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COMPUTATION OF L(0, χ) AND OF

RELATIVE CLASS NUMBERS OF CM-FIELDS

STÉPHANE LOUBOUTIN

Abstract. Let χ be a nontrivial Hecke character on a (strict) ray class group of
a totally real number field L of discriminant dL. Then, L(0, χ) is an algebraic
number of some cyclotomic number field. We develop an efficient technique
for computing the exact values at s = 0 of such abelian Hecke L-functions
over totally real number fields L. Let fχ denote the norm of the finite part
of the conductor of χ. Then, roughly speaking, we can compute L(0, χ) in
O((dLfχ)0.5+ε) elementary operations. We then explain how the computation
of relative class numbers of CM-fields boils down to the computation of exact
values at s = 0 of such abelian Hecke L-functions over totally real number
fields L. Finally, we give examples of relative class number computations for
CM-fields of large degrees based on computations of L(0, χ) over totally real
number fields of degree 2 and 6.

§1. Introduction

Let χ be a nontrivial Hecke character on a (strict) ray class group of a

totally real number field L. Then, L(0, χ) is an algebraic number of some

cyclotomic number field Q(χ). The first aim of this paper is to develop a

practical and efficient technique for computing the exact values at s = 0

of such abelian Hecke L-functions over totally real number fields L, i.e.

for computing the exact values of the rational coordinates of this algebraic

number L(0, χ) in a given basis of this cyclotomic field Q(χ) (see Theorem

7 and Remark 8). We apply this technique to the efficient computation

of relative class numbers of CM-fields (see Theorem 9). We finally give in

Section 5 examples of computation of relative class numbers of CM-fields of

large degrees based on computations of the exact values of values at s = 0

of L-functions over totally real number fields of degree 2 and 6. We also

refer the reader to [CK], [Lef], [LP] and [Park] for other examples of the use

of the present technique. Let us point out that our method applies equally

well to the computation of L(−n, χ), n ≥ 0. We restrict ourselves to the
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172 S. LOUBOUTIN

computation of L(0, χ) because we only aim at applying our method for

computing relative class numbers of CM-fields.

To compute such exact values we fix a Z-basis B of the ring of algebraic

integers Z[χ] of the cyclotomic field Q(χ) generated by the values of χ and

we compute the coordinates of L(0, χ) in this basis B. Since these coordi-

nates are rational numbers whose denominators are bounded beforehand

(see Theorem 2), to compute their exact values we only have to compute

sufficiently good numerical approximations of them. By expressing these

coordinates as linear combinations of finitely many values L(0, χl) for some

l ≥ 1 (see (6) and (7)), we will reduce the computation of approximations

of these coordinates to the computation of sufficiently good approxima-

tions of values of several L(0, χl). We will finally remind the reader of the

technique developed in [Lou6] for computing as good as desired numerical

approximations of values at s = 0 of such abelian Hecke L-functions.

Notation. Throughout this paper, we let L be a totally real number

field of degree m ≥ 1 and F be an integral ideal of L. We write LF for

the set of all totally positive elements α of L such that νP(α − 1) ≥ νP(F)

for all primes P of L which divide F . The (strict) ray class group mod F ,

which we denote by RF (L), is defined to be the quotient of the group of

fractional ideals of L generated by the primes not dividing F , by the the

subgroup consisting of all principal ideals (α) with α ∈ LF .

We let χ denote a primitive character or order nχ > 1 on RF (L) and

set fχ = NL/Q(F), the norm of the finite part of the conductor of χ. We let

Mχ/L denote the cyclic extension of degree nχ and conductor F associated

with χ and we let wχ denote the number of roots of unity of Mχ. Notice

that φ(wχ) divides the degree mnχ of Mχ. Thus, wχ ≤ φ2(wχ) ≤ m2n2
χ. We

set ζχ = exp(2πi/nχ), Q(χ) = Q(ζχ). We let φχ = φ(nχ) and Z[χ] = Z[ζχ]

denote the degree and the ring of algebraic integers of the cyclotomic field

Q(χ), respectively. Finally, for any l relatively prime to nχ we let σl denote

the Q-automorphism of Q(χ) which is defined by σl(ζχ) = ζ l
χ.

§2. Prerequisite on L(0, χ)

Let χ be a primitive Hecke character on a ray class group RF (L) modulo

F , an integral ideal of number field L of degree m. To begin with, we notice

that if L(0, χ) 6= 0 then L is totally real and χ is ramified at the m infinite

places of L. From now on, we assume that χ is ramified at all the m infinite

places of a totally real number field L of degree m.
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For each I ∈ RF (L), the partial zeta function of I is defined by

