reynolds stresses (see, e.g., van Duin & Janssen 1992; Mastenbroek
et al. 1996). In recent years, the growth of computing power has made direct
numerical simulation (DNS) feasible for the study of wind turbulence over waves,
under idealized conditions. Through DNS, the fine details of turbulent flows in the
vicinity of the wave surface can be resolved (e.g. Sullivan, McWilliams & Moeng
2000; Kihara et al. 2007; Yang & Shen 2009, 2010). However, the high computational
cost of DNS limits its application to relatively low Reynolds numbers. As a result,
DNS is used mainly as a research tool for studies of simplified, canonical problems.

Large-eddy simulation (LES) has been widely used in the study of atmospheric
boundary layer flows (e.g. Deardorff 1973; Moeng 1984; Albertson & Parlange 1999;
Porté-Agel, Meneveau & Parlange 2000; Kumar et al. 2010). The LES resolves
the grid-scale (GS) motions explicitly, with the subgrid-scale (SGS) effect modelled.
Because only the small-scale motions need to be modelled while the motions at other
scales are simulated directly, LES has become a promising approach for the study of
wind turbulence over ocean waves (Sullivan et al. 2008; Liu et al. 2010; Sullivan,
McWilliams & Hristov 2010).

One important open issue for LES of wind over waves, which is the subject of
the present study, is the representation of wave surface features that fall below the
grid resolution in the LES, i.e. modelling of SGS roughness effects. While at scales
larger than short gravity waves the wind field can be treated as a turbulent boundary
layer over a wavy and rough surface (Donelan 1990; Janssen 1991), fully resolving
the near-surface region is prohibitively expensive and a surface-layer model is needed
(see the review by Piomelli & Balaras (2002)). LES with near-surface modelling
(LESns-M) is required, which in the engineering literature is denoted as LES with
near-wall modelling (LES-NWM; see, e.g., Pope 2000), including specification of
the surface roughness scale. However, unlike the static rough wall applications most
often considered in the literature on turbulence over rough surfaces, the roughness
elements at sea (i.e. different wave components) are all in motion. Moreover, elements
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64 D. Yang, C. Meneveau and L. Shen

of different sizes move at different speeds according to the wave-dispersion relation,
posing a challenge to modelling of sea-surface roughness.

Previous studies showed that short gravity waves are primarily responsible for the
sea-surface roughness (see, e.g., Caudal 1993; Makin, Kudryavtsev & Mastenbroek
1995). In the literature, the sea-surface roughness scale z0 is often parameterized as
(e.g. Smith 1988; Fairall et al. 1996)

z0 = z0,s + z0,w. (1.1)

Here, z0,s = 0.11νa/u∗ is the roughness for a smooth surface, with νa being the
kinematic viscosity of air and u∗ being the friction velocity of wind; and z0,w is the
roughness corresponding to short surface waves. The short waves are often assumed to
be in equilibrium with the local wind, so that z0,w is parameterized by the Charnock
relationship (Charnock 1955)

z0,w = αch
u2
∗

g
, (1.2)

where the Charnock constant αch is an empirical coefficient and g is the gravitational
acceleration. The value of αch has been evaluated based on field data (e.g. Fairall
et al. 1996; Johnson et al. 1998). However, instead of being a constant, αch was found
to depend on the wave condition. As a result, the parameterization of sea-surface
roughness displays significant variations among different studies (see, e.g., the reviews
of Donelan (1990) and Toba, Smith & Ebuchi (2001)). In the literature, sea-state
scaling (e.g. Taylor & Yelland 2001) and wave-age scaling (e.g. Smith et al. 1992)
have been used, based, respectively, on the following expressions:

z0,w

ηrms
= A1

(
ηrms

λp

)B1

,
z0,w

ηrms
= A2

(
V

cp

)B2

. (1.3)

Here, ηrms is the root-mean-square (r.m.s.) of the surface elevation η; λp and cp are,
respectively, the wavelength and wave phase speed at the wave spectrum peak; V is
a reference wind velocity, which can be the wind friction velocity u∗, the mean wind
speed at 10 m above the sea surface U10, or the mean wind speed at the elevation of
λp/2 above the sea surface Uλp/2. The coefficients A1, B1, A2 and B2 are determined
by fitting field measurement data (e.g. Donelan 1990). Previous studies have shown
that these parameterizations may work well for some sea conditions, but not in others.
Thus, no universally consistent parameterization has been found yet (Drennan, Taylor
& Yelland 2005). As a result, so far in LES of wind over waves, only the simplest
treatment, in which z0 was assigned a constant value of 2 × 10−4 m, has been applied
(e.g. Sullivan et al. 2008, 2010), which is unable to address dependencies on wave
dynamics.

Recently, Anderson & Meneveau (2011) have developed a dynamic method for
the modelling of surface roughness of wind turbulence over land, consisting of a
multiscale (static) terrain. Fundamental to the dynamic model is the decomposition of
the total surface stress into a resolved and an SGS part. The dynamic method uses the
fundamental constraint that the total stress must be invariant with respect to the filter
scale. The unknown coefficient in the model is thus determined using a GS filter and
a test filter. In traditional LESns-M, such coefficients must be prescribed ad hoc. The
proposed dynamic approach has the advantage of determining the model coefficient
during the simulation without ad hoc prescriptions and assumptions. To date, it has
been successfully applied to atmospheric boundary-layer flows over rough multiscale
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land surfaces with power-law surface spectra (Anderson & Meneveau 2011), as well as
over fluvial-like landscapes (Anderson et al. 2012).

In the present study, we extend the dynamic modelling of SGS surface roughness
from static land surfaces to moving water surface waves. As in Anderson &
Meneveau (2011), the roughness length is expressed as the product of two factors:
an effective amplitude of the SGS waves, which unlike the static case of Anderson
& Meneveau (2011) now contains both the geometric information of the SGS wave
surface elevation as well as the kinematic properties of the waves; and an unknown
dimensionless model coefficient, which is determined dynamically using the resolved
flow information and the constraint that the total surface force or average surface stress
is invariant with respect to the filter scale in LES. Several alternate models for the
effective amplitude of the SGS waves are developed and tested.

In our simulation, the flow solver for wind over a broadband wavefield developed
by Yang & Shen (2011b) is employed, with the original DNS turbulence solver
upgraded to LES by including SGS stress and SGS surface-layer models. The sea-
surface wavefield is simulated as a potential flow using a high-order spectral method
(HOSM) (Dommermuth & Yue 1987). High-resolution LES with near-surface (or near-
wall, Pope 2000) resolution, to be denoted henceforth as LESns-R, is performed for
a variety of wind and wave conditions to obtain a database as a benchmark for the
evaluation of sea-surface roughness models. The result of LESns-R is validated by
comparisons with experimental, theoretical and numerical results in the literature. A
priori and a posteriori tests are performed to evaluate the performance of several
candidate sea-surface roughness models. In particular, a posteriori tests use LESns-M
with the new dynamic sea-surface roughness models implemented.

This paper is organized as follows. The numerical methods for wind and wave
simulations are introduced in § 2. The dynamic models of SGS sea-surface roughness
are presented in § 3. The data of LESns-R and the results of the a priori and a
posteriori tests of the dynamic sea-surface roughness models are discussed in § 4.
Finally, concluding remarks are provided in § 5.

2. Numerical method for wind and wave simulations
2.1. LES of wind turbulence

In this study, we consider three-dimensional turbulent flows over water waves. The
coordinate system is denoted as xi(i = 1, 2, 3) = (x, y, z), where x and y are the
horizontal coordinates and z is the vertical coordinate, with z = 0 being the mean
water level and ui(i= 1, 2, 3)= (u, v,w) are the velocity components in the x, y and z
directions, respectively.

The motion of wind turbulence is described by the filtered Navier–Stokes equations

∂ ũi

∂t
+ ũj

∂ ũi

∂xj
=− 1

ρa

∂ p̃

∂xi
− ∂τ

d
ij

∂xj
+ νa

∂2ũi

∂xj∂xj
− 1
ρa
Πδi1, (2.1)

∂ ũi

∂xi
= 0. (2.2)

Here, (.̃ . .) indicates filtering at the grid scale, ∆, in LES; τij = ũiuj − ũiũj is the
SGS stress tensor, and τ d

ij is its trace-free part; p̃ is the actual pressure of air (strictly
speaking the modified pressure, since it includes the trace of the SGS stress tensor);
and Π is the streamwise pressure gradient imposed to drive the flow in the simulations.
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66 D. Yang, C. Meneveau and L. Shen

For a statistically steady and fully developed flow,

Π =−ρau2
∗

H
, (2.3)

where H is the mean height of the computational domain.
The simulation domain is bounded by a free-slip boundary at the top and a waving

boundary at the bottom. The lateral boundaries are treated as periodic. A boundary-
fitted grid system is used above the wave surface, as illustrated in figure 1. The
irregular wave surface-bounded domain in the physical space (x, y, z, t) is transformed
to a right rectangular prism in the computational space (ξ, ψ, ζ, τ ) with the following
algebraic mapping:

τ = t, ξ = x, ψ = y, ζ = z− η̃
H̃(x, y, t)

= z− η̃(x, y, t)

H − η̃(x, y, t)
. (2.4)

Here, the height of the physical domain, H̃(x, y, t), is decomposed into the average
height H and a wave-induced variation −η̃(x, y, t).

