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On the lifting of hermitian modular forms

Tamotsu Ikeda

To my parents

Abstract

Let K be an imaginary quadratic field with discriminant −D. We denote by O the ring
of integers of K. Let χ be the primitive Dirichlet character corresponding to K/Q. Let
Γ(m)
K = U(m,m)(Q)∩GL2m(O) be the hermitian modular group of degreem. We construct

a lifting from S2k(SL2(Z)) to S2k+2n(Γ
(2n+1)
K ,det−k−n) and a lifting from S2k+1(Γ0(D), χ)

to S2k+2n(Γ
(2n)
K ,det−k−n). We give an explicit Fourier coefficient formula of the lifting.

This is a generalization of the Maass lift considered by Kojima, Krieg and Sugano. We
also discuss its extension to the adele group of U(m,m).

Introduction

In this paper, we are going to discuss a lifting of elliptic cusp forms to hermitian modular forms.
This is a hermitian modular analogue of the lifting constructed in [Ike01]. In [Ike01], the author
constructed a Siegel cusp form whose Fourier coefficients are closely related to the Fourier coefficients
of Eisenstein series of Siegel type.

Let us describe our results. Let K = Q(
√−DK) be an imaginary quadratic field with discrimi-

nant −DK . We denote the ring of integers of K by O. The primitive Dirichlet character correspond-
ing to K/Q is denoted by χ. The hermitian modular group Γ(m)

K = U(m,m)(Q) ∩ GL2m(O) is the
group of all elements (

A B
C D

)
∈ GL2m(O)

such that

A tB̄ = B tĀ, C tD̄ = D tC̄, A tD̄ −B tC̄ = 1m.

We let Γ(m)
K,∞ be the subset of elements (

A B
C D

)
∈ Γ(m)

K

such that C = 0. The hermitian upper half space of degree m is defined by

Hm =
{
Z ∈Mm(C)

∣∣∣∣ 1
2
√−1

(Z − tZ̄) > 0
}
.

For

g =
(
A B
C D

)
∈ U(m,m)(R)
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and Z ∈ Hm, we put

g〈Z〉 = (AZ +B)(CZ +D)−1, j(g, Z) = det(CZ +D).

Let σ be a character of Γ(m)
K , which is trivial on{(

1m B
0 1m

)
∈ Γ(m)

K

}
.

A holomorphic function F on Hm (m � 2) is called a hermitian modular form of weight l with
character σ if F (g〈Z〉) = σ(g)F (Z)j(g, Z)l for any g ∈ Γ(m)

K .

Recall that a semi-integral hermitian matrix is a hermitian matrix H ∈ (
√−DK)−1Mm(O)

whose diagonal entries are integral. We denote the set of semi-integral hermitian matrices by Λm(O).
The set of positive definite elements of Λm(O) is denoted by Λm(O)+. For H ∈ Λm(O), we put
γ(H) = (−DK)[m/2] detH. Note that γ(H) ∈ Z. A hermitian modular form F is called a cusp form
if it has a Fourier expansion of the form

F (Z) =
∑

H∈Λm(O)+

A(H) exp(2π
√−1 tr(HZ )).

We denote the space of cusp forms of weight l with character σ by Sl(Γ
(m)
K , σ).

The Eisenstein series E(m)
2l (Z) of weight 2l with character det−l is defined by

E
(m)
2l (Z) =

∑
g∈Γ

(m)
K,∞\Γ(m)

K

(det g)lj(g, Z)−2l.

This is absolutely convergent for l > m. We define the normalized Eisenstein series E(m)
2l (Z) by

E(m)
2l (Z) = 2−m

m∏
i=1

L(i− 2l, χi−1) ·E(m)
2l (Z).

If H ∈ Λm(O)+, then the Hth Fourier coefficient of E(m)
2l (Z) is equal to (see § 4)

|γ(H)|l−(m/2)
∏

p|γ(H)

F̃p(H; p−l+(m/2)).

Here, F̃p(H;X) is a certain Laurent polynomial arising from the Siegel series for H.

Then our main theorem can be stated as follows. For simplicity, we assume that m = 2n is
even. Let

f(τ) =
∞∑
N=1

a(N)qN ∈ S2k+1(Γ0(DK), χ)

be a primitive form, whose L-function is given by

L(f, s) =
∏
p �DK

(1 − a(p)p−s + χ(p)p2k−2s)−1
∏
p|DK

(1 − a(p)p−s)−1.

For each prime p � DK , we define the Satake parameter {αp, βp} = {αp, χ(p)α−1
p } by

(1 − a(p)X + χ(p)p2kX2) = (1 − pkαpX)(1 − pkβpX).
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For p | DK , we put αp = p−ka(p). Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp), H ∈ Λ2n(O)+,

F (Z) =
∑

H∈Λ2n(O)+

A(H) exp(2π
√−1 tr(HZ )), Z ∈ H2n.

Then our first main theorem in the even case is as follows.