ζF (I, s) =
∑

A
(NL/Q(A))−s (<(s) > 1)

where the summation is taken over all integral ideals A of L, prime to F ,

which belong to the class of I, and where NL/Q(A) denotes the norm from

L to Q of A. Notice that ζF (I, s) depends only on the ray class of I modulo

F . If L = Q, F = (f) and I = (a), a ≥ 1 then

ζF (I, s) = ζ(f)((a), s) = f−sζ(a/f, s)

where

ζ(b, s) =
∑

k≥0

(b + k)−s (0 < b ≤ 1 and <(s) > 1)

denotes Hurwitz’s zeta function. We have ζ(b, 0) = 1
2 −b, so that ζ(f)((a), 0)

is a rational number. This result was generalized by Siegel and Klingen who

proved that ζF (I, 0) is rational. We notice that explicit denominators for

values at s = 0 of partial zeta functions seem to be known only in the cases

where L is either the rational number field or a real quadratic number field:

Proposition 1. (See [CS1, Th.8].) Assume that L is a real quadratic

field. Then, 12NL/Q(F)ζF (I, 0) is a rational integer. Moreover, if F = (f)

for some positive rational integer f ≥ 1, then 12fζF (I, 0) is a rational

integer.

Let now χ be a primitive character of order nχ > 1 on the (strict) ray

class group RF (L) modulo F and let

L(s, χ) =
∑

I
χ(I)ζF (I, s)(1)

(where I ranges over a set of representatives of the ray class group modulo

F) be the abelian Hecke L-series associated to χ. Setting

an(χ) =
∑

NL/Q(A)=n

χ(A)(2)

(this sum ranges over all the non zero integral ideals of L of norm n) we

have

L(s, χ) =
∑

n≥1

an(χ)

ns
(<(s) > 1)(3)
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According to (1) and to Siegel-Klingen’s Theorem, L(0, χ) is in Q(χ) and

for any rational integer l relatively prime to nχ we have

σl(L(0, χ)) = L(0, χl).(4)

If L = Q, then χ is a Dirichlet character modulo f > 1 of order nχ > 1

and we have L(s, χ) = f−s
∑f−1

a=1 χ(a)ζ(a/f, s). Hence, setting ζ(a, c, s) =

cs−1ζ({ac/f}, s) − ζ({a/f}, s) for a ≥ 1, c ≥ 1 and gcd(ac, f) = 1, we have
∑f−1

a=1 χ(a)ζ(a, c, s) = (χ̄(c)cs−1 − 1)f sL(s, χ), which yields

(c − χ̄(c))L(0, χ) = −c

f−1
∑

a=1

χ(a)ζ(a, c, 0) = −
f−1
∑

a=1

[ac/f ]χ(a) ∈ Z[χ]

(where [x] ∈ Z denotes the greatest rational integer less than or equal to

a real x and where {x} = x − [x] ∈ [0, 1[ denotes the fractional part of x).

Hence, gcd(c, f) = 1 and χ(c) = 1 imply (c−1)L(0, χ) ∈ Z[χ]. In particular,

if d = gcd{c− 1, c ∈ ker χ} then dL(0, χ) ∈ Z[χ]. However, in this situation

Mχ is the subfield of Q(ζf ) fixed by ker χ (i.e. α ∈ Q(ζf ) is in Mχ if and

only if σc(α) = α for all c ∈ ker χ (where σc(ζf ) = ζc
f )). Now, let ζd be any

dth primitive complex root of unity. Then d divides f (for 1 + f ∈ ker χ),

hence ζd ∈ Q(ζf ) and σc(ζd) = ζc
d = ζd for all c’s in ker χ. Hence, ζd which

is fixed by ker χ is in Mχ. Therefore, d divides wχ and wχL(0, χ) is in Z[χ].

Hence, we have proved that wχL(0, χ) ∈ Z[χ] for any Dirichlet character χ.

This result was generalized to arbitrary characters χ on ray class groups of

totally real number fields L:

Theorem 2. (See [CS2] and [Cas].) It holds wχL(0, χ) ∈ Z[χ].

Let B = {ε1, · · · , εφχ} be any Z-basis of Z[χ]. Let B⊥ = {θ1, · · · , θφχ} be

its dual basis relative to the trace form (see [Lan, Prop. 2 page 58]), hence

TrQ(χ)/Q(εkθl) = δk,l =

{

1 if k = l

0 if k 6= l

and set

M(B⊥) = max
1≤l≤nχ, gcd(l,nχ)=1

1≤j≤φχ

|σl(θj)|.(5)

Notice that if nχ =
∏r

i=1 pei
i and if

B⊥
i = {θl(i); 1 ≤ l ≤ φ(pei

i )}
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is the dual basis relative to the trace form TrQ(ζ
p
ei
i

)/Q of a Z-basis

Bi = {εk(i); 1 ≤ k ≤ φ(pei
i )}

of the ring of algebraic integers Z[ζp
ei
i

] of Q(ζp
ei
i

), then

B = {ε~k =

r
∏

i=1

εki
(i); 1 ≤ ki ≤ φ(pei

i )}

is a Z-basis of the ring of algebraic integers Z[ζf ] of Q(ζf ) and

B⊥ = {θ~l =

r
∏

i=1

θli(i); 1 ≤ li ≤ φ(pei
i )}

is its dual basis relative to the trace form TrQ(ζf )/Q which satisfies

M(B⊥) ≤
r
∏

i=1

M(B⊥
i ).