Applying the algebraic mapping to (2.1) and (2.2) gives the following governing
equations in the computational space:

∂ ũ

∂τ
+ ζt

∂ ũ

∂ζ
+ ũ

(
∂ ũ

∂ξ
+ ζx

∂ ũ

∂ζ

)
+ ṽ

(
∂ ũ

∂ψ
+ ζy

∂ ũ

∂ζ

)
+ w̃ζz

∂ ũ

∂ζ

=− 1
ρa

(
∂ p̃

∂ξ
+ ζx

∂ p̃

∂ζ

)
− ∂τ

d
11

∂ξ
− ζx

∂τ d
11

∂ζ
− ∂τ

d
12

∂ψ
− ζy

∂τ d
12

∂ζ
− ζz

∂τ d
13

∂ζ

+ νa∇2ũ− 1
ρa
Π, (2.5)

∂ṽ

∂τ
+ ζt

∂ṽ

∂ζ
+ ũ

(
∂ṽ

∂ξ
+ ζx

∂ṽ

∂ζ

)
+ ṽ

(
∂ṽ

∂ψ
+ ζy

∂ṽ

∂ζ

)
+ w̃ζz

∂ṽ

∂ζ

=− 1
ρa

(
∂ p̃

∂ψ
+ ζy

∂ p̃

∂ζ

)
− ∂τ

d
21

∂ξ
− ζx

∂τ d
21

∂ζ
− ∂τ

d
22

∂ψ
− ζy

∂τ d
22

∂ζ
− ζz

∂τ d
23

∂ζ
+ νa∇2ṽ, (2.6)

∂w̃

∂τ
+ ζt

∂w̃

∂ζ
+ ũ

(
∂w̃

∂ξ
+ ζx

∂w̃

∂ζ

)
+ ṽ

(
∂w̃

∂ψ
+ ζy

∂w̃

∂ζ

)
+ w̃ζz

∂w̃

∂ζ

=− 1
ρa

(
ζz
∂ p̃

∂ζ

)
− ∂τ

d
31

∂ξ
− ζx

∂τ d
31

∂ζ
− ∂τ

d
32

∂ψ
− ζy

∂τ d
32

∂ζ
− ζz

∂τ d
33

∂ζ
+ νa∇2w̃, (2.7)

∂ ũ

∂ξ
+ ζx

∂ ũ

∂ζ
+ ∂ṽ

∂ψ
+ ζy

∂ṽ

∂ζ
+ ζz

∂w̃

∂ζ
= 0, (2.8)

where

∇2 = ∂2

∂ξ 2
+ ∂2

∂ψ2
+ 2ζx

∂2

∂ξ∂ζ
+ 2ζy

∂2

∂ψ∂ζ
+ (ζ 2

x + ζ 2
y + ζ 2

z )
∂2

∂ζ 2

+ (ζxx + ζyy)
∂

∂ζ
. (2.9)

Here, the subscripts ‘t’, ‘x’ and ‘y’ for ζ denote the partial derivatives of ζ with
respect to t, x and y, respectively.

For spatial discretization, we use a Fourier-series-based pseudo-spectral method on
an evenly spaced collocated grid in the horizontal directions, and a second-order
finite-difference method on a staggered grid in the vertical direction. In LESns-R,
the vertical grid is clustered near the wave surface to have high resolution in the
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FIGURE 1. Illustration of coordinate transformation. The irregular wave surface-bounded
domain in the physical space (x, y, z, t) is transformed into a right rectangular prism in the
computational space (ξ, ψ, ζ, τ ). Only a vertical cross-section in the three-dimensional space
is plotted here.

near-surface region of the boundary layer. In LESns-M, the vertical grid is evenly
spaced; the near-surface region is not well resolved, relying on a surface-layer model
instead to provide the surface stress to the wind field. Details of the surface-layer
model are given in § 3. In the momentum equation, the SGS stress tensor is modelled
using the dynamic Smagorinsky model (Germano et al. 1991; Lilly 1992) including
planar, surface parallel, averaging in the computational domain. For the grid- and test-
filtering operators in the governing equation, we use a two-dimensional spectral cutoff
filter in the (ξ, ψ)-plane in the computational space. For surface-resolving LES, this
approach is appropriate. For LESns-M, it was shown in Porté-Agel et al. (2000) that
a scale-dependent dynamic approach provides more accurate predictions of turbulence
in the near-surface region. However, in order to avoid increased modelling complexity,
and to avoid switching between SGS models for representing the turbulent bulk flow,
in this study we opt to use the standard dynamic Smagorinsky model.

The governing equations are integrated in time with a fractional-step method. First,
the momentum equations without the pressure terms are advanced in time with
a second-order Adams–Bashforth scheme. In order to enforce the incompressibility
constraint, a pressure Poisson equation is then solved to provide a correction to the
velocity field. Details and validations of the numerical method are provided by Yang &
Shen (2011a).

2.2. HOSM for the simulation of sea-surface waves

The motions of the sea-surface waves are simulated using a potential-flow-based
HOSM (Dommermuth & Yue 1987; see also West, Brueckner & Janda 1987). The
HOSM simulates nonlinear waves using the Zakharov formulation (Zakharov 1968),
in which the wave motion is described by the surface elevation η and the surface
potential Φs. Here, Φs =Φ(x, y, z= η(x, y, t), t) with Φ being the velocity potential.
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Starting from the kinematic and dynamic free-surface boundary conditions (e.g. Mei,
Stiassnie & Yue 2005), three steps are taken (Dommermuth & Yue 1987): (i) use a
perturbation series of Φ with respect to wave steepness to order M,

Φ(x, y, z, t)=
M∑

m=1

Φ(m)(x, y, z, t); (2.10)

(ii) express Φs using Taylor series expansion about z= 0 to the order corresponding to
(i),

Φs(x, y, t)=
M∑

m=1

M−m∑
`=0

η`

`!
∂`

∂z`
Φ(m)(x, y, z, t)

∣∣∣∣
z=0

; (2.11)

and (iii) represent Φ(m) using an eigenfunction expansion with N modes,

Φ(m)(x, y, z, t)=
N∑

n=1

Φ(m)
n (t)Ψn(x, y, z). (2.12)

The evolution equations for η and Φs are obtained as (Dommermuth & Yue 1987)

∂η

∂t
=−∇hη ·∇hΦ

s + (1+∇hη ·∇hη)

×
[

M∑
m=1

M−m∑
`=0

η`

`!
N∑

n=1

Φ(m)
n (t)

∂`+1Ψn(x, y, z)

∂z`+1

∣∣∣∣
z=0

]
, (2.13)

∂Φs

∂t
=−gη − 1

2
∇hΦ

s
·∇hΦ

s + 1
2
(1+∇hη ·∇hη)

×
[

M∑
m=1

M−m∑
`=0

η`

`!
N∑

n=1

Φ(m)
n (t)

∂`+1Ψn(x, y, z)

∂z`+1

∣∣∣∣
z=0

]2

. (2.14)

Here, ∇h = (∂/∂x, ∂/∂y) is the horizontal gradient. For the deep-water waves
considered in this study, Ψn(x, y, z)= exp(|k(n)|z+ik(n)·x), where k(n)= (kx(n), ky(n))
is the wavenumber vector for the nth eigenfunction mode and i = √−1. The
relation between the scalar wavenumber k (see § 3) and the wavenumber vector is

k = |k| =
√

k2
x + k2

y . A pseudo-spectral method with Fourier series is used for spatial

discretization. A fourth-order Runge–Kutta scheme is used to advance (2.13) and
(2.14) in time.

The HOSM is an accurate and efficient tool for the nonlinear wave simulation in a
wave phase-resolved framework. It is capable of simulating a broadband wavefield
with nonlinear wave–wave interactions being resolved to order M. It requires a
computational cost proportional to MN log N only, and has an exponential convergence
rate of the solution with respect to M and N. It has been applied to a wide range of
wave problems. A complete review of the methodology, validation and application of
the HOSM is provided by Mei et al. (2005, chap. 15).

Note that for the same horizontal resolution, the computational cost of HOSM
simulation is much lower than that of the LES of wind turbulence. Therefore, without
compromising the computational efficiency, HOSM simulations can be performed at
the same horizontal resolution as the LES, such as in the LESns-R in this paper.
Alternatively, HOSM simulations can be performed at higher horizontal resolution than
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the LES, in order to obtain wave height distributions covering both the resolved (GS),
and the dynamically important portion of SGS ranges of the wave spectrum, such as in
the LESns-M applications to be undertaken.

At each time step of the wind and wave simulations, first the HOSM advances the
wavefield in time; based on the result of HOSM, the surface geometry and velocity
are provided to the wind LES, and the wind simulation advances in time. Specifically,
in LESns-R, the wave surface elevation is used for grid mapping, and the surface
velocity is used as a Dirichlet boundary condition for the velocity field. In LESns-M,
in addition to grid mapping, the SGS part of the surface elevation from the HOSM
is also used to calculate the sea-surface roughness. The surface-layer model gives the
sea-surface stress as a Neumann condition for the wind velocity field based on the
law of the wall. Details on how to calculate the SGS sea-surface roughness using the
dynamic modelling approach and impose the sea-surface stress boundary condition are
discussed in § 3. An example of the results of LESns-M and HOSM simulations is
shown in figure 2.

Note that the above wind and wave simulation uses a one-way coupling scheme, in
which the pressure and shear stress forcing from the wind to the wave is neglected.
This is sufficient for the test of sea-surface roughness models in the present study. A
more sophisticated two-way coupling approach is available in the current numerical
framework, allowing the air pressure to force the evolution of the wavefield. However,
for the simulation durations considered in the present study, the one-way and two-way
couplings result in only small differences in the wavefield. The influence of such
differences on the tests and validations of sea-surface roughness models is negligible.
In future studies, when investigating the physics of wavefield evolution under wind
forcing in more detail, two-way coupling between the wind and wave simulations will
be used.