Theorem 5.1. Assume that m = 2n is even. Let f(τ), A(H) and F (Z) be as above. Then we have

F ∈ S2k+2n(Γ
(2n)
K ,det−k−n).

(In the case when m is odd, we consider a similar lifting for a normalized Hecke eigenform
f ∈ S2k(SL2(Z)); see Theorem 5.2.) To prove this theorem, we use the theory of a compatible
family of Eisenstein series as in [Ike01]. The theory of a compatible family of Eisenstein series is a
method to prove that a certain Fourier series is a modular form of one variable. The Fourier series
we consider can be regarded as the sum of Whittaker functions, and the behavior of a Whittaker
function is determined by Fourier coefficients of Eisenstein series. In [Ike01], the author considered
the compatible family of Eisenstein series of half-integral weight. In this paper, we consider the
compatible family of Eisenstein series of integral weight. This case is a little more complicated than
that of [Ike01] because the automorphic representation of SL2(A) generated by f may be reducible.
Instead of using a Whittaker function on SL2(A), we extend it to GL2(A). We have to show that
this extension to GL2(A) is possible in a compatible way for a family of Eisenstein series arising
from the Fourier–Jacobi coefficients of E(2n)

2k′+2n. This problem is treated in §§ 8 and 9. Using this
theory, we prove Theorems 5.1 and 5.2 in § 10.

In §§ 12 and 13, we prove that the lift F can be extended to an automorphic form on the adele
group of the unitary group U(m,m). The extension Lift (m)(f) is a common Hecke eigenform of all
Hecke operators of the unitary group, if it is not identically zero (Theorem 13.6). Moreover, the
standard L-function L(s,Lift (2n)(f), st) is given by (see Theorem 18.1)

m∏
i=1

L(s+ k + n− i+ 1
2 , f)L(s+ k + n− i+ 1

2 , f, χ).

Following Kohnen [Koh02], we discuss the ‘linearization’ of the lifting. The case when m is
odd is fairly easy, and will be treated in § 14. Assume now that m = 2n is even. Then we refor-
mulate the main theorem in terms of a certain linear map from a subspace S∗

2k+1(Γ0(DK), χ) ⊂
S2k+1(Γ0(DK), χ) to S2k+2n(Γ

(2n)
K ,det−k−n). (In fact, we need to consider a certain twisting by an

ideal c of K, but for simplicity we consider the case c = O here.) Decompose the character χ into a
product χ =

∏
q|DK

χq, where χq is a character whose conductor is a power of a prime q. Put

aDK
(N) =

∏
q|DK

(1 + χq((−1)nN)).

Following Krieg [Kri91], we define S∗
2k+1(Γ0(DK), χ) by the space of cusp forms

f0(τ) =
∑
N>0

af0(N)qN ∈ S2k+1(Γ0(DK), χ)

such that af0(N) = 0 whenever aDK
(N) = 0. For each primitive form f ∈ S2k+1(Γ0(DK), χ),

we define f∗ ∈ S∗
2k+1(Γ0(DK), χ) as the unique element of S2k+1(Γ0(DK), χ) such that af∗(N) =

aDK
(N)af (N) whenever (N,DK) = 1. Then we can show that there exists an injective linear map

ι : S∗
2k+1(Γ0(DK), χ) → S2k+2n(Γ

(2n)
K ,det−k−n)
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such that F (Z) is equal to ι(f∗) (Theorem 15.18). It follows that F = 0 if and only if f∗ = 0.
It is easy to prove that f∗ = 0 if and only if n is odd and f comes from a Hecke character of
some imaginary quadratic field (Corollary 15.20). As for the lifting Lift (2n)(f) to the adele group
U(2n, 2n)(A), we show that Lift (2n)(f) = 0 if and only if n is odd and f comes from a Hecke
character of K (Corollary 15.21).

We discuss the case m = 2 in § 16. In this case, the theory of the lifting has already been treated
by Kojima [Koj82], Gritsenko [Gri90], Krieg [Kri91], Sugano [Sug85], and Klosin [Klo07a, Klo07b].
In § 17, we calculate the Petersson inner product of the hermitian Maass lift in the case m = 2, by
using the results of Sugano [Sug85].

In § 18, we discuss the relation to the Arthur conjecture. The Arthur parameter associated to
our lift can be described as follows. We now admit the Arthur conjecture and the existence of the
hypothetical Langlands group LQ. Let m be a positive integer. Recall that the L-group of G =
U(m,m) is a semi-direct product GL2m(C) �WQ, where WQ is the Weil group of Q. The canonical
homomorphism LQ → WQ is denoted by pr. Let f be a primitive form of S2k+1(Γ0(DK), χ) or a
normalized Hecke eigenform of S2k(SL2(Z)) according as m is even or odd. Let τ be an irreducible
cuspidal automorphic representation of GL2(AQ) generated by f . Note that the central character
ωτ is equal to χm−1. We denote the Langlands parameter of τ by ρτ : LQ → GL2(C). Let Symm−1 :
SL2(C) → SLm(C) be the m-dimensional irreducible representation of SL2(C). We put

ρ(m)
τ (u) =

(
ωτ (u)a · 1m b · 1m
ωτ (u)c · 1m d · 1m

)
� pr(u)

for u ∈ LQ,

ρτ (u) =
(
a b
c d

)
,

and we put

ρ(m)
τ (x) =

(
Symm−1(x) 0

0 Symm−1(x)

)
� 1

for x ∈ SL2(C). Then, ρ(m)
τ : LQ× SL2(C) → LG = GL2m(C) �WQ should be the Arthur parameter

for Lift(m)(f). By using this A-parameter, we will show that our result is compatible with the
conjectural Arthur multiplicity formula.