Therefore, we only have to explain the construction of dual bases in the

case of cyclotomic fields of prime power conductors. Now, noticing that

TrQ(ζps )/Q(ζ l
ps) =







0 if ps−1 does not divide l

−ps−1 if ps−1 divides l but ps does not divide l

ps − ps−1 if ps divides l,

we have:

Lemma 3. Let φ denote Euler’s function. Let p be a prime. The dual

basis of the Z-basis B = {ζk
ps ; 1 ≤ k ≤ φ(ps)} of the ring of algebraic

integers of Q(ζps) is B⊥ = {θl; 1 ≤ l ≤ φ(ps)} where

θl =
1 − ζ

1+n(l)
p

ps
ζ−l
ps with n(l) = [

l − 1

ps−1
] ∈ {0, · · · , p − 2}.

In particular, θl = 21−sζ−l
2s if p = 2, and θl = (ζ−l

p − 1)/p if s = 1. Notice

that M(B⊥) ≤ 2/p ≤ 1. Therefore, for any n > 2 there exists some Z-basis

of B of Z[ζn] such that M(B⊥) ≤ 1.
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Theorem 4. Let F be a non zero integral ideal of a number field L of

degree m ≥ 1. Let χ be a primitive character on the (strict) ray class group

RF (L) modulo F and let fχ = NL/Q(F) denote the norm of the finite

part of the conductor of χ. Let B = {ε1, · · · , εφχ} be a Z-basis of Z[χ] and

let B⊥ = {θ1, · · · , θφχ} be its dual basis relative to the trace form. Define

rational integers bχ(k) by

wχL(0, χ) =

φχ
∑

k=1

bχ(k)εk ∈ Z[χ](6)

(see Theorem 2). We have

bχ(k) = wχ

nχ
∑

l=1
gcd(l,nχ)=1

σl(θk)L(0, χl)(7)

and these coordinates bχ(k) are rational integers of reasonable size:

|bχ(k)| ≤ 2wχM(B⊥)
√

dLfχ

( e

2πm
log(dLfχ)

)m
.(8)

Proof. To get (7), use

bχ(k) = TrQ(χ)/Q (θkwχL(0, χ)) .

To get (8), use

|L(0, χ)| ≤ 2
√

dLfχ

( e

2πm
log(dLfχ)

)m
(9)

(see [Lou7] and use (10) below).

§3. Numerical computation of the exact values of the coordinates

bχ(k) of L(0, χ)

3.1. Numerical computation of approximations of L(0, χ)

Set Aχ =
√

dLfχ/πm. Since

L(0, χ) = WχAχπ−m/2L(1, χ̄),(10)

(where Wχ is a complex number of asolute value one, the so called Artin

root number associated with χ), numerical computation of approximations

of L(0, χ) boils down to numerical computation of approximations of L(1, χ)

and we recall:
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Theorem 5. (See [Lou6].) For m ≥ 1, j ∈ {1, 2}, B > 0 and α > 1

we set

Km,j(B) =
1

2πi

∫ α+i∞

α−i∞
Γm(s)

B2−2s

s − (1/j)
ds

(which is real and does not depend on α > 1). Then

0 ≤ Km,2(B) ≤ Km,1(B) ≤ me−B2/m
,(11)

Let χ be a primitive abelian Hecke character over a totally real field L of

degree m. Assume that χ is ramified at all the m infinite places of L. Then

L(0, χ) =
Aχ

πm/2

∑

n≥1

an(χ)

n
Km,2(n/Aχ)

+
AχWχ

πm/2

∑

n≥1

an(χ)

n
Km,1(n/Aχ).

According to (11), these series are absolutely and rapidly convergent.

Finally, let the an(χ)’s be as in (2) and set

SM (χ) =
Aχ

πm/2

M
∑

n=1

an(χ)

n
Km,2(n/Aχ) +

AχWχ

πm/2

M
∑

n=1

an(χ)

n
Km,1(n/Aχ).

For any positive integer M ≥ (m2/2)m/2Aχ we have (see [Lou1, Proof of

Proposition 2]):

|L(0, χ) − SM(χ)| ≤ 2m

πm/2
Aχ(log(Me) + m2/2)me−(M/Aχ)2/m

.(12)

It now remains to explain how we compute numerically Km,1(B) and

Km,2(B) for B > 0. We give a precise result for the case m = 2 (and refer

the reader to [Lou2] and [Lou6] for m > 2):

Theorem 6. (See [Lou6].)

Let γ = 0.577 215 664 901 532 · · · denote Euler’s constant and set

A1 = 1, A2 = πB. For B > 0, we have:

K2,j(B) = Aj + 4
∑

n≥0

(

γ + log B − 1

2n + 3 − j
−

n
∑

k=1

1

k

)

B2n+2

(2n + 3 − j)(n!)2
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and for any integer M ≥ 0 we have |Rj(M)| ≤ 2B2M+3/(M + 1)(M !)2

where

Rj(M)
def
=
∑

n>M

(

γ + log B − 1

2n + 3 − j
−

n
∑

k=1

1

k

)

B2n+2

(2n + 3 − j)(n!)2
.

Of course, one must finally know how to compute the coefficients an(χ).