3. Dynamic SGS sea-surface roughness model for LES

3.1. General idea and mathematical formulation

Let η̃(x, y, t) be the sea-surface elevation filtered at the LES resolution ∆, and let ñi be
the components of the unit vector normal to the filtered sea-surface elevation given by

ñi(i= 1, 2, 3)= (−η̃x,−η̃y, 1)√
η̃2

x + η̃2
y + 1

, (3.1)

with the subscripts ‘x’ and ‘y’ denoting partial derivatives in the streamwise and
spanwise directions, respectively. Then, the total drag acting on the wind at the sea
surface is given as

Fi =−
∫∫

A
p̃ s ñi dx dy+ ρa

∫∫
A
τ SGS

ij,∆ ñj dx dy, i= 1, 2. (3.2)

On the right-hand side of (3.2), the first and second terms represent the drag due to
GS and SGS waves, respectively. It is assumed that the Reynolds number is large
enough so that the viscous drag at scales ∆ and larger is negligible. Here, A is the
sea-surface area, p̃ s is the GS air pressure on the sea surface and ρa is the air density.
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1

30

0

z

xy

(a)

(b)

FIGURE 2. Illustration of LESns-M of wind turbulence together with HOSM simulations of
wavefield for the CU6 case (the relevant parameters are given in table 1). In (a), contours of
streamwise velocity (normalized by the mean velocity at the top of the simulation domain
UH̄) are plotted on two vertical planes, and contours of air pressure are plotted on the wave
surface. In (b), contours of the instantaneous SGS surface shear stress τ SGS

13,∆ calculated by the
wave-kinematics-dependent model are shown on the same wave surface as in (a).

The variable τ SGS
ij,∆ denotes the SGS kinematic surface stress. Its major components

are modelled as (Moeng 1984; Albertson & Parlange 1999)

τ SGS
i3,∆ (x, y, t)=−

 κ ̂̃Ur (x, y, t)

log
(
d2/z0,∆

)
2 ̂̃ur,i(x, y, t)̂̃Ur(x, y, t)

, i= 1, 2. (3.3)

Here, κ is the von Kármán constant, (̂̃. . .) indicates filtering at test-filter scale ̂̃
∆

( ̂̃∆ > ∆, e.g. ̂̃
∆ = 2∆), z0,∆ is the roughness scale associated with SGS waves,̂̃ur,i(x, y, t) is the air velocity relative to the water surface at the first off-surface

grid point (i.e. in the LESns-M code to be used, at height d2 above the sea surface),
i.e. ̂̃ur,i(x, y, t)= ̂̃ui(x, y, d2, t)− ̂̃us,i(x, y, t), (3.4)

with ̂̃us,i(x, y, t) being the sea-surface velocity and

̂̃Ur(x, y, t)=
√
[̂̃ur(x, y, t)]2 + [̂̃vr(x, y, t)]2 (3.5)

is the magnitude of ̂̃ur,i.
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We note that the logarithmic law in (3.3) was originally obtained in an averaged

sense. To apply it locally, in (3.3) we use the test-filtered velocities at the scale ̂̃
∆

instead of the grid-resolved velocities. As shown by Bou-Zeid, Meneveau & Parlange
(2005), this filtering treatment reduces velocity fluctuations significantly and thus
improves the applicability of (3.3). We also note that while there are fundamental
limitations of the logarithmic law (e.g. the assumption of near-boundary equilibrium
sometimes does not hold), we aim at mitigating these limitations by using dynamically
determined parameters that can encode local dynamics that will be described on the
resolved scales of the LES.

The SGS sea-surface roughness length z0,∆ in (3.3) is modelled using a dynamic
method following Anderson & Meneveau (2011),

z0,∆ =
√

z2
0,s + (αw σ∆η )

2
. (3.6)

Here, σ∆η is the effective amplitude of the SGS waves, which is modelled on the
basis of wave characteristics. (In Anderson & Meneveau (2011), σ∆η is modelled as the
r.m.s. value of SGS geometric height of land elevation.) The dimensionless coefficient
αw is, in principle, unknown but here it will be determined dynamically, allowing the
surface roughness to vary with wind and wave conditions. For the wind and wave
cases considered in the present study, z0,s� αw σ

∆
η . As such, z0,∆ is mainly determined

by the dynamic roughness model part, αw σ
∆
η . The choice of the r.m.s. form in (3.6)

over αw σ
∆
η alone or the linear form in (1.1) is mainly for numerical convenience

and also so that SGS height variances can be superposed linearly, rather than the
r.m.s. values.

To determine the value of αw, we consider two filter scales, ∆ and ̂̃
∆, and assume

that the same αw value holds at both scales (scale invariance of αw). The constraint
that the total drag force is independent of the resolution gives (Anderson & Meneveau
2011)

∫∫
A
p̃ s ñi dx dy+ ρa

∫∫
A

 κ
̂̃Ur

log
(

d2/

√
z2

0,s + (αwσ∆η )
2
)


2 ̂̃ur,î̃Ur

dx dy

=
∫∫

A

̂̃p s ̂̃ni dx dy+ ρa

∫∫
A

 κ
̂̃Ur

log
(

d2/

√
z2

0,s + (αwσ
̂̃
∆
η )

2
)


2 ̂̃ur,î̃Ur

dx dy. (3.7)

Here, (̂̃. . .) indicates filtering at a second test-filter scale
¯̃̂
∆ (
¯̃̂
∆ >

̂̃
∆ > ∆, e.g.

¯̃̂
∆ =

2 ̂̃∆ = 4∆) and ̂̃Ur =
√
( ̂̃ur)

2

+ (̂̃vr)
2

. By solving (3.7), we obtain the value of αw. In
practice, there exist a variety of numerical algorithms for solving (3.7) (see, e.g.,
Kincaid & Cheney 2001). In the present study, equation (3.7) is solved by the
bisection method, which was also used by Anderson & Meneveau (2011) with good
performance.

In this study, we consider the case that the dominant waves propagate in the
mean wind direction. Therefore, the condition (3.7) is enforced in the dominant
flow direction (i.e. i = 1). As pointed out by Anderson & Meneveau (2011), if
necessary, directional effects can be addressed by enforcing the vector equation using a
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least-square error minimization over the two components. Furthermore, the integration
area A can be either the entire computational surface if the globally averaged surface
drag is the focus of the study, or local areas so that the sea-surface roughness can
capture the spatial variations of the surface characteristics (Bou-Zeid, Parlange &
Meneveau 2006). For an initial application of the dynamic roughness model to LES
of wind–wave interactions, in this work we perform planar averaging over the entire
computational surface.

3.2. Models for the effective SGS surface wave amplitude σ∆η
A challenge in the present study is the modelling of the effective SGS wave amplitude
of the sea surface, σ∆η , which needs to be related to the characteristics of the waves.
This subsection presents five possible choices, which cover different aspects of the
wave properties.

In this study, we consider the height spectrum of the wind-generated sea-surface
waves obtained during the Joint North Sea Wave Observation Project (JONSWAP)
(Hasselmann et al. 1973), with its one-dimensional form in wavenumber space given
by

FJ(k)= αJ

2k3
exp

[
−5

4

(
kp

k

)2
]
γ r. (3.8)

Here, k is the wavenumber, kp is the wavenumber of the spectrum peak and αJ , γ
and r are parameters. Details of the JONSWAP spectrum, including the values of the
parameters, are given in Appendix.

The directional spectrum S(k, θ) to be used in characterizing the wavefield is based
on the one-dimensional spectrum (3.8) and a spreading function D(k, θ), according to

S(k, θ)= D(k, θ) FJ(k), (3.9)

where the directional spreading function is given by (Cartwright 1963; Hasselmann,
Dunckel & Ewing 1980)

D(k, θ)=


N(s)cos2s

(
π

Θ
θ
)
, |θ |6 Θ

2
,

0, |θ |> Θ

2
.

(3.10)

Here, Θ is the range of the spreading angle, s is the spreading parameter and N(s) is
the normalization constant, with which D(k, θ) satisfies the constraint∫ π

−π
D(k, θ) dθ = 1. (3.11)

In the present study, we use Θ = π and s= 1, which gives N(s)= 2/π based on (3.11).

3.2.1. RMS model
The first model, the RMS model, was proposed by Anderson & Meneveau (2011)

for fractal-like (static) land surfaces. In this model, the r.m.s. value of SGS height
fluctuations is used to model the surface roughness, i.e.

σ∆η = (η̃2 − η̃2)
1/2
. (3.12)
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For a given spectrum S(k, θ), this becomes

σ∆η =
[∫ π/2
−π/2

∫ 2π/λc

π/∆

S(k, θ) dk dθ
]1/2

, (3.13)

where λc is the critical wavelength that separates gravity and capillary waves (Lamb
1932). Previous studies (e.g. Caudal 1993; Makin et al. 1995) have shown that the
waves shorter than λc have a relatively small contribution to the total sea-surface stress
and are thus neglected here.

This RMS model has been shown to produce satisfactory results for LES of
wind over land surfaces (Anderson & Meneveau 2011). For wind over water
waves, the surface roughness elements (i.e. waves) of different length scales have
different propagation speeds. That is, relatively short waves propagate relatively slowly
according to the deep-water dispersion relation

c(k)=√gλ(k)/2π=√g/k, (3.14)

where c(k) and λ(k) are the phase speed and wavelength of the wave with
wavenumber k, respectively. Previous studies have shown that the wave-induced form
drag varies with the ratio of wave phase speed to wind velocity, called the wave age
(see the reviews by Belcher & Hunt (1998), Cavaleri et al. (2007) and Sullivan &
McWilliams (2010)). Therefore, the effect of wave propagation on surface roughness
needs to be considered, which is lacking in the RMS model. As a consequence, the
RMS model is expected to perform reasonably well only if the grid resolution is
fine (i.e. ∆ is small), so that the SGS waves propagate relatively slowly and can be
approximated as static roughness elements.

To improve the model performance, revisions of (3.13) using weighted integration
are considered in the next four models. Because long waves propagate faster than short
waves and thus have less relative velocity with respect to the wind, less weight put on
low k is needed in the integration.

