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Geophysical interpretations of the Earth's interior and its dynamics are significantly influenced by 

chemical compositions of the constituting minerals [1]. Scanning transmission electron microscopy 

(STEM) is a versatile technique for studying minerals and rocks. It allows several chemical analyses, such 

as energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectrometry (EELS) to be done 

(near-)simultaneously with high spatial resolution. Combining it with the electron tomography (ET) 

technique, the 3D phase relationship and chemical composition of each overlapping phase in a mineral 

assemblage can be retrieved. However, a 2D EDS/EELS scan is more commonly used, because of the 

instability of certain minerals under the extensive beam exposure that is necessary for recording the tilt 

series data set for ET. At the same time, machine learning has begun to make an impressively positive 

impact in various fields [2]. Here we look to address the challenge of quantifying overlapped phases in 

2D STEM-EDS spectrum imaging (SI) data by exploiting several machine learning algorithms. 

In this paper, the starting material is a synthetic pyrolite glass doped with Nd, Sm, Hf, Lu, and U (0.3 

wt.% for each). Four samples were made by compressing the pyrolite across a range of pressures from 46 

GPa to 88 GPa, using a diamond anvil cell (DAC). The samples were molten by double-sided laser heating 

and then slowly cooled down below the solidus temperature before quenching. Thin sections for STEM 

analysis were made by the focused ion beam (FIB) lift-out technique from the samples recovered after 

decompression. 

Figure 1(a) is a HAADF image of the 71 GPa sample. Three phases can be identified in the STEM-EDS 

SI data set: ferropericlase (Fp), bridgmanite (Brg), and Ca-rich perovskite (Ca-Pv). All three phases are 

partly overlapping, with Brg being the matrix phase. An algorithm called non-negative matrix 

factorization (NMF) [3] with non-negativity constraint decomposed the acquired STEM-EDS data into 3 

components; the resultant loading spectra and score images are shown in Figure 1(b)-(e). NMF#0, 

NMF#1, NMF#2 feature Brg, Fp and Ca-Pv, respectively, as indicated by their loading spectra. Though 

the loading spectra of these components do not completely coincide with the true spectra of the physical 

phases, owing to a lack of necessary physical constraints in the data decomposition, they reveal a clearer 

spatial phase distribution between Fp, Brg and Ca-Pv than traditional elemental maps. 

By adding the score images of NMF#1 and NMF#2, it is possible to identify and segment the SI spatial 

region that corresponds to pure Brg. A trainable Weka using fastRandomForest classifier [4] combined 

with a global smoothness tuning [5] aid in this process, thereby generating the pure Brg map shown in 

Figure 1(f). Figure 1(g) compares the Nd La and Sm La EDS signals integrated over this segmented pure 

Brg area compared to that from a confined region of Brg, as indicated by the green rectangle in Figure 

1(a). The full Brg area signal integration clearly gives a much-improved signal to noise for these trace 

elements, which can further enable a more confident investigation of rare earth elements partitioning in 

minerals and melt. This protocol also applies to the quantification of Fp and Ca-Pv grains, but with some 

modification because of the overlapping between these two kinds of grains. Figure 2(a) and 2(b) are binary 
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images for labeling Fp and Ca-Pv grains, made from NMF#1 and NMF#2. The intersection of Fp, Ca-Pv, 

and Brg will be the same as the intersection of Figure 2(a) and 2(b), which should be avoided during the 

quantification of Fp or Ca-Pv. By eliminating the phase intersections, segmented Fp-Brg mixtures and 

Ca-Pv-Brg mixtures are demonstrated in Figure 2(c) and 2(d). Finally, by subtracting the Brg contribution 

from these mixtures, the pure spectra of Fp and Ca-Pv grains are shown in Figure 2(e). Therefore, we have 

demonstrated that the NMF-aided phase segmentation is an effective method for segmenting spectra from 

overlapping mineral assemblages for improved quantification, when applied appropriately. It can further 

be extrapolated to the data processing of other spectroscopic techniques, such as EELS. 

 
Figure 1. (a) HAADF image of the 71 GPa sample; (b)-(d) representative score images and (e) loading 

spectra from its NMF decomposition; (f) the segmented pure Brg map; (g) spectral comparison between 

the segmented pure Brg area and a confined Brg area. 

 
Figure 2. (a) and (b) binary masks for labeling Fp and Ca-Pv grains; (c) Fp-Brg mixtures; (d) Ca-Pv-Brg 

mixtures; (e) pure Fp spectrum and pure Ca-Pv spectrum. 
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