Notation

Let K be an imaginary quadratic field with discriminant −D = −DK . When there is no fear of
confusion, we drop the subscript K. We denote by O = OK the ring of integers of K. The number
of roots of unity contained in K is denoted by wK . The non-trivial automorphism of K is denoted
by x �→ x̄. The primitive Dirichlet character corresponding to K/Q is denoted by χ. We denote
by O� = (

√−D)−1O the inverse different ideal of K/Q. For each prime p, we set Kp = K ⊗ Qp

and Op = O ⊗ Zp. The sets of hermitian matrices of size m with entries in K, Kp, O, and Op are
denoted by Hm(K), Hm(Kp), Hm(O), and Hm(Op), respectively. The adele ring of Q is denoted
by AQ or A. The finite part of the adele ring is denoted by Af . Similarly, we denote the adele ring
and the finite adele ring of K by AK and AK,f, respectively.

Let χ =
⊗

v χv be the character of the idele class group A×/Q× determined by χ. Then χ
v

is
the character of Q×

v corresponding to Qv(
√−D)/Qv and is given by the Hilbert symbol

χ
v
(t) =

(−D, t
Qv

)
for t ∈ Q×

v .
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We set e(T ) = exp(2π
√−1 tr(T )) if T is a square matrix with entries in C. When p is a prime,

ep is the unique additive character of Qp such that ep(x) = exp(−2π
√−1x) for x ∈ Z[p−1]. Note

that ep is of order 0. We put eA(x) = e(x∞)
∏
p<∞ ep(xp) for an adele x = (xv)v ∈ A.

In §§ 3 and 8, F will denote a non-archimedean local field. When ψ is an additive character of
F and ρ is a quasi-character of F×, the L-factor L(s, ρ) and the ε-factor ε(s, ρ, ψ) are defined as in
Tate [Tat79]. We set ε′(s, ρ, ψ) = ε(s, ρ, ψ)L(1 − s, ρ−1, ψ)L(s, ρ)−1.

1. Unitary groups and hermitian modular forms

We recall some basic facts about hermitian modular forms (cf. Braun [Bra51]). The unitary group
G(m) = U(m,m) is an algebraic group defined over Q, whose group of R-valued points is given by{

g ∈ GL2m(R⊗K)
∣∣∣∣ g( 0 −1m

1m 0

)
tḡ =

(
0 −1m

1m 0

)}
for any Q-algebra R. When there is no fear of confusion, we drop the superscript (m). We define
the hermitian modular group by Γ(m)

K = G(m)(Q) ∩ GL2m(O). Put

Γ(m)
K,∞ =

{(
A B
C D

)
∈ Γ(m)

K

∣∣∣∣ C = 0
}
.

Note that Γ(1)
K = SL2(Z) · {α · 12 | α ∈ O×}. A hermitian matrix H ∈ Hm(K) is semi-integral if

tr(HR) ∈ Z for any R ∈ Hm(O). Note that H ∈ Hm(K) is semi-integral if and only if the diagonal
entries of H are integral and

√−DK · H ∈ Mm(O). We denote the set of semi-integral hermitian
matrices of size m by Λm(O). Similarly, we define Λm(Op). Then we have Λm(Op) = Λ(O) ⊗Z Zp.
The subset of Λm(O) consisting of all positive definite elements is denoted by Λm(O)+.

The hermitian upper half space Hm is defined by

Hm =
{
Z ∈Mm(C)

∣∣∣∣ 1
2
√−1

(Z −t Z̄) > 0
}
.

Note that H1 = H1 is the usual upper half plane. Then the unitary group G(m)(R) acts on Hm by

g〈Z〉 = (AZ +B)(CZ +D)−1, Z ∈ Hm, g =
(
A B
C D

)
∈ G(m)(R).

We put j(g, Z) = det(CZ +D) for Z ∈ Hm and

g =
(
A B
C D

)
∈ G(m)(R).

If F (Z) is a function on Hm, we put

(F |l g)(Z) = F (g〈Z〉)j(g, Z)−l

for g ∈ G(m)(R). When l is clear from the context, we sometimes drop it. Let σ be a character of
Γ(m)
K , which is trivial on {(

1m B
0 1m

)
∈ Γ(m)

K

}
.