Since n 7→ an(χ) is multiplicative, one needs only explain how to compute

apk(χ) (and we refer the reader to Proposition 11 for such an example).

3.2. Numerical computation of the exact values of the bχ(k)

Theorem 7. Let λ > 1, n > 1 and a Z-basis B of the ring of algebraic

integers of the cyclotomic field Q(ζn) be given. Let M(B⊥) be as in (5). Let

χ range over the primitive characters of order nχ = n on (strict) ray class

groups and let the bχ(k)’s be as in (6). We have

∣

∣

∣
bχ(k) − wχ

nχ
∑

l=1
gcd(l,nχ)=1

σl(θk)SM (χl)
∣

∣

∣

≤ 2mwχM(B⊥)

πm/2

Aχ(log(Me) + m2/2)m

e(M/Aχ)2/m
(13)

= O
( logm Aχ

Aλ−1
χ

)

for M ≥ Aχ(λ log Aχ)m/2 ≥ 2Aχ.(14)

Therefore, for Aχ large enough, the coordinates bχ(k) in the basis B of

the algebraic integer wχL(0, χ) ∈ Z[χ] are rational integers which can be

determined in O(A0.5+ε
χ ) elementary operations by computing the φ(n) ap-

proximations SM (χl) for M equal to the least integer greater than or equal

toAχ(λ log Aχ)m/2 and for l in the range 1 ≤ l ≤ n and gcd(l, n) = 1.

Proof. According to (12), M ≥ Aχ(λ log Aχ)m/2 ≥ 2Aχ implies

∣

∣

∣
L(0, χl) − SM (χl)

∣

∣

∣
≤ 2mAχ

πm/2

(log(Me) + m2/2)m

e(M/Aχ)2/m
= O

( logm Aχ

Aλ−1
χ

)

and the desired result according to (7).
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Remarks 8. Here we assume that Wχ is known beforehand, for its com-

putation from its definition requires more than fχ elementary operations.

However, for certain classes of characters Wχ is indeed known beforehand

(see [FQ], [Fro], [Lou8], (22) and (24) in Section 5). In the case where Wχ it

is not known beforehand we explained in [Lou4], [Lou5] and [Lou6, Section

5] how to compute at the same time numerical approximations of Wχ and

L(0, χ) to end up with a practical technique for computing the exact value

of L(0, χ) which conjecturally requires only A0.5+ε
χ elementary operations.

3.3. A few words on other methods for computing L(0, χ)

It is known that if χ is a primitive character on RF (L) which is ram-

ified at all the infinite real places of L, then L(0, χ) is a non-zero com-

plex algebraic number and that Shintani’s method provides us with ex-

plicit formulae for L(0, χ) (see [Shi]. See also [Pes]). However, even in

the simplest case where L is a real quadratic number field (and letting

ε+
L = (xL + yL

√
dL)/2 > 1 and h+

L denote the fundamental totally posi-

tive unit and the narrow class number of L), Shintani’s formulae are of no

practical use to compute numerically the exact value of L(0, χ). Indeed, in

the simplest case where h+
L = 1, Shintani’s method yields (see [Hid, Section

2.5]):

L(0, χ) =
∑

α∈XF (L)

rαχ((α)F)(15)

where the rα are rational numbers and where

XF (L) = {α = x1 + x2ε
+
L ∈ F−1; xi ∈ Q, 0 < x1 ≤ 1, 0 ≤ x2 < 1}

contains yLNL/Q(F) elements. However, if h+
L = 1 then according to the

Brauer-Siegel theorem yL is so huge that we cannot compute the finite sum

(15) (see Example 1 in Section 5.1) and Shintani’s method can only be used

for real totally real fields L with small fundamental units (see [Oka1] and

[Oka2] for practical computations).

It is worth pointing out that using continued fractions, Zagier came up

with a much more efficient version of Shintani’s method for real quadratic

fields (see [Zag1], [Zag2] and [Zag3]. See also [LO, Section 5.4] for an exam-

ple of the use of Zagier’s results). However, if a given real quadratic field

L is fixed, then Zagier’s method requires the computer to sum up at least

cLNL/Q(F) terms in some formula to compute L(0, χ) (for some suitable

constant cL which depends on L only), which is useless if NL/Q(F) is large
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(see Example 2 in Section 5.1). Notice also that Zagier gave all the details

of his method only for characters unramified at all the finite places of L.

Moreover, we do not know of any practical generalization of Zagier’s im-

provements for base fields L of degree m > 3. The method we developed

here enables us to compute efficiently the exact value of L(0, χ) by com-

puting only few terms in some absolutely and rapidly convergent series (see

Theorem 7 to see how dramatic an improvement on Shintani’s method ours

yields).