3.2.2. Geometry model
The second model, geometry model, parameterizes the sea-surface roughness based

on the geometry of the waves. This model follows Lettau’s (1969) idea about the land
surface roughness induced by rocks and sands, and was applied to ocean wavefield
by Byrne (1982). It assumes that for a wave component with wavenumber k, the
corresponding roughness is

z0(k)= α′w,BH(k)
Asi(k)

Asp(k)
. (3.15)

Here, α′w,B is a coefficient, H(k) is the wave height, which is equal to twice the wave
amplitude a(k), and Asi(k) and Asp(k) are the silhouette area and specific area (Lettau
1969) of the wave component, respectively. The ratio Asi(k)/Asp(k) can be expressed as
(Byrne 1982)

Asi(k)

Asp(k)
= H(k)

λ(k)
= kH(k)

2π
. (3.16)

Substituting (3.16) into (3.15) gives

z0(k)=
α′w,BkH(k)2

2π
= αw,BkH(k)2. (3.17)
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Therefore, for a wave spectrum S(k, θ), the effective amplitude of the SGS waves is

σ∆η =
∫ π/2
−π/2

∫ 2π/λc

π/∆

kS(k, θ) dk dθ, (3.18)

where any scalar prefactor is omitted since it is considered to be absorbed into the
coefficient αw to be determined dynamically. Similar to the RMS model, the geometry
model treats the waves as static roughness element and lacks wave kinematics.
Nevertheless, the integrand is weighted by k.

3.2.3. Steepness-dependent Charnock model
The third model, the steepness-dependent Charnock model, originated from Hsu

(1974). For a wave component with wavenumber k, it is assumed that the Charnock
coefficient αch in (1.2) is dependent on wave steepness:

αch = αw,H
H(k)

λ(k)
= αw,H

kH(k)

2π
, (3.19)

where αw,H is a coefficient. Substituting (3.19) into (1.2) gives

z0 = αw,HkH(k)
u2
∗

2πg
. (3.20)

For a wave spectrum S(k, θ), this yields a model for the effective amplitude of the
SGS waves

σ∆η =
[

2
∫ π/2
−π/2

∫ 2π/λc

π/∆

k2S(k, θ) dk dθ
]1/2

u2
∗

2πg
. (3.21)

Note that the integrand k2S(k, θ) is the slope spectrum of the wavefield (Janssen
2004). Compared with the RMS model in (3.13) and the geometry model in (3.18),
the steepness-dependent Charnock model puts more weight on the high wavenumber
modes, and thus highlights the effect of short waves on the sea-surface roughness.

3.2.4. Wave-kinematics-dependent model
The fourth model, the wave-kinematics-dependent model, originated from

Kitaigorodskii & Volkov (1965) and was later generalized to a continuous wave
spectrum by Kitaigorodskii (1968) (for a review, see Donelan 1990). For a wave
mode with wavenumber k, the logarithmic law of the velocity profile in the frame of
reference moving with the wave is assumed to be

U(z)− c(k)

u∗
= 1
κ

log
z

αa(k)
. (3.22)

Here, α is a model parameter. Using the dispersion relation for deep water waves,
c(k)=√g/k, (3.22) is rewritten as

U(z)

u∗
= 1
κ

log
z

αa(k) exp
(−(κ/u∗)√g/k

) . (3.23)

Therefore,

z0(k)= αa(k) exp[−(κ/u∗)
√

g/k], (3.24)
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FIGURE 3. The integrands in the modelling of σ∆η as functions of k/kp: thick solid line, RMS
model (equation (3.13)); dashed line, geometry model (equation (3.18)); dotted, steepness-
dependent Charnock model (equation (3.21)); dash–dotted line, wave-kinematics-dependent
model (equation (3.25)); and thin solid line, combined-kinematics-steepness model (equation
(3.26)). The wave spectra S(k, θ) are based on the JONSWAP wave spectrum with a wind
speed of U10 = 10.0 m s−1 and fetch values of (a) F = 10 km and (b) F = 80 km. The values
of kp are 0.48 and 0.12 m−1 in (a,b), respectively. Note that the integrands have different
dimensions and it is thus inappropriate to compare them directly. The purpose of the plot is to
show their variations with k with different weights.

and the corresponding superposition of wave amplitudes based on a wave spectrum
S(k, θ) (Kitaigorodskii 1968) can be written as

σ∆η =
[∫ π/2
−π/2

∫ 2π/λc

π/∆

S(k, θ) exp
(
−2κ

u∗

√
g

k

)
dk dθ

]1/2

. (3.25)

Note that the function exp[−2(κ/u∗)
√

g/k ] approaches 0 as k→ 0 and approaches
1 as k → ∞. Therefore, the wave-kinematics-dependent model emphasizes the
contribution of short waves to sea-surface roughness by reducing the weights of long
waves.

3.2.5. Combined-kinematics-steepness model
The fifth model, the combined-kinematics-steepness model, combines the ideas of

the wave-kinematics-dependent model and the steepness-dependent Charnock model.
Geernaert (1983) suggested the replacement of the vertical length scale H(k) in (3.20)
with the length scale given by (3.24). For a wave spectrum S(k, θ), we have

σ∆η =
[∫ π/2
−π/2

∫ 2π/λc

π/∆

k2S(k, θ) exp
(
−2κ

u∗

√
g

k

)
dk dθ

]1/2
u2
∗

2πg
. (3.26)

Figure 3 illustrates the shape of the integrands of each σ∆η model, namely S in
the RMS model (equation (3.13)), kS in the geometry model (equation (3.18)), k2S in
the steepness-dependent Charnock model (equation (3.21)), S exp(−2κ/u∗

√
g/k) in the

wave-kinematics-dependent model (equation (3.25)) and k2S exp(−2κ/u∗
√

g/k) in the
combined-kinematics-steepness model (equation (3.26)). As shown, in different models,
different weights are put on the integration of the wave spectrum. As pointed out
earlier, short waves propagate relatively slowly and thus are more effective in exerting
drag on the wind. In the subsequent sections, we assess which model performs best.
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It should be clarified that in the models discussed here, the addition associated with
the integrals in the modelling of σ∆η is not meant to represent additive contributions
to the stress by simple superposition of the square of the length scales. Instead, the
additivity refers to an attempt to describe the geometry of the surface using a single
length scale in a way that becomes additive when more scales are added. To relate
to hydrodynamic forces, we then assume that the proposed dynamic determination of
the parameter αw effectively accounts for the combined effects of the discarded small
scales. Such a dynamic modelling approach, as shown in the next section, is found to
be capable of capturing the essential characteristics of the SGS sea-surface roughness
and impose proper SGS surface stress on the LES.

4. Results
4.1. LESns-R results

We perform LESns-R on a fine grid to obtain high-resolution benchmark data for
the a priori tests as well as for subsequent a posteriori tests on coarser grids.
For LESns-R of wind turbulence, we consider a simulation domain with a size of
(Lx,Ly,H)= (2λp, λp, λp). For the simulation of turbulence over waves, such a domain
size has been found to be sufficient for applying the periodic boundary condition in
the horizontal directions and free-slip condition at the top of the domain (e.g. Henn
& Sykes 1999; Calhoun, Street & Koseff 2001; Yang & Shen 2009). We use a
grid resolution of (Nx,Ny,Nz) = (128, 256, 64) with evenly distributed grid points in
the horizontal directions and clustered grid towards the wave surface in the vertical
direction. With the 2/3 rule for dealiasing in the horizontal directions, the current
resolution provides 85 and 170 aliasing-free effective grid points in x and y directions,
respectively. Note that for LESns-R, the grid resolution should satisfy 1x+ . 100,
1y+ . 20 and 1z+ . 2 near the boundary in order to resolve the streaky structures
and viscous sublayer (Piomelli & Balaras 2002). Here, the superscript ‘+’ denotes the
length normalized by the wall unit length νa/u∗. We use a moderately low Reynolds
number, Re∗ = u∗λp/νa = 4096, since, as is well known, resolving the surface layer
precludes simulating realistically high Reynolds numbers. Based on Re∗ = 4096 we
have 1x+ = 64.0 and 1y+ = 16.0. The vertical grid size is 1z+ = 2.0 near the wave
surface and gradually increases to 1z+ = 118.6 towards the top of the simulation
domain. The simulation time step is 1t+ = 0.04, which is sufficiently small to capture
the evolution of resolved eddies and to meet the requirement of the numerical stability
of the time integration scheme.

For the wavefield, we consider JONSWAP wave spectra. By varying the value
of fetch F, three JONSWAP wave spectra with various peak phase speeds are
obtained. The key parameters of the wave spectra are given in table 1. Based
on these parameters and (3.8) and (3.10), the ocean broadband wavefield for the
HOSM simulation is generated using a random phase method (Wu 2004). A horizontal
resolution of (Nx,Ny) = (128, 256) is used for the HOSM. The one-dimensional wave
surface elevation spectra FJ(k) obtained from the simulations are plotted in figure 4.
Plotted are the mean wave elevation spectra averaged over 50 peak wave periods.
When normalized by g/u2

∗ (figure 4a), the spectra for all of the three cases collapse
well in the high wavenumber range, and show a −3 slope when plotted in logarithmic
scales. The vertical shift of the spectra when normalized by kp (figure 4b) is expected,
and is caused by the change of fetch (see (A 1) and (A 3) in the Appendix).

To understand the sea-surface drag on wind and the momentum transfer between
wind and waves, it is essential to quantify the air pressure applied at the wave
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FIGURE 4. One-dimensional wavenumber spectra of surface elevation for the JONSWAP
wavefields simulated by HOSM: �, case CU6; 4, case CU10; and ©, case CU18. Variables
in (a) are normalized by the wind friction velocity u∗ and gravitational acceleration g;
variables in (b) are normalized by the peak wavenumber kp. The corresponding locations
of filters ∆4, ∆6, ∆8, ∆10 and ∆12 used for a priori tests are also indicated in (b).