A holomorphic function F on Hm is called a hermitian modular form of weight l with character
σ if F |lg = σ(g)F for any g ∈ Γ(m)

K . When m = 1, the usual holomorphy condition at the cusp is
required. A hermitian modular form F (Z) has a Fourier expansion of the form

F (Z) =
∑

H∈Λm(O)
H�0

A(H)e(HZ ).
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Here, H � 0 means that the hermitian matrix H is positive semi-definite. A hermitian modular
form F is called a cusp form if the Fourier coefficients A(H) vanish unless H ∈ Λ(O)+. The space of
hermitian modular forms (respectively hermitian cusp forms) of weight l with character σ is denoted
by Ml(Γ

(m)
K , σ) (respectively Sl(Γ

(m)
K , σ)).

2. Siegel series for unitary groups

In this section, we consider Siegel series associated to non-degenerate semi-integral hermitian matri-
ces. Fix a prime p. Let ep be the unique additive character of Qp such that ep(x) = exp(−2π

√−1x)
for x ∈ Z[p−1]. Note that ep is of order 0. Put ξp = χ(p), i.e.

ξp =


1 if Kp 
 Qp ⊕ Qp,

−1 if Kp/Qp is an unramified quadratic extension,
0 if Kp/Qp is a ramified quadratic extension.

For H ∈ Λm(Op), detH �= 0, we put

γ(H) = (−DK)[m/2] detH.

It is easily seen that γ(H) ∈ Zp. Similarly, we have γ(H) ∈ Z for H ∈ Λm(O).
The Siegel series for H is defined by

bp(H, s) =
∑

R∈Hm(Kp)/Hm(Op)

ep(tr(HR))p−ordp(ν(R))s, Re(s)  0.

The ideal ν(R) ⊂ Zp is defined as follows. Choose an element(
A B
C D

)
∈ G(m)(Qp) ∩ SL2m(Op)

such that detD �= 0, D−1C = R. Then ν(R) = (detD)Zp. Note that detD ∈ Qp.
We define a polynomial tp(K/Q;X) ∈ Z[X] by

tp(K/Q;X) =
[(m+1)/2]∏

i=1

(1 − p2iX)
[m/2]∏
i=1

(1 − p2i−1ξpX).

There exists a polynomial Fp(H;X) ∈ Z[X] with constant term 1 such that

Fp(H; p−s) = bp(H, s)tp(K/Q; p−s)−1.

For a proof of this fact, see [Shi97]. Clearly, Fp(tĀHA;X) = Fp(H;X) for any A ∈ GLm(Op).
Moreover, Fp(H;X) satisfies the functional equation

Fp(H; p−2mX−1) = χ
p
(γ(H))m−1(pmX)−ordpγ(H)Fp(H;X),

which follows from the results of Kudla and Sweet [KS97]. We will discuss it in § 3.
The functional equation implies that degFp(H;X) = ordpγ(H). In particular, if p � γ(H), then

Fp(H;X) = 1.

Definition 2.1. For H ∈ Λm(Op), detH �= 0, we put

F̃p(H;X) = Xordpγ(H)Fp(H; p−mX−2).

Note that the highest term and the lowest term of F̃p(H;X) are Xordpγ(H) and χ
p
(γ(H))m−1

X−ordpγ(H), respectively. The following lemma follows immediately from the functional equation of
Fp(H;X).
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Lemma 2.2. For H ∈ Λm(Op), detH �= 0, we have:

F̃p(H;X−1) = F̃p(H;X) if m is odd,

F̃p(H;X−1) = χ
p
(γ(H))F̃p(H;X) if m is even,

F̃p(H; ξpX−1) = F̃p(H;X) if m is even and p � DK .

We will need the following lemma later.

Lemma 2.3. There exists a constant M > 0 such that

|F̃p(H;ω)| � pM ·ordp(γ(H))

for any H ∈ Λm(Op), detH �= 0 and any ω ∈ C, |ω| = 1. The constant M does not depend on p.

Proof. We may assume that p|γ(H). Put d = ordp(γ(H)) = degFp(H;X). For each

ϕ(X) =
∞∑
N=0

aNX
N ∈ C[[X]],

we put Hd(ϕ) = max(|a0|, . . . , |ad|). Then

Hd(ϕ1ϕ2) � (d+ 1)Hd(ϕ1)Hd(ϕ2)

for ϕ1, ϕ2 ∈ C[[X]]. For each positive integer l, we define a formal power series αlH(t) such that

αlH(p−s) =
∑

R∈p−lΛm(Op)/Λm(Op)

ep(tr(HR))p−ordp(ν(R))s.

Then it has been proved by Shimura [Shi97] that, if l � 2d + 1, then αlH(p−s) = bp(H, s). Since
bp(H, s) = tp(K/Q; p−s)Fp(H; p−s), we have

Hd(tp(K/Q;X)Fp(H;X)) � p(2d+1)m2 � p3dm2
.