§4. Relative class numbers and L-functions at s = 0

Throughout this section, N denotes a CM-field, i.e. N is a totally imag-

inary number field which is a quadratic extension of its maximal totally real

subfield N+. Let n denote the degree of N+. Let h−
N, QN ∈ {1, 2} and wN

denote the relative class number of N, the Hasse unit index of N and the

number of roots of unity in N, respectively. Let also ζN and ζ
N+ denote the

Dedekind zeta functions of N and N+, respectively. We have (see [Wa]):

h−
N = QNwN2−n(ζN/ζN+)(0).(16)

Let L be any subfield of N+ such that the extension N/L is abelian, and let

m denote the degree of L. We thus have the following lattice of subfields:

Q L N+ N
m n/m 2

Notice that we can always choose L = N+. However, the smaller is the

degree m of L the more efficient is our technique for computing h−
N. There-

fore, we will choose L = Q whenever N is abelian, whereas we will choose

for L the only real quadratic subfield of N over which N is cyclic when-

ever N is a dihedral CM-field. We let XN/L denote the group of primitive

abelian Hecke characters associated with the abelian extension N/L and

set X−
N/L = XN/L \ XN+/L.

Using (16) and the factorisations of the Dedekind zeta functions ζN
and ζ

N+ in terms of products of Hecke L-functions, we get:

h−
N = QNwN

∏

χ∈X−

N/L

2−mL(0, χ)(17)

(notice that there are n/m characters in X−
N/L). Now, let us say that χ′ ∈

XN/L is equivalent to χ ∈ XN/L if there exists l relatively prime to the
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order nχ of χ such that χ′ = χl. Notice that if χ′ is equivalent to χ then χ′

and χ both have the same order and conductor. We let Y −
N/L denote any

set of representatives of the set of equivalence classes of X−
N/L

modulo this

relation. According to (4) and (17) and noticing that for χ ∈ XN/L we have

L ⊆ Mχ ⊆ N (which implies wχ | wN), we have:

Theorem 9. For any χ ∈ X−
N/L we have wNL(0, χ) ∈ Z[χ] and

h−
N = QNwN

∏

χ∈Y −

N/L

NQ(χ)/Q

(

1

2m
L(0, χ)

)

.(18)

Moreover, since

NQ(χ)/Q

(

1

2m
L(0, χ)

)

=
1

(2mwχ)φχ
Resultant

(

Φχ(X),

nχ−1
∑

k=0

cχ(k)Xk
)

where

Φχ(X) =

nχ
∏

k=1
gcd(k,nχ)=1

(X − ζk
χ) ∈ Z[X]

denotes the minimal polynomial of ζχ and where

wχL(0, χ) =

φχ
∑

k=1

bχ(k)εk =

nχ−1
∑

k=0

cχ(k)ζk
χ ∈ Z[χ],

by computing with large rational integers we can easily compute the (usually

very large) exact values of the rational numbers NQ(χ)/Q (2−mL(0, χ)) as

soon as we have computed the (small) coordinates bχ(k) ∈ Z of wχL(0, χ)

§5. Examples of computation of relative class numbers of non-

abelian normal CM-fields

5.1. Relative class numbers of some dihedral CM-fields

Let p ≥ 3 be an odd prime. Let N be a normal CM-field of degee 4p

whose Galois group is isomorphic to the dihedral group D4p of ordre 4p.

Hence, N = N+M where M an imaginary biquadratic bicyclic field and N+

is a real dihedral field of degree 2p, cyclic of degree p over the real quadratic

subfield L of M. There exists a positive rational integer f ≥ 1 such that
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the conductor F
N+/L of this extension N+/L is equal to the ideal (f) of L

(see [Mar] and [LPL]). We proved in [LOO] that QN = QM, wN = wM and

that h−
M divides h−

N. Hence, formula (18) applied to both N and M yields

h−
N/h−

M = NQ(ζp)/Q(
1

4
L(0, χ)).

Here, χ denotes any one of the p − 1 primitive characters of order 2p asso-

ciated with the cyclic extension N/L of degree 2p. Hence, wχ = wN = wM

divides 12. We choose B = {ζp, · · · , ζp−1
p } whose dual basis is (according to

Lemma 3) B⊥ = {(ζ−1
p − 1)/p, · · · , (ζ−(p−1)

p − 1)/p}. We have

wML(0, χ) =

p−1
∑

k=1

bχ(k)ζk
p ∈ Z[χ] = Z[ζp](19)

with bχ(k) =
wM

p

p−1
∑

l=0
l6=(p−1)/2

(ζ−k(2l+1)
p − 1)L(0, χ2l+1)(20)

(use (7)). Since the induced characters (χ2l+1)∗ of the dihedral group

Gal(N/Q) of order 4p are real valued, we have bχ(p − k) = bχ(k) for

1 ≤ k ≤ (p − 1)/2,

L(0, χ2(p−1−l)+1) = L(0, χ2l+1) = L(0, χ2l+1) = L(0, χ2l+1)

and

bχ(k) =
2wM

p

(p−3)/2
∑

l=0

(cos(2k(2l + 1)π/p) − 1)L(0, χ2l+1).(21)

Thanks to the computation of good enough numerical approximations of

the L(0, χ2l+1) for 0 ≤ l ≤ (p − 3)/2 we can use (21) to compute the exact

values of the coordinates bχ(k) of

L(0, χ) =
2

wM

(p−1)/2
∑

k=1

bχ(k) cos(2kπ/p) ∈ Q(ζp)
+ = Q(cos(2π/p))

and h−
N/h−

M

def
= (h−

N/M)2 is a perfect square with

h−
N/M = NQ(ζp)+/Q(

1

4
L(0, χ)).
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Moreover, we have (see [FQ]):

Wχ = +1.(22)

To make our construction of χ easy, we will choose examples such that

(i) L has class number one,

(ii) M/L is unramified at all the finite places,

(iii) the conductor (f+) of the cyclic extension N+/L of degree p is of

the form (q) for some prime rational number q.