Case U10 (m s−1) F (m) cp (m s−1) cp/u∗ λp (m) kp (m−1)

CU6 12 1707.6 2.66 6 4.54 1.38
CU10 12 7905.5 4.43 10 12.62 0.50
CU18 12 46104.9 7.99 18 40.88 0.15

TABLE 1. Parameters of JONSWAP spectra for the HOSM simulations.

surface for different wave components. A desired approach is to perform two-
dimensional Fourier transform for the surface wave elevation and air pressure
distribution, and then calculate the directional wave growth rate. However, because
the air pressure has large fluctuations associated with wave-induced variations and
turbulence fluctuations, a large number of data samples are required for statistically
converged result of the directional wave growth rate. This is unaffordable with the
computer resources available to us at present due to the high computational cost of
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LESns-R. Alternatively, we focus on one-dimensional result by first performing Fourier
transform in the streamwise direction and then performing ensemble averaging in the
spanwise direction. The availability of 256 grid lines at different spanwise locations
substantially improves the quality of statistical results. Note that the focus on the
streamwise direction can be justified by the fact that the waves primarily propagate in
that direction and the wave growth rate does not have large variations within moderate
spreading angles where the majority of wave energy exists. Moreover, this approach
is consistent with the one-dimensional form of existing experimental and theoretical
results used for comparison and validation in the study.

We decompose the air pressure into different wave modes corresponding to different
wavenumbers k. The temporal rate of energy transfer from the wind to the wave at
wavenumber k is quantified as (Donelan et al. 2006)

γ (k)= ρw

ρa

1
ω(k)e(k)

de(k)

dt
=
(

u∗
c(k)

)2

β(k). (4.1)

Here, for the kth mode, e(k) = ρwg[a(k)]2/2 is the wave energy density, ω(k) = √gk
is the corresponding angular frequency for deep water waves and β(k) is the wave
growth rate parameter (Miles 1957, 1993). Under wind forcing, wind and wave
exchange momentum and energy mainly through form drag (see, e.g., the reviews
by Belcher & Hunt (1998) and Sullivan & McWilliams (2010)). The growth rate
parameter β(k) is related to the wind forcing through (see, e.g., Donelan et al. 2006)

β(k)= 2Dp(k)

[a(k)k]2 , (4.2)

where

Dp(k)= 1
A

∫∫
A

pk

ρau2∗

∂ηk

∂x
dx dy (4.3)

is the normalized streamwise form drag per unit area for wave mode k, with pk and
ηk being the corresponding air pressure at the wave surface and surface displacement,
respectively.

Figure 5 shows the values of β for different wave modes. As shown in figure 5(a),
for cases CU6 and CU10, β has a nearly constant value of 25 over the resolved scale
in LESns-R. For case CU18 where the waves are relatively mature, the value of β
increases from −3 near the spectrum’s peak to 21 at high wavenumbers. For cases
CU6 and CU10 where the waves are younger than those in CU18, β is positive and
large. When plotted as a function of the dimensional wavenumber k (figure 5b), the
values of β from these three cases converge better and indicate a slightly negative
value for long waves (small k) and a nearly constant positive value for short waves
(large k), consistent with previous studies (see, e.g., the reviews of Belcher & Hunt
(1998) and Cavaleri et al. (2007)). We note that among the different cases, the values
of β differ at small k and collapses at large k. This phenomenon is consistent with
the common behaviour of turbulence: large-scale motions differ among different flows,
while small-scale motions are more universal. In the current problem of wind over
waves, the turbulence wind field is affected by the broadband waves in a complex
way. Using LES to explicitly resolve the GS eddies and wave components seems a
good approach. For the modelling of SGS effects, such as the SGS surface roughness
studied in the present paper, it is the stress at the scales near the grid size ∆ and the
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FIGURE 5. Values of the wave growth rate parameter β for different wave modes. In (a), β
is plotted as a function of dimensionless wavenumber k/kp, where kp is the wavenumber of
the spectrum peak. In (b), β is plotted as a function of dimensional wavenumber k (m−1) on
a semi-logarithmic scale. LESns-R results for various wind–wave cases are plotted: �, case
CU6; 4, case CU10; and©, case CU18.

test-filter size ̂̃
∆ that matter most for the dynamic modelling. As shown in figure 5(b),

the three cases have consistent results at large k corresponding to ∆ and ̂̃
∆, suggesting

the suitability of the data to be used for the test of SGS surface roughness models.
In the literature, β is often parameterized as a function of wave age c/u∗. Figure 6

shows the dependence of β on c/u∗, and compares the current LESns-R results with
previous numerical and theoretical results. As c/u∗ increases from 0, β increases
first, reaches its maximal value around c/u∗ = 5 and then decreases as c/u∗ increases
further. The results obtained by the current LESns-R agree with previous numerical
results. At small c/u∗, our LESns-R result falls in the middle of various theoretical
predictions. At large c/u∗, the numerical result agrees with the rapid-distortion theory
by Cohen & Belcher (1999) better than with the other three predictions based on
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FIGURE 6. Dependence of wave growth rate parameter β on wave age c/u∗. Values predicted
by various theories are indicated by lines: —–, Miles (1957); −−, Janssen (1991); − · −,
Miles (1993); and · · ·, Cohen & Belcher (1999). Results from previous numerical studies are
indicated by solid symbols: �, Sullivan et al. (2000); N, Kihara et al. (2007); and •, Yang &
Shen (2010). Values obtained by the current LESns-R are indicated by open symbols: �, case
CU6; 4, case CU10; and©, case CU18.

the critical-layer theory (Miles 1957, 1993; Janssen 1991), because Cohen & Belcher
(1999) considered relatively more details of the wind turbulence structure. Cohen &
Belcher (1999) also predicted negative values of β for c/u∗ > 20. Note that in figure 6,
the line for Cohen & Belcher (1999) consists of two parts, one for c/u∗ < 11 and
the other for c/u∗ > 20, corresponding to slow and fast waves, respectively. Moreover,
in figure 6, the numerical studies of Sullivan et al. (2000), Kihara et al. (2007) and
Yang & Shen (2010) are for monochromatic waves, while the current LESns-R is for
broadband waves.

Figure 7 shows the dependence of the temporal growth rate γ on the reversed wave
age u∗/c in a logarithmic scale. Note that the dispersion relation gives u∗/c = ωu∗/g.
As a result, the reversed wave age is also a dimensionless angular frequency of the
wave, ω∗ = ωu∗/g. Figure 7 shows that short waves (which have large frequencies)
grow faster than long waves (Plant 1982). The results from the three cases of the
current LESns-R collapse, and agree quite well with previous experimental, theoretical
and numerical data in the literature.

Note that the current LESns-R uses, by necessity, a fairly low value of the Reynolds
number, namely Re∗ = u∗λp/ν = 4096. It is set to be lower than geophysically relevant
values for the purpose of resolving the near-surface region. To investigate the Reynolds
number effect and to assure that the value used in our study is not too low to subtract
validity to our test result, we have performed an additional simulation for case CU10
but with a reduced Reynolds number of Re∗ = 1264. We denote this case as CU10-LR.
Figure 8 compares γ between cases CU10 and CU10-LR. As shown, the values of γ
obtained from case CU10-LR agree well with those from case CU10 up to k/kp = 9.
At higher k, the results become different, with the γ from case CU10-LR exhibiting
a reduction, indicating viscous effect at k/kp > 9. Unlike case CU10-LR, the other
three cases, CU6, CU10 and CU18, do not show the Reynolds number effect of
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FIGURE 7. Dependence of wave temporal growth rate γ on reversed wave age u∗/c and
comparison of the current LESns-R with previous experiments and simulations. Experimental
data compiled by Plant (1982) are indicated by ×. Predictions by various wind–wave theories
are indicated by lines: —–, Miles (1957); −−, Janssen (1991); and − · −, Miles (1993).
Parameterization by Donelan et al. (2006) is indicated by · · · . DNS results from Sullivan
et al. (2000) are marked by +. DNS results from Kihara et al. (2007) are marked by ?.
Values obtained by the current LESns-R are indicated by open symbols: �, case CU6; 4,
case CU10; and ©, case CU18. Values obtained by the current dynamic surface-modelled
approach (LESns-M) with the wave-kinematics-dependent model for σ∆η are indicated by
solid symbols: �, case CU6; N, case CU10; and•, case CU18.
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FIGURE 8. Similar to figure 7 but for the illustration of Reynolds number effect: 4, case
CU10 with Re∗ = 4096; and �, case CU10-LR with Re∗ = 1264. The corresponding location
of ∆9 (k/kp = 9) is indicated in the figure.

decreasing γ in figure 7. Therefore, while caution should be taken in using LESns-R
for the SGS model test if the Reynolds number is too low, such as in case CU10-LR,
the three cases used in this study are still valid.
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FIGURE 9. Scaling of the temporal wave growth rate γ with the mean wind velocity
at the height of half wavelength. Experimental data by Donelan (1999) are indicated
by ×. Parameterizations based on experimental data are shown by lines: − − −,
γ = 0.28(Uλ/2/c− 1)2 by Donelan (1999) based on laboratory data; and —–, γ =
0.17(Uλ/2/c− 1)2 by Donelan et al. (2006) based on field data. DNS results of Yang &
Shen (2010) are indicated by +. Values obtained by the current LESns-R are indicated by
open symbols: �, case CU6; 4, case CU10; and©, case CU18.