On the other hand, we also have

Hd(tp(K/Q;X)−1) � Hd

( m∏
i=1

(1 − piX)−1

)

� (d+ 1)m−1
m∏
i=1

Hd((1 − piX)−1)

� (d+ 1)m−1pdm(m+1)/2.

By the obvious estimate (d+ 1) � pd, we have

Hd(Fp(H;X)) � (d+ 1)mpdm(m+1)/2p3dm2 � pd(7m
2+3m)/2.

Since |ω| = 1, we have

|F̃p(H;ω)| = |Fp(H; p−mω−2)| � (d+ 1)pd(7m
2+3m)/2 � pd(7m

2+3m+2)/2.

It follows that |F̃p(H;ω)| � pd(7m
2+3m+2)/2.

3. A proof of the functional equation

In this section, F = Fv is a non-archimedean local field. We denote the ring of integers, the absolute
value, and the order of the residue field by o, | | and q, respectively. Let E be either a quadratic
extension of F or F ⊕ F . We denote the character corresponding to E/F by χ. We denote the
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discriminant ideal of E/F by D. Put G = SU(m,m)E/F . For a quasi-character ρ : F× → C×,
we denote the degenerate principal series IndGP (ρ · | |s) by I(ρ, s). Here P is the Siegel parabolic
subgroup of G. The space of I(ρ, s) consists of all locally constant functions Φ(g) on G such that

Φ
((

A B
0 tĀ−1

)
g

)
= |detA|s+mΦ(g)

for any (
A B
0 tĀ−1

)
∈ P

and any g ∈ G.

Fix an additive character ψ of F . For Φ(g) ∈ I(ρ, s) and a non-degenerate hermitian matrix
H ∈ Hm(E), put

M(s, ρ)Φ(g) =
∫

Hm(E)
Φ
(
w

(
1m x
0 1m

)
g, s

)
dx,

WhH(s)Φ(g) =
∫

Hm(E)
Φ
(
w

(
1m x
0 1m

)
g, s

)
ψ(trHx) dx.

Here, the Haar measure dx is the self-dual measure for the pairing (x, y) �→ ψ(tr(xy)). These
integrals are absolutely convergent for Re(s)  0 and can be meromorphically continued to the
whole complex plane. If s is not a pole of M(s, ρ), then M(s, ρ)Φ(g) ∈ I(ρ−1,−s). Moreover, it is
known that WhH(s) is entire.

Proposition 3.1 (Kudla and Sweet). The following functional equation holds:

WhH(−s) ◦M(s, ρ) = κH(s, ρ, ψ)WhH(s),

where

κH(s, ρ, ψ) = ρ(detH)−1|detH|−sγ(E/F,ψ)m(m−1)/2χ(detH)m−1
m∏
r=1

ε′(s −m+ r, ρχr−1, ψ)−1.

Here γ(E/F,ψ) is the Weil factor for E/F with respect to ψ, and ε′(s, ρ, ψ) = ε(s, ρ, ψ)L(1 −
s, ρ−1)L(s, ρ)−1. This proposition is Proposition 3.1 of Kudla and Sweet [KS97] when E is a
quadratic extension of F . When E = F ⊕ F , see [KS97, p. 303].

We assume that ψ has order 0 and ρ = 1 is the trivial character. Let Φ(s)
0 ∈ I(s,1) be the

unique element such that Φ0(g) = 1 for g ∈ G∩ SL2m(o). Then WhH(s)Φ(s)
0 (12m) is an analogue of

the Siegel series considered in the last section. It is known (cf. Shimura [Shi97]) that there exists a
polynomial Fv(H;X) ∈ Z[X] such that WhH(s)Φ(s)

0 (12m) is equal to

|D|m(m−1)/4
m∏
r=1

1
L(s+m+ 1 − r, χr−1)

· Fv(H; q−s−m).

By standard Gindikin–Karpelevich argument, we have

M(s, 1)Φ(s)
0 = |D|m(m−1)/2

m∏
r=1

L(s−m+ r, χr−1)
L(s+m+ 1 − r, χr−1)

Φ(−s)
0 .

1114

https://doi.org/10.1112/S0010437X08003643 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003643


Lifting of hermitian modular forms

It follows that

WhH(−s) ◦M(s, 1)Φ(s)
0 (12m) = |D|m(m−1)/2

m∏
r=1

L(s−m+ r, χr−1)
L(s +m+ 1 − r, χr−1)

×
m∏
r=1

1
L(−s+m− r + 1, χr−1)

· Fv(H; qs−m).

By Proposition 3.1, we have

|detH|−sγ(E/F,ψ)m(m−1)/2χ(detH)m−1
m∏
r=1

ε(s −m+ r, χr−1, ψ)−1 · Fv(H; q−s−m)

= |D|m(m−1)/4Fv(H; qs−m).

Since ε(s, χ, ψ) = γ(E/F,ψ)−1|D|s−(1/2) and γ(E/F,ψ)2 = χ(−1), we obtain the following func-
tional equation for Fv(H;X).