In that situation, χ is a primitive abelian Hecke character of order 2p on

the ray class group of conductor F = (q) of L and there exists a character

χ+ on (AL/(q))∗ of order p (and trivial on the image of Z in this group)

such that for any α 6= 0 in the ring of algebraic integers AL of L we have

χ((α)) = ν(α)χ+(α), where ν(α) is the sign of the norm of α.

Example 1. Choose p = 5, L = Q(
√

1633) = Q
√

23 · 71) for which

yL = 163 32094 89027 55786 06272 has 23 digits so that Shintani’s method

is useless, let N+ be the only real dihedral field of degree 2p = 10 for which

F
N+/L = (q) = (59) and take M = Q(

√
−23,

√
−71), for which h−

M = 21

and wM = 2. Hence, N = N+M is a dihedral CM-field of degree 4p = 20.

Since q is inert in L, then (see [Lou6] and [LPL]):

χ((α)) = ν(α)φ(α)

for some character φ of order p = 5 on the cyclic group (AL/(q))∗ of or-

der q2 − 1. To make it explicit which χ we used we chose φ the one for

which φ((101 +
√

dL)/2) = ζp = exp(2πi/5). According to our numerical

computation we have bχ(1) = −320, aχ(2) = −240,

L(0, χ) = 140 − 20
√

5

and h−
N/M = N

Q(
√

5)/Q(35 − 5
√

5) = 1100.

Example 2. Choose p = 5, L = Q(
√

21), let N+ be the only real

dihedral field of degree 2p = 10 for which F
N+/L = (q) = (106 + 151)

and take M = Q(
√
−3,

√
−7), for which h−

M = 1 and wM = 6. Hence,

N = N+M is a dihedral CM-field of degree 4p = 20. Since (q) = QQ′ splits

in L then (see [Lou6] and [LPL]):

χ((α)) = ν(α)φ(α/α′)
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for some character φ of order p = 5 on the cyclic group (AL/Q)∗ of or-

der q − 1, group which is canonically isomorphic to (Z/qZ)∗ (here α′ is

the conjugate of α in L). To make it explicit which χ we used we chose

Q = qZ + ((716593 +
√

dL)/2)Z and φ is the one for which φ(11) =

ζp = exp(2πi/5). According to our numerical computation we have bχ(1) =

−4392096, bχ(2) = −3650880,

L(0, χ) = 670248 − 61768
√

5

(for cos(2π/5) = (
√

5 − 1)/4 and cos(4π/5) = −(
√

5 + 1)/4), and h−
N/M =

N
Q(

√
5)/Q(167562 − 15442

√
5) = 2 68847 47024.

Example 3. Finally, choose p = 41, L = Q(
√

69), let N+ be the only

real dihedral field of degree 2p = 82 for which F
N+/L = (q) = (2297)

and take M = Q(
√
−3,

√
−23), for which h−

M = 1. Hence, N = N+M is

a dihedral CM-field of degree 4p = 164. The construction of χ is similar

to that of example 2. To make it explicit which χ we used we chose Q =

qZ+((2527+
√

dL)/2)Z and φ is the one for which φ(5) = ζp = exp(2πi/41).

According to our numerical computation we have

L(0, χ) =
40
∑

k=1

bkζ
k
41

with b41−k = bk and the following Table:

k 1 2 3 4 5
bk −4008 −4000 −4028 −4076 −4260
k 6 7 8 9 10
bk −4092 −4100 −3964 −3664 −3868
k 11 12 13 14 15
bk −3820 −3964 −4024 −4044 −4700
k 16 17 18 19 20
bk −4384 −4012 −4068 −3960 −3896

Hence, h−
N/h−

M = (h−
N/M)2 with h−

N/M = 47806 51139 18289 69370 25122

72645 03025 58591 42700 36539 28149 96559 ≈ 4 · 1059. This huge relative

class number could not have been computed with the method developed in

[Lou6, Theorem 7].
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Remarks 10. Our present method for computing relative class numbers

is much more efficient than the method developed in [Lou6, Theorem 7].

There, we had to compute very good approximations of all the SM (χl)

(defined in Theorem 5) prior to taking their product to deduce the value of

a relative class number. Here, we only have to compute fair approximations

of these SM(χl) prior to taking linear combinations of them to deduce the

exact values of the coordinates of L(0, χ). Then, we compute the value of

the relative class number by computing the norm of the algebraic number

L(0, χ).