Donelan et al. (2006) analysed the field measurement data obtained from wave-
following probes, and suggested that the wave growth rate may scale better with
Uλ/2 than with u∗, where Uλ/2 is the mean wind velocity at the height of λ/2 above
the wave surface for a given wave mode. This scaling was supported by the recent
numerical study of turbulence over monochromatic waves by Yang & Shen (2010).
In figure 9, the values of γ (k) obtained by the current LESns-R simulation with
broadband waves are plotted as a function of (Uλ/2/c− 1)2, with Uλ/2 now being the
mean wind velocity at the height of λ(k)/2 for the corresponding wave mode with
wavenumber k. The current results show good scaling of γ with Uλ/2, and agree with
the parameterizations of Donelan (1999) and Donelan et al. (2006) and the simulation
results of Yang & Shen (2010). A comparison between figures 7 and 9 indicates that
the variance of γ when scaled with Uλ/2 is indeed smaller than that when scaled with
u∗.

The analyses and comparisons in this section indicate that the current LESns-R
captures the essential physics of the interactions of wind turbulence with broadband
sea-surface waves. Therefore, in the subsequent sections, the results of these LESns-R
are used as database for the a priori and a posteriori tests of the dynamic sea-surface
roughness models developed in § 3.

4.2. A priori tests of dynamic sea-surface roughness models
In a priori tests, the data of LESns-R at fine grid resolution is filtered to coarse
grids to evaluate the roughness models discussed in § 3. A variety of filter sizes are
considered, which are listed in table 2. The spectral positions for some of the filters
are indicated in figure 4.

The dynamic method discussed in § 3.1 involves finding the roughness index αw

that solves (3.7) (the equation expresses the first-principles constraint of resolution-
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Filter size ∆ (m)

Filter k∆/kp CU6 CU10 CU18

∆4 4 1.14 3.16 10.22
∆5 5 0.91 2.52 8.18
∆6 6 0.76 2.10 6.81
∆7 7 0.65 1.80 5.84
∆8 8 0.57 1.58 5.11
∆9 9 0.50 1.58 4.54
∆10 10 0.45 1.40 4.09
∆11 11 0.41 1.26 3.72
∆12 12 0.38 1.05 3.41

TABLE 2. Filter sizes for a priori tests.

independent total drag force). Note that the SGS surface stress depends on the value
of αw, so does the total surface stress. For the grid filter of size ∆, the plane-averaged
total surface stress, which is the sum of GS and SGS surface stresses, is

〈τ T,∆
13 〉(αw)=− 1

ρa
〈p̃s ñ1〉 −

〈 κ
̂̃Ur

log
(

d2/

√
z2

0,s + (αw σ∆η )
2

)


2 ̂̃ur,1̂̃Ur

〉
, (4.4)

where 〈· · ·〉 indicates two-dimensional plane-averaging, and the superscript ‘T’ denotes
total. When αw = 0, (4.4) gives the total surface stress on a smooth, wavy surface
with all of the form drag captured by the GS surface pressure variation. As shown
in figure 10, when αw increases, the total surface stress increases with the additional
contribution of form drag due to SGS surface waves. As introduced in § 3.1, with

an additional test filter with size ̂̃
∆, the intersect of the 〈τ T,∆

13 〉(αw) curve and the

〈τ T, ̂̃∆
13 〉(αw) curve gives the value of αw as the solution of (3.7).

In figure 10, examples of 〈τ T,∆
13 〉(αw) and 〈τ T, ̂̃∆

13 〉(αw) are shown for all of the five σ∆η
models proposed in § 3.2. Also plotted is the benchmark line of −〈τ T

13〉 = u2
∗, which

follows from overall momentum balance in statistically stationary equilibrium, when
the pressure force applied to the wind must be on average balanced by the surface
drag on the bottom surface. Figure 10 indicates that the dynamic procedure described
by (3.7) generates a single and stable solution for the model coefficient αw, in the
context of all of the five models of σ∆η considered. Meanwhile, there exist different
levels of agreement with the additional overall momentum constraint −〈τ T

13〉 = u2
∗

among these models. Evidently the wave-kinematics-dependent model yields the best
result. The RMS model and the geometry model underestimate the values of αw and
SGS surface stress. The steepness-dependent Charnock model provides the second best
result, with the prediction of the total surface stress slightly higher than the benchmark
value. The combined-kinematics-steepness model overestimates the surface stress.

It is important to point out that the results from these a priori tests do not mean
that in actual LES using the four less satisfactory σ∆η models, there will be a mismatch
between applied pressure and surface drag. In actual LES, a new equilibrium develops
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FIGURE 10. Total and resolved surface stresses as functions of roughness index αw. The
surface stresses are normalized by u2

∗. In the a priori test, the grid-filter size is set to be

∆ = ∆12 and the test-filter size is set to be ̂̃∆ = ∆8. Values corresponding to ∆ are indicated

by: —, total stress; and − − −, resolved stress. Values corresponding to ̂̃
∆ are indicated by:

− · −, total stress; and − · ·−, resolved stress. The results of various models for case CU6
are plotted: (a) RMS model; (b) geometry model; (c) steepness-dependent Charnock model;
(d) wave-kinematics-dependent model; and (e) combined-kinematics-steepness model. The
horizontal line of −〈τ T

13〉/u2
∗ = 1 indicates the benchmark value of the total surface stress.

in which −〈τ T
13〉 = u2

∗, but the resolved fields can be expected to present less realistic
statistics compared to those of the filtered LESns-R results.

To evaluate and understand the performance of each σ∆η model, we use the data
from the LESns-R to obtain benchmark values of σ∆η at various filter sizes with the
following procedure. If the turbulence and wave motions at all of the scales of interest
are known, the total surface stress in the streamwise direction can be written as

〈τ T
13〉 = −u2

∗

∫ π/2
−π/2

∫ kc

0
k2β(k)S(k, θ)cos2θ dk dθ −

[
κUh

log(h/z0,s)

]2

, (4.5)
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where Uh is the mean wind velocity at z= h.
In LES, only the flow motions at scales larger than the grid-filter size ∆ are

resolved, and the total surface stress is written as

〈τ T
13,∆〉 = 〈τGS

13,∆〉 −
[

κUh

log(h/z0,∆)

]2

, (4.6)

where

〈τGS
13,∆〉 = −u2

∗

∫ π/2
−π/2

∫ π/∆
0

k2β(k)S(k, θ)cos2θ dk dθ (4.7)

is the contribution from the GS gravity waves. Because the total surface stress is
independent of resolution, equalizing (4.5) and (4.6) gives

〈τ SGS
13,∆〉 = −u2

∗

∫ π/2
−π/2

∫ kc

π/∆

k2β(k)S(k, θ)cos2θ dk dθ (4.8)

=
[

κUh

log(h/z0,s)

]2

−
[

κUh

log(h/z0,∆)

]2

, (4.9)

where 〈τ SGS
13,∆〉 is the surface stress induced by the SGS gravity waves. Solving (4.9) for

z0,∆ gives

z0,∆ = h exp

{
−κUh

(
−〈τ SGS

13,∆〉 +
(κUh)

2

log2(h/z0,s)

)−1/2
}

= h exp

[
−κUh

(
u2
∗

∫ π/2
−π/2

∫ kc

π/∆

k2β(k)S(k, θ)cos2θ dk dθ + (κUh)
2

log2(h/z0,s)

)−1/2
]
.

(4.10)

To evaluate the integration in the above equation, we use the data of LESns-R with
high resolution. While the largest k in LESns-R does not reach kc, the associated error
is small because the wave energy density S reduces rapidly with increasing k. The
effective SGS sea-surface wave amplitude σ∆η is then calculated as

σ∆η =
√

z2
0,∆ − z2

0,s

/
αw. (4.11)

The roughness index αw should be constant if the σ∆η model is physically realistic.
Using the data from the fine-resolution LESns-R, the benchmark values for σ∆η are
obtained by (4.11). In the following analyses, the reference height in (4.10) is set to be
at the 10th grid above the wave surface, h= z10. This gives h+ = 57.8 in wall units, so
that the reference height falls within the logarithmic region of the boundary layer.

Figure 11 shows the dependence of σ∆η on the filter wavenumber for cases CU6,
CU10 and CU18. The benchmark values given by the LESns-R data and (4.11) are
also plotted. In figure 11, σ∆η is normalized by its value at the filter size of ∆4.
Therefore, the prescription of αw value in (4.11) is not needed.

Previous studies (e.g. Makin et al. 1995; Janssen 2004) as well as the LESns-R
results in § 4.1 have indicated that long waves are less effective in exerting form
drag on wind than short waves. By putting equal weights on low and high wave
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FIGURE 11. Dependence of the effective SGS wave amplitude σ∆η on filter wavenumber k∆
for various cases: (a) CU6; (b) CU10; and (c) CU18. Results of various roughness models
are indicated by solid lines with symbols: , RMS model (equation (3.13)); , geometry
model (equation (3.18)); , steepness-dependent Charnock model (equation (3.21)); ,
wave-kinematics-dependent model (equation (3.25)); and , combined-kinematics-steepness
model (equation (3.26)). Based on the LESns-R data, the benchmark value is calculated
as σ∆η = (z2

0,∆ − z2
0,s)

1/2
/αw (equation (4.11)) with z0,∆ given by (4.10). The benchmark is

indicated by the dashed line. Normalization is done using the corresponding value of σ∆η at
k∆/kp = 4 for each model.

modes, the RMS model overestimates the decay of σ∆η . The geometry model seems
to put more weights on high wavenumbers by the multiplication with k in (3.18).
However, the weights are insufficient and the calculation of σ∆η in (3.18) does not
involve a square-root operator as in other models. As a result, the geometry model
also overestimates the decay of σ∆η . The steepness-dependent Charnock model puts
considerably more weights on high wavenumbers. However, the k2 factor in (3.21) is
relatively simple and can barely capture the wind–wave interaction physics accurately
for all of the cases with different wave ages at the wave spectrum peak. As a result,
the steepness-dependent Charnock model achieves good agreement with the benchmark
data for case CU10, while overestimating σ∆η for case CU6 and underestimating
σ∆η for case CU18. On the other hand, the combined-kinematics-steepness model
underestimates the decay of σ∆η with respect to k∆ because the combination of the
factor k2 and the weighting function containing

√
g/k in (3.26) is redundant. Finally,

in the wave-kinematics-dependent model (equation (3.25)), the exponential weighting
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Filter RMS
model

Geometry
model

Steepness-
dependent

Charnock model

Wave-kinematics-
dependent

model

Combined-kinematics-
steepness

model

∆4 0.0869 0.633 3.80 0.325 16.52
∆5 0.0995 0.748 3.78 0.335 15.81
∆6 0.1040 0.811 3.59 0.328 14.58
∆7 0.1077 0.878 3.44 0.322 13.60
∆8 0.1116 0.956 3.32 0.320 12.85
∆9 0.1161 1.057 3.25 0.321 12.29
∆10 0.1233 1.226 3.24 0.329 11.91
∆11 0.1320 1.442 3.28 0.342 11.81
∆12 0.1385 1.657 3.29 0.351 11.67
σ ∗α 0.143 0.323 0.065 0.032 0.135

TABLE 3. Variations of the roughness index αw with filter size for case CU6. The results
are obtained using (4.9)–(4.11) and LESns-R data. The normalized standard deviation of
αw, σ ∗α (normalized by the mean value), is also shown.