Corollary 3.2. The polynomial Fv(H;X) satisfies the following functional equation:

(i) if m = 2n,

Fv(H; q−2mX−1) = χ((−1)n detH)(qmX)−ord(Dn detH)Fv(H;X);

(ii) if m = 2n+ 1,

Fv(H; q−2mX−1) = (qmX)−ord(Dn detH)Fv(H;X).

Remark 3.3. When E/F = Kp/Qp, we obtain the functional equation of Fp(H;X). Note that
χ
p
(−1) = χ

p
(−D), since

χ
p
(D) =

(−D,D
Qp

)
= 1.

4. Fourier coefficients of hermitian Eisenstein series

For simplicity, we assume that l is a sufficiently large integer. Let E(m)
2l (Z, s) be the Eisenstein series

of weight 2l on the hermitian upper half space Hm. For Z ∈ Hm, we put X = (Z + tZ̄)/2 and
Y = (Z − tZ̄)/(2

√−1). Then the hermitian Eisenstein series E(m)
2l (Z, s) is defined by

E
(m)
2l (Z, s) = (detY )s−l

∑
g∈Γ

(m)
K,∞\Γ(m)

K

(det g)lj(g, Z)−2l |j(g, Z)|−2s+2l .

The series E(m)
2l (Z, s) is absolutely convergent for Re(s) > m and

E
(m)
2l (∗, s)|2lg = (det g)−lE(m)

2l (∗, s)

for any g ∈ Γ(m)
K . Then the Fourier expansion of E(m)

2l (Z, s) is

E
(m)
2l (Z, s) =

∑
H∈Λm(O)

c
(m)
2l (H;Y, s)e(HX ).
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If H is non-degenerate, we have

c
(m)
2l (H;Y, s) =

(
D

4

)−m(m−1)/4

(detY )s−l Ξ(Y,H; s+ l, s− l)
∏
p

bp(H, p−2s)

=
(
D

4

)−m(m−1)/4

(detY )s−l
Ξ(Y,H; s + l, s− l)∏m
i=1 L(2s+ 1 − i, χi−1)

∏
p|γ(H)

Fp(H; p−2s).

Here (see Shimura [Shi97]),

Ξ(g, h; s, s′) =
∫

Hm(C)
e(−hx) det(x+

√−1 g)−s det(x−√−1 g)−s
′
dx.

If s = l > m, we get the Fourier expansion of the holomorphic hermitian Eisenstein series E(m)
2l (Z) ∈

M2l(Γ
(m)
K ; det−l). If H ∈ Λm(O)+, then

Ξ(Y,H; 2l, 0) =
(−1)ml2m(2l−m+1)π2ml

Γm(2l)
(detH)2l−me(

√−1HY ),

where

Γm(s) = πm(m−1)/2
m∏
i=1

Γ(s+ 1 − i).

The Hth Fourier coefficient of E(m)
2l (Z) for H ∈ Λm(O)+ is equal to

(−1)ml2(4ml−m2+m)/2D−m(m−1)/4π2ml

Γm(2l)
∏m
i=1 L(2l + 1 − i, χi−1)

(detH)(2l−m)
∏

p|γ(H)

Fp(H; p−2l).

It follows that the Hth Fourier coefficient of E(m)
2l (Z) for H ∈ Λm(O)+ is equal to the product of

Am2m
m∏
i=1

L(i− 2l, χi−1)−1

and

|γ(H)|2l−m
∏

p|γ(H)

Fp(H; p−2l) = |γ(H)|l−(m/2)
∏

p|γ(H)

F̃p(H; pl−(m/2)).

Here

Am =

{
1 if m = 2n + 1,
(−1)n if m = 2n.

Observe that ∏
p|γ(H)

F̃p(H; pl−(m/2)) =
∏

p|γ(H)

χ
p
(γ(H))m−1F̃p(H; p−l+(m/2))

= Am
∏

p|γ(H)

F̃p(H; p−l+(m/2))

by Lemma 2.2. We define the normalized Eisenstein series by

E(m)
2l (Z) = 2−m

m∏
i=1

L(i− 2l, χi−1) · E(m)
2l (Z) ∈M2l(Γ

(m)
K ,det−l).
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When m = 2n+ 1, the Hth Fourier coefficient of E(2n+1)
2k′+2n(Z) is equal to

|γ(H)|k′−(1/2)
∏

p|γ(H)

F̃p(H; p−k
′+(1/2))

for any H ∈ Λ2n+1(O)+ and any sufficiently large integer k′. When m = 2n, the Hth Fourier
coefficient of E(2n)

2k′+2n(Z) is equal to

|γ(H)|k′
∏

p|γ(H)

F̃p(H; p−k
′
)

for any H ∈ Λ2n(O)+ and any sufficiently large integer k′.