Popular tools like Pari or Kash, which compute class groups of numbers

fields N, are useless for computing unconditionally (relative) class numbers

of CM-fields N of degrees ≥ 12 (or so). Moreover, these softwares usually

require the user to determine a polynomial PN(X) such that N is generated

by a root of PN(X), but such polynomials PN(X) are far from being easy

to compute, even for dihedral fields.

However, the latest versions of Pari can now compute approximations

of L-functions (in much the same way as in Subsection 3.1) and Artin roots

numbers (by going back to their definition) and can be conveniently com-

bined with the techniques developed in this paper. In fact, for the forthcom-

ing situation we used Pari to compute the coefficients an(χ) of the Dirichlet

series L(s, χ) whose exact values at s = 0 we wanted to compute.

5.2. Relative class numbers of some CM-fields of degree 24

Let N be a normal CM-field of degree 24 with Galois group isomor-

phic to SL2(F3), the special linear group over the finite field F3 with three

elements (see [Lou3, Section 5] and [LLO]). Let N+ denote the maximal

totally real subfield of N. Then N+/Q is a normal extension of degree 12

with Galois group isomorphic to the alternating group A4 of degree 4 and

order 12, and N is a quaternion octic extension of some cyclic cubic field

F. Let fF denote the conductor of F. We let L/F denote a fixed quadratic

subextension of the three quadratic subextensions Li/F of the bicyclic bi-

quadratic extension N+/F. (Notice that L/Q is not normal and that the

three Li are conjugate). Then, N/L is a cyclic quartic extension and we let

χ denote any one of the two conjugate characters of order four associated

with this cyclic quartic extension N/L. An (incomplete) lattice of subfields

is given in the following Diagram:
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3

2

Q

F

L1 ≈ L2 ≈ L3

N+

N

Q
Q

Q
Q

�
�

�
�

Q
Q

Q
Q

�
�

�
�

Gal(N/Q) = SL2(F3)

Gal(N/F) = Q8

Gal(N+/Q) = A4

Gal(F/Q) = C3

Gal(N/Li) = C4

and we have

h−
N = QNwNNQ(i)/Q

(

2−6L(0, χ)
)

.

Now, since F is the maximal abelian subfield of N then wN = 2 and

2L(0, χ) ∈ Z[i]. Since the character of Gal(N/F) induced by χ is the ir-

reducible character of degree two of the quaternion octic group which is

real valued, then L(0, χ) is real, hence rational and we get L(0, χ) ∈ 1
2Z

and

h−
N = (QN/2)(L(0, χ)/32)2 ,(23)

which implies L(0, χ) ∈ 32Z, and L(0, χ) = −AχL(1, χ)/π3 < 0. Moreover,

if h−
N is odd then QN = 2 , h−

N = (L(0, χ)/32)2 is a perfect square and

L(0, χ) 6∈ 64Z. Conversely, if L(0, χ) ∈ 32Z \ 64Z then QN = 2, h−
N is

odd and h−
N = (L(0, χ)/32)2 is a perfect square. Now, for any number

field E, let ClE and Cl+E denote the 2-Sylow subgroups of the ideal class

group and narrow ideal class groups of E, respectively. According to [LLO],

if h−
N is odd then ClF and Cl+F are both isomorphic to (Z/2Z)2, ClL is

isomorphic to Z/2Z, Cl+L is isomorphic to Z/4Z and N+ is the Hilbert

2-class field of F and N is the Hilbert 2-class field of L. In particular,

Aχ =
√

dL/π6 =
√

d2
F/π6 =

√

f4
F/π6 = f2

F/π3 and

Wχ = −1(24)

(for the abelian extension N/L is unramified at all the finite places of L,

but ramified at the six infinite real places of L).
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Now, in using class field theory, the reader would prove the following

result which, together with the results of Section 3.1, enables us to compute

the exact values of L(0, χ) for such characters χ:

Proposition 11. Let F, L, N and χ be as above. Assume that fF =

q ≡ 1 (mod 6) is prime, that the narrow and ordinary class groups of F

are isomorphic to (Z/2Z)2, and that the narrow and ordinary class groups

of L are isomorphic to Z/4Z and Z/2Z, respectively (see [Lou3, Pro. 16]).

1. if (p) = P is inert in F then (p) = PAL = PP ′ splits in L/F, and

setting εp = χ(P) = χ(P ′) = ±1, we have

apk(χ) =

{

0 if 3 does not divide k

ε
k/3
p (k + 3)/3 if 3 divides k

and εp = +1 if and only if P is principal in the narrow sense (notice

that P is always principal in the ordinary sense).

2. if p = q is totally ramified in F, say pAF = P3, then PAL = PP ′

splits in L, and setting εp = χ(P) = χ(P ′) = ±1, we have

apk(χ) = εk
p(k + 1)

and εp = +1 if and only if P is principal in the narrow sense (notice

that P is always principal in the ordinary sense).

3. Assume that (p) = P1P2P3 splits in F. Then either these three ideals

are principal in F or none of them is principal in F.

(a) If the three Pi’s are principal in F then each PiAL = PiP ′
i splits

in L/F, and setting εp = χ(Pi) = χ(P ′
i) = ±1 which does not

depends on i, we have

apk(χ) = εk
p(k + 5)(k + 4)(k + 3)(k + 2)(k + 1)/120

and εp = +1 if and only if Pi is principal in the narrow sense

(notice that Pi is always principal in the ordinary sense).