Filter RMS
model

Geometry
model

Steepness-
dependent

Charnock model

Wave-kinematics-
dependent

model

Combined-kinematics-
steepness

model

∆4 0.0533 0.463 6.572 0.455 58.45
∆5 0.0616 0.554 6.496 0.446 54.69
∆6 0.0672 0.625 6.433 0.440 52.09
∆7 0.0696 0.670 6.257 0.429 49.23
∆8 0.0731 0.741 6.163 0.424 46.86
∆9 0.0756 0.823 5.990 0.414 43.91
∆10 0.0833 1.003 6.132 0.428 43.02
∆11 0.0874 1.144 6.157 0.432 41.99
∆12 0.0953 1.409 6.383 0.452 42.11
σ ∗α 0.177 0.371 0.031 0.031 0.124

TABLE 4. Same as table 3, but for case CU10.

function reduces the weights on long waves, and significantly better agreement with
the benchmark value is achieved compared with the other four models.

Tables 3–5 show the wave roughness index αw for each model estimated using the
LESns-R data. The value of αw is obtained according to the following procedure. First,
z0,∆ is calculated by substituting the LESns-R data into (4.9) and (4.10). Meanwhile,
the value of σ∆η is obtained using the HOSM wave simulation data. Then the
roughness index αw is calculated according to (4.11). Note that the range of αw values
among different models differs significantly because of the different forms of σ∆η for
each model. In the tables, the normalized standard deviations (i.e. the r.m.s. value of
variation normalized by the mean value) of αw when changing the filter size are listed
for each model. If a model is fully realistic, αw should be fully independent of the
filter size, and the normalized standard deviation of αw should be zero.

Tables 3–5 indicate that the wave-kinematics-dependent model performs well, with
the smallest value of the normalized standard deviation, for all of the three wave
cases considered in the present study. The RMS model considers only the amplitude
effect of surface waves, and thus behaves relatively well when the wave phase speed
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Filter RMS
model

Geometry
model

Steepness-
dependent

Charnock model

Wave-kinematics-
dependent

model

Combined-kinematics-
steepness

model

∆4 0.0162 0.189 6.653 0.650 243.2
∆5 0.0195 0.237 6.964 0.646 238.9
∆6 0.0220 0.279 7.077 0.630 229.4
∆7 0.0234 0.313 7.002 0.604 215.5
∆8 0.0262 0.376 7.222 0.601 208.6
∆9 0.0279 0.428 7.284 0.592 200.4
∆10 0.0312 0.532 7.636 0.604 196.7
∆11 0.0326 0.610 7.637 0.593 187.7
∆12 0.0375 0.823 8.294 0.630 190.7
σ ∗α 0.258 0.484 0.067 0.037 0.098

TABLE 5. Same as table 3 but for case CU18.

is small (case CU6) but performs poorly when the waves propagate fast (case CU18).
The geometry model has the largest normalized standard deviation among all of the
five models. As shown in figure 11, it differs the most compared with the benchmark
data. The αw value in the steepness-dependent Charnock model is less dependent on
the filter size for case CU10, but has more variation for cases CU6 and CU18. In the
combined-kinematics-steepness model, the αw value is more dependent on filter size
for case CU18 than for cases CU6 and CU10. This combined model is inferior to the
wave-kinematics-dependent model and the steepness-dependent Charnock model alone,
because of the aforementioned over-weighting in the spectral integration.

Overall, the a priori tests in this subsection indicate that among the five candidate
expressions proposed in § 3.2, the wave-kinematics-dependent model provides the best
performance in terms of modelled surface stress, SGS surface roughness and resolution
independence.

4.3. A posteriori tests of dynamic sea-surface roughness models
In a posteriori tests, we perform surface modelled (LESns-M) simulations, with the
SGS sea-surface roughness models implemented, at relatively low grid resolution
(48 × 64 × 64) and compare the results with filtered data of LESns-R obtained at
high grid resolution (128 × 256 × 64). Note that the vertical grid points are evenly
distributed in the LESns-M, while they are finely clustered near the wave surface in
the LESns-R. This gives grid size of 1x+ = 170.7, 1y+ = 64.0 and 1z+ = 64.0 for
the LESns-M. The resolution of the wavefield for HOSM remains at 128 × 256, the
same as in LESns-R. This enables us to obtain accurate information about the SGS
wavefield needed in the surface roughness modelling. The simulation time step is
1t+ = 0.3. We consider the same wave cases as in the a priori tests (table 1).

The wave growth rates obtained by LESns-M with the wave-kinematics-dependent
model are shown in figure 7. The agreement of the LESns-M results with the data in
the literature and the results of the LESns-R runs is quite good, indicating that with
a proper sea-surface roughness model, it is feasible to capture wind–wave interactions
with LESns-M. Moreover, at low u∗/c, the values of γ for case CU18 obtained
from LESns-M appear to be closer to the experimental results than those obtained
from LESns-R are. Note that LESns-M uses the logarithmic law (equation (3.3)) on
a computational grid coarser than that in LESns-R. This result further supports our
surface-layer modelling approach.
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FIGURE 12. Normalized mean streamwise velocity profiles on a semi-logarithmic scale for
case CU6. The result of LESns-R is indicated by − − −. The results from LESns-M with
various sea-surface roughness models are indicated by solid lines with different symbols: ,
RMS model (equation (3.13)); , geometry model (equation (3.18)); , steepness-dependent
Charnock model (equation (3.21)); , wave-kinematics-dependent model (equation (3.25));
and , combined-kinematics-steepness model (equation (3.26)).

Figures 12–18 show the mean vertical profiles of a variety of turbulence statistics.
For the current cases with deformable wave surfaces, the mean value of a quantity is
obtained by averaging over a plane of constant ζ and over time, where ζ is the vertical
coordinate in the computational space as defined in § 2. Thus, the vertical coordinate
in the physical space in figures 12–18 refers to the mean physical height of the grid
points with the same ζ and approximately the same vertical distance to the wave
surface.

Figure 12 shows the vertical profiles of mean streamwise velocity for case CU6. The
results from LESns-M using the dynamic sea-surface roughness model are compared
with the filtered result of LESns-R. Results from various models for σ∆η discussed
in § 3.2 are shown. It can be seen that the mean velocity profile from the LESns-M
using the wave-kinematics-dependent model agrees best with the benchmark results
obtained from the high-resolution LESns-R. The RMS model and the geometry model
underestimate the sea-surface roughness, resulting in a slightly larger value for the
streamwise velocity. On the other hand, both the steepness-dependent Charnock model
and the combined-kinematics-steepness model overestimate the sea-surface roughness,
which leads to reduced mean velocity. The performance of various roughness models
shown here is consistent with the a priori test results in § 4.2.

Figure 13 shows the vertical profiles of shear stresses for case CU6 obtained by
the LESns-M using the wave-kinematics-dependent model, which has been shown in
preceding results to have the best performance among all five σ∆η models and is thus
the focus of the subsequent analyses. The mean total shear stress consists of three
components, the resolved Reynolds stress 〈ũ′w̃′〉, the mean SGS shear stress 〈τ13〉 and
the mean viscous shear stress νa∂〈ũ〉/∂z. Here, the velocity fluctuations ũ′i (i = 1, 2, 3)
are obtained by subtracting the corresponding plane- and time-averaged values from
ũi. The resolved Reynolds shear stress 〈ũ′w̃′〉 dominates and increases almost linearly
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FIGURE 13. Vertical profiles of the shear stresses (normalized by u2
∗) for case CU6 obtained

by the LESns-M with the sea-surface roughness being modelled by the wave-kinematics-
dependent model: , the resolved Reynolds stress 〈ũ′w̃′〉; , the mean SGS shear stress
〈τ13〉; , the mean viscous shear stress νa∂〈ũ〉/∂z; and , the total shear stress. Symbols are
shown for every two grid points.

away from the top boundary until z/H = 0.1 and then reduces rapidly towards the
bottom wave boundary. The mean SGS shear stress 〈τ13〉 is small at elevated heights
but increases rapidly towards the wave surface at 0.05 < z/H < 0.1; then its value
decreases rapidly when further approaching the wave surface. The mean viscous
shear stress νa∂〈ũ〉/∂z is negligible compared with the other two stress components.
Similar to pressure-driven turbulent flow over a flat boundary, in the current case the
total shear stress increases linearly as the distance from the top boundary increases.
However, the total normalized shear stress does not reach −1 at the wave surface,
because of the additional momentum loss associated with the resolved wave form drag
(cf. Anderson & Meneveau 2010, 2011, for the static rough wall case).