5. Main theorems

We first consider the case when m = 2n is even. We refer to this case as Case E. In this case, let
f(τ) =

∑∞
N=1 a(N)qN ∈ S2k+1(Γ0(D), χ) be a primitive form, whose L-function is given by

L(f, s) =
∏
p �D

(1 − a(p)p−s + χ(p)p2k−2s)−1
∏
q|D

(1 − a(q)q−s)−1.

For each prime p � D, we define the Satake parameter {αp, βp} = {αp, χ(p)α−1
p } by

(1 − a(p)X + χ(p)p2kX2) = (1 − pkαpX)(1 − pkβpX).

For q | D, we put αq = q−ka(q).
For each H ∈ Λ2n(O)+, we put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp).

Here p extends over all primes that divide γ(H). We put

F (Z) =
∑

H∈Λ2n(O)+

A(H)e(HZ ), Z ∈ H2n.

Then our main theorem for Case E is as follows.

Theorem 5.1 (Case E). Assume that m = 2n. Let f(τ), A(H) and F (Z) be as above. Then we

have F ∈ S2k+2n(Γ
(2n)
K ,det−k−n).

Now we consider the case when m = 2n + 1 is odd. We refer to this case as Case O. In this
case, let f(τ) =

∑∞
N=1 a(N)qN ∈ S2k(SL2(Z)) be a normalized Hecke eigenform, whose L-function

is given by

L(f, s) =
∏
p

(1 − a(p)p−s + p2k−1−2s)−1.

For each prime p, we define the Satake parameter {αp, α−1
p } by

(1 − a(p)X + p2k−1X2) = (1 − pk−(1/2)αpX)(1 − pk−(1/2)α−1
p X).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H;αp), H ∈ Λ2n+1(O)+,

F (Z) =
∑

H∈Λ2n+1(O)+

A(H)e(HZ ), Z ∈ H2n+1.
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Then our main theorem for Case O is as follows.

Theorem 5.2 (Case O). Assume that m = 2n + 1. Let f(τ), A(H) and F (Z) be as above. Then

we have F ∈ S2k+2n(Γ
(2n+1)
K ,det−k−n).

In both Case E and Case O, the definition of F (Z) is independent of the choice of αp by
Lemma 2.2. Observe that F (Z) is absolutely convergent on Hm by Lemma 2.3 for any m. Since
Fp(tĀHA;X) = Fp(H;X) for any H ∈ Λm(O) and any A ∈ GLm(O), we have F |2k+2n g =
(det g)−k−nF for any g ∈ Γ(m)

K,∞. We call F (Z) the lift of f(τ) to S2k+2n(Γ
(m)
K ,det−k−n) and denote

it by Lift(m)(f).

6. Fourier–Jacobi expansions

We define the Jacobi group Jm,r(O) byM =


1r ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 1r 0
0 ∗ ∗ ∗

 ∈ Γ(m)
K detM = 1

 .

We consider only the case r = m− 1. Fix S ∈ Λm−1(O)+.
For a holomorphic function φ(τ, z1, z2) on H1 × Cm−1 × Cm−1, we define a function on Hm−1 ×

H1 × Cm−1 × Cm−1 by φ̃(Z) = e(Sω)φ(τ, z1, z2). Here

Z =
(
ω z1

tz2 τ

)
, ω ∈ Hm−1, τ ∈ H1, z1,z2 ∈ Cm−1.

We shall say that the function φ is a weak Jacobi form of index S and weight l if and only if

φ̃| lM = φ̃

for any M ∈ Jm,m−1(O). A weak Jacobi form is called a Jacobi form if φ has a Fourier expansion

φ(τ, z1, z2) =
∑

x∈(O�)m−1

∑
N∈Z

c(x,N)e(tx̄z1 +t xz2)e(Nτ)

such that c(x,N) = 0 unless N −t x̄S−1x � 0.
For each ξ ∈ Km−1, we define the theta function θ[ξ](S; τ, z1, z2) by

θ[ξ](S; τ, z1, z2) =
∑

x∈Om−1

e( t(x+ ξ)S(x+ ξ)τ + t(x+ ξ)Sz1 + t(x+ ξ)Sz 2).

Choose a complete representative Ξ = Ξ(S) for S−1(O�)m−1/Om−1.
Then a Jacobi form φ(τ, z1, z2) of index S can be expressed as the sum

φ(τ, z1, z2) =
∑
ξ∈Ξ

θ[ξ](S; τ, z1, z2)φξ(τ),

φξ(τ) =
∑
N∈Z

N−tξSξ�0

c(Sξ,N)e((N −t ξSξ)τ).

It is well known that, for each

γ =
(
a b
c d

)
∈ SL2(Z),
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there exists a unitary representation uS : SL2(Z) → GL(CΞ) with kernel containing some congruence
subgroup Γ ⊂ SL2(Z) such that

θ[ξ](S; τ ′, z′1, z
′
2) = (cτ + d)m−1

∑
η∈Ξ

uS(γ)ηξ e(Sz1(cτ + d)−1ctz2)θ[η](S; τ, z1, z2),

where τ ′ = (aτ + b)(cτ + d)−1, z′i = zi(cτ + d)−1, i = 1, 2. It follows that

φξ(γ〈τ〉) = (cτ + d)l−m+1
∑
η∈Ξ

uS(γ)ηξφη(τ)

for any

γ =
(
a b
c d

)
∈ SL2(Z)

and any ξ ∈ Ξ.
Let F(Z) be a holomorphic function on Hm that has a Fourier expansion

F(Z) =
∑
H�0

A(H)e(HZ ).

Here H extends over positive semi-definite elements of Λm(O). We assume that A(tX̄HX) = A(H)
for any X ∈ GLm(O) and any H ∈ Λm(O). For each S ∈ Λm−1(O), we put

FS(τ, z1, z2) =
∑

H=
(
S x
tx̄ N

)A(H)e(Nτ) e(tx̄z1 + txz2).

Here H extends over all positive semi-definite elements of Λm(O) that are of the form

H =
(
S x
tx̄ N

)
.

As in [Ike01], we have an expansion

FS(τ, z1, z2) =
∑
ξ∈Ξ

θ[ξ](S; τ, z1, z2)FS,ξ(τ),

where

FS,ξ(τ) =
∑
N∈Z

N−tξSξ�0

A

((
S Sξ

tξS N

))
e((N − tξSξ)τ).

We call FS,ξ(τ) the (S, ξ)-component of the Fourier–Jacobi expansion of F(Z). Since the theta
functions {θ[ξ](S; τ, z1, z2) | ξ ∈ Ξ} are linearly independent, FS(τ, z1, z2) is a Jacobi form of index
S and weight 2l if and only if

FS,ξ(γ〈τ〉) = (cτ + d)l−m+1
∑
η∈Ξ

uS(γ)ηξFS,η(τ)

for any

γ =
(
a b
c d

)
∈ SL2(Z)

and any ξ ∈ Ξ.

7. Vector-valued modular forms

Let Kp = SL2(Zp) be the standard maximal compact subgroup of SL2(Qp). We put K =
∏
pKp. Let

(u, V ) be a finite-dimensional continuous representation of K. A V -valued modular form �h(τ) with
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type u is a holomorphic function of τ ∈ H1 with values in V that satisfies the following conditions (1)
and (2):

(1) �h(g〈τ〉) = (cτ + d)κu(g)−1�h(τ) for any g ∈ SL2(Z);
(2) �h(τ) has a Fourier expansion of the form

�h(τ) =
∞∑
N=0

�c(N)qN/M

for some positive integer M .

We define vector-valued cusp forms similarly.
For each prime p, let Rp = C[Xp,X

−1
p ] be a copy of the Laurent polynomial ring. Put

R =
⊗

pRp. Then R is the ring of Laurent polynomials Φ(X) = Φ(X2,X3, . . .) ∈ C[X2,X
−1
2 ,X3,

X−1
3 , . . .]. Note that R is a unique factorization domain (UFD), although it is not noetherian. Let

a2, a3, . . . , ap, . . . be non-zero complex numbers. Then the value of Φ(X) at (X2,X3, . . . ,Xp, . . .) =
(a2, a3, . . . , ap, . . .) is denoted by Φ({ap}).
Lemma 7.1. Let Φ(X) be an element of R. Assume that Φ({p−s}) = 0 for an infinite number of
s ∈ R. Then Φ(X) is identically 0.

Proof. Write Φ(X) as a sum of monomials:

Φ(X) =
r∑
i=1

ai
∏
p

X
ei,p
p .

Here ei,p = 0 for almost all p. Put Ni =
∏
p p

ei,p . Then our assumption implies that
∑
aiN

−s
i = 0

for infinitely many real numbers s. Since N1, . . . , Nr are mutually distinct, we have a1 = · · · = ar
= 0.

Definition 7.2. Let h(τ) be a modular form of weight κ for some congruence subgroup Γ. Then
we denote by V(h) the C-vector space spanned by {h|γ | γ ∈ GL2(Q)+}. If u : K → GLd(C) is a
representation of rank d, then I(V(h)d, u) is the space of Cd-valued modular forms of type u whose
entries belong to V(h).

We first consider Case E. For Case E, we put

E2k+1,χ(τ) = −B2k+1,χ

4k + 2
+

∞∑
N=1

(∑
d|N

χ(d)d2k

)
qN ∈M2k+1(Γ0(D), χ).

Note that L(s,E2k+1,χ) = ζ(s)L(s − 2k, χ). In particular, the Satake parameter of E2k+1,χ(τ) is
{p−k, χ(p)pk} for p � D and {q−k} for q|D.

Definition 7.3 (Case E). Let k′0 be some fixed large integer. We define a compatible family of
Eisenstein series {F2k′+1(τ)}k′�k′0 as follows. A compatible family of Eisenstein series is a family
of modular forms

F2k′+1(τ) = b(2k′ + 1; 0) +
∑
N∈Q