(b) If none of the Pi is principal in F then two of these prime ideals

P1AL = P1 and P2AL = P2 are inert in L/F and the third one

P3AL = P3P ′
3 splits in L/F. We have χ(P1) = χ(P2) = −1,

χ(P ′
3) = χ(P3) = ±i and

apk(χ) =

{

0 if k is odd

(−1)k/2((k/2) + 1)((k/2) + 2)/2 if k is even.

https://doi.org/10.1017/S0027763000022170 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022170


188 S. LOUBOUTIN

For example, using Pari to decide whether a given ideal P of the sex-
tic field L is principal in the ordinary or narrow senses, we computed the
following Table of relative class numbers:

fF PF(X), PL(X) L(0, χ) h−
N

163 PF(X) = x3 − x2 − 54x + 169
PL(X) = x6 − 3x5 − 11x4 + 27x3 − 3x2 − 11x + 1 −32 1

349 PF(X) = x3 − x2 − 116x + 517
PL(X) = x6 − 3x5 − 17x4 + 39x3 − 3x2 − 17x + 1 −96 32

397 PF(X) = x3 − x2 − 132x + 544
PL(X) = x6 − 26x4 + 93x2 − 4 −96 32

853 PF(X) = x3 − x2 − 284x − 1011
PL(X) = x6 − 3x5 − 53x4 + 111x3 + 705x2 − 761x − 91 −352 112

937 PF(X) = x3 − x2 − 312x + 2221
PL(X) = x6 − 3x5 − 29x4 + 63x3 − 3x2 − 29x + 1 −608 192

Notice that in these five cases it holds L(0, χ) ∈ 32Z\64Z. Hence, according

to (23), we have QN = 2 and h−
N = (L(0, χ)/32)2 is a perfect odd square.

Such computations for the 23 CM-fields N associated with the 23 cyclic

cubic fields F whose conductors fF are listed in [Lou3, Prop. 16] enable us

to prove:

Theorem 12. There exists only one normal CM-field of degree 24

with Galois group isomorphic to SL2(F3) with class number one: the CM-

field N associated with the cyclic cubic field F of conductor fF = 163.

Proof. According to our relative class number computations the cyclic

cubic field F of conductor fF = 163 is the only field (out of the 23 cyclic

cubic fields F whose conductors fF are listed in [Lou3, Prop. 16]) for which

h−
N = 1. It remains to prove that hN+ = 1. To this end, we use Odlyzko’s

bounds on discriminants . First, since h−
N = 1 is odd and since QN = 2,

then hN+ is odd (see [Wa, Exercise 10.7 and proof of Th. 10.2]). Second,

since N+/F is bicyclic biquadratic and since the three Li are conjugate, if

some odd prime p divides hN+ then p3 divides hN+ (see [Lem]). Therefore,

if we had hN+ > 1 then some odd prime p would divide hN+ and we could

construct a totally real number field E of degree nE = 12p3 ≥ 12 · 33 = 324

and root discriminant d
1/nE

E = d
1/nF

F = 1632/3 < 30, which contradicts

Odlyzko’s lower bound d
1/nE

E > 30 for root discriminants of totally real

number fields of degree ≥ 100 (see [Wa, Chapter 11]). Hence hN+ = 1.
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5.3. Relative class numbers of some CM-fields of degree 42

We refer the reader to [LPCK] for examples of computation of Artin

root numbers Wχ and values at s = 0 of L-functions associated with char-

acters of order 14 on ray class groups of real cyclic cubic fields L and for

the proof of the following result similar to Theorem 12:

Theorem 13. There is no non-abelian normal CM-field of degree 42

with relative class number one.
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[FQ] A. Fröhlich and J. Queyrut, On the functional equation of the Artin L-function

for characters of real representations, Invent. Math., 20 (1973), 125–138.
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2p, Ann. Inst. Fourier (Grenoble), 19 (1969), 1–80.

[Odl] A. M. Odlyzko, Some analytic estimates of class numbers and discriminants,

Invent. Math., 29 (1975), 275–286.

[Oka1] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math.

Kyoto Univ., 31 (1991), 1125–1153.

[Oka2] , An elementary proof for a theorem of Thomas and Vasquez, J. Number

Theory, 55 (1995), 197–208.

[Pes] M. Pestour, Valeurs en s = 1 de fonctions L, Acta Arith., 78 (1997), 367–376.

[Shi] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields

at non-positive integers, J. Fac. Sci. Univ. Tokyo, 23 (1976), 373–471.

[Tsu] S. Tsuyumine, On values of L-functions of totally real algebraic number fields at

integers,, Acta Arith., 76 (1996), 359–392.

[Wa] L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, Grad.

Texts Math. 83, Second Edition, 1997.

[Zag1] D. Zagier, A Kronecker limit formula for real quadratic fields,, Math. Ann., 213

(1975), 153–184.

[Zag2] , Nombres de classes et fractions continues, Soc. Math. de France,
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