Figure 14 shows the vertical profiles of velocity variances for case CU6. Results
of LESns-M using dynamic sea-surface roughness models are compared with the
filtered result of LESns-R. Similar to turbulence over static rough wall (Anderson
& Meneveau 2010, 2011), for turbulence over water waves, the velocity variance
is dominated by the streamwise component 〈ũ′ũ′〉, with the magnitude of the three
components following the order of 〈ũ′ũ′〉> 〈ṽ′ṽ′〉> 〈w̃′w̃′〉. As shown in figure 14(a,b),
the values of 〈ũ′ũ′〉 and 〈ṽ′ṽ′〉 obtained by LESns-M with the wave-kinematics-
dependent model agree with the filtered result of LESns-R. The RMS model and
geometry model also show consistent results but with slightly smaller magnitudes.
The steepness-dependent Charnock model and combined-kinematics-steepness model
apparently underestimate the horizontal velocity variances close to the wave surface.
The difference among the results of different σ∆η models is larger for the vertical
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FIGURE 14. Vertical profiles of velocity variances for case CU6: (a) 〈ũ′2〉; (b) 〈ṽ′2〉; and (c)
〈w̃′2〉. The filtered result of LESns-R is indicated by —–. Results from LESns-M with various
sea-surface roughness models are indicated by solid lines with symbols: , RMS model
(equation (3.13)); , geometry model (equation (3.18)); , steepness-dependent Charnock
model (equation (3.21)); , wave-kinematics-dependent model (equation (3.25)); and ,
combined-kinematics-steepness model (equation (3.26)). Symbols are shown for every two
grid points.

velocity variance 〈w̃′w̃′〉 than that of the horizontal variances (figure 14c). The
geometry model underestimates the magnitude of 〈w̃′w̃′〉, while the steepness-
dependent Charnock model and combined-kinematics-steepness model overestimate
the value. The filtered data of LESns-R agrees better with the results obtained by the
RMS model and wave-kinematics-dependent model.

Figure 15 shows the vertical profiles of mean streamwise velocity for case CU10.
Similar to case CU6, the RMS and geometry models overestimate the mean velocity
in case CU10, but with even more appreciable deviations. The steepness-dependent
Charnock model and combined-kinematics-steepness model underestimate the mean
velocity for case CU10, as they did in case CU6. The wave-kinematics-dependent
model still has the best performance among the five σ∆η models. Figure 16 shows
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FIGURE 15. The same as in figure 12 but for case CU10.

the vertical profiles of velocity variances for case CU10. For the horizontal velocity
variances (figure 16a,b), the results from LESns-M with various dynamic roughness
models agree reasonably well with the benchmark results from LESns-R, except for
the overestimation by the RMS model and the more appreciable overestimation by the
combined-kinematics-steepness model. Except for the combined-kinematics-steepness
model, all four other σ∆η models capture the enhancement of the near-surface peak
for 〈ũ′ũ′〉 due to the increase of wave phase speed when comparing case CU10 with
case CU6 (cf. figure 14a). For the vertical velocity variance (figure 16c), results from
the steepness-dependent Charnock model and wave-kinematics-dependent model agree
with the benchmark results from LESns-R, with a slightly overestimated peak near the
wave surface. But the RMS and geometry models obtain an appreciably larger peak
near the wave surface. The combined-kinematics-steepness model overestimates the
vertical velocity variance over all of the height.

For case CU18, the energy-containing waves in the wavefield propagate faster than
those in cases CU6 and CU10, and the wave surface in CU18 is thus effectively
smoother than those in cases CU6 and CU10 (also see Janssen 2004). The smaller
total surface roughness for case CU18 is indicated by the larger value of mean
streamwise velocity near the wave surface in figure 17 compared with figures 12
and 15. Furthermore, the difference between LESns-R and LESns-M with various σ∆η
models is also found to be less obvious compared with cases CU6 and CU10. The
difference in the velocity variances is also small, as shown in figure 18. Compared
with cases CU6 and CU10, in case CU18 the horizontal velocity variances have
smaller magnitudes at high heights, but have a rapid increase in magnitude very close
to the wave surface because of the strong velocity distortion by the fast propagating
waves. Such strong wave distortion also results in a larger peak of 〈w̃′w̃′〉 adjacent
to the wave surface as shown in figure 18(c), rather than a smaller peak somewhat
above the wave surface for cases CU6 and CU10 as shown in figures 14(a) and 16(a),
respectively.

In summary, the comparisons of the vertical profiles of mean streamwise velocity
and velocity variances suggest that the current dynamic sea-surface roughness
modelling approach works for LESns-M of turbulence over water waves. The results
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FIGURE 16. The same as in figure 14 but for case CU10.

of a posteriori tests shown in figures 12–18 together with the a priori test results
in § 4.2 indicate consistently that the wave-kinematics-dependent model is the best
among the five models for σ∆η . Therefore, a dynamic sea-surface roughness model
based on the wave kinematics (equations (3.7) and (3.25)) can be regarded as a
method of choice for LESns-M of wind over waves.

5. Conclusions and discussion
In this study, a dynamic sea-surface roughness model has been developed for LES

of wind turbulence over an ocean wavefield. In the simulations, the surface elevation
and the corresponding air pressure variation of the waves are resolved down to GSs.
As a result, the effects of GS waves on wind turbulence are captured through the
wave-induced form drag on the wind turbulence. However, the effects of SGS waves
are not resolved explicitly (in LESns-M) and are modelled using a local log-law
surface model. In the log-law function, the roughness scale due to the SGS sea-surface
waves is modelled by a coefficient αw (in principle αw is unknown), multiplied by an
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FIGURE 17. The same as in figure 12 but for case CU18.

effective SGS wave amplitude σ∆η , which is quantified by a weighted integral over
the SGS wave spectrum. In the present numerical framework, the wave simulation
using HOSM employs higher resolution than the LES, in order to resolve a significant
portion of the gravity waves within both the GS and SGS ranges. The value of σ∆η is
thus calculated directly by the numerical integration of the wave simulation result. The
total surface stress is expressed as the sum of the GS form drag and the log-law-based
SGS shear stress. Based on the physical constraint that the total surface stress is
invariant with respect to the grid resolution, the total surface stresses at grid and
test-filter scales are equated to form an equation for the unknown coefficient αw. Such
a dynamic approach allows the value of αw to adjust to particular prevalent wind and
wave conditions.

Five candidate models for σ∆η based on different aspects of the wave characteristics
are evaluated. They are named as the RMS model, geometry model, steepness-
dependent Charnock model, wave-kinematics-dependent model and combined-
kinematics-steepness model. They are tested for different wind–wave conditions.
The performance of the models is evaluated by means of a priori tests using the
benchmark data from high-resolution surface-resolving simulations (LESns-R), as
well as a posteriori tests by implementing the approach in surface-modelled LES
(LESns-M). Among the different models for σ∆η , the wave-kinematics-dependent model
yields the best performance consistently because it includes both the wave amplitude
information (through the wave spectrum function) and the kinematics of wind-and-
wave relative motion (through an exponential function that depends on the ratio of
wave phase speed to wind friction velocity). Further assessment and analysis of the
model performance based on the critical-layer theory is reported in Yang, Shen &
Meneveau (2013), which shows results consistent with this paper.

In this study, we have focused on the development of a new sea-surface roughness
model that is dynamic in LES. For future studies, a variety of modifications can be
implemented to improve and generalize the current model. As the first attempt, we
currently use only one unknown coefficient, αw, in our dynamic roughness model
and reasonably good results are obtained. The value of αw is assumed to be scale-
invariant. For future extension, one can use more than one dynamic parameter to take
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FIGURE 18. The same as in figure 14 but for case CU18.

into account the possible scale dependence of the model coefficient αw. Moreover,
the present study considers plane-averaging in the horizontal directions. In real
applications, the sea-surface roughness varies spatially quite a bit. For example, the
interaction among waves due to wave focusing may cause intermittent increases of
wave steepness (e.g. Wu 2004). Another example is that a long wave may modulate
the short waves riding on it and cause variations of surface roughness that are
correlated with the phase of the long wave (e.g. Longuet-Higgins 1969; Gent &
Taylor 1976). For these conditions, the current dynamic roughness model can be
generalized using piecewise horizontal averaging or long-wave phase-averaging. Such
extensions are straightforward in the framework established in this study, and will be
investigated in our future research. Going forward, wave breaking effects could also
be considered, although more in-depth studies are required to simulate and model
breaking waves. Still, one can envision many further generalizations of the dynamic
approach, based on first-principles constraints that should enforce that the same overall
flux (e.g. of momentum or of various scalars) is predicted by the model, irrespective of
grid resolution, thus providing additional equations for unknown model parameters.
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Appendix. Spectral description of wind-generated sea-surface waves
The frequency spectrum of the wave surface height obtained during the JONSWAP

(Hasselmann et al. 1973) is expressed as

EJ(ω)= αJg2

ω5
exp

[
−5

4

(ωp

ω

)4
]
γ r, (A 1)

where

r = exp

[
−(ω − ωp)

2

2σ 2ω2
p

]
, (A 2)

αJ = 0.076
(

U2
10

gF

)0.22

, (A 3)

ωp = 22
(

g2

U10F

)1/3

, (A 4)

γ = 3.3, (A 5)

σ =
{

0.07 ω 6 ωp,

0.09 ω > ωp.
(A 6)

Here, ω is the angular frequency, ωp is the angular frequency at the spectrum peak,
F, called the fetch, is the distance over which the wind has been blowing and γ is
the peak enhancement factor. Based on the dispersion relation for deep-water waves,
ω2 = gk, equation (A 1) is transformed into (3.8) in wavenumber space using

FJ(k)= g

2ω
EJ(ω). (A 7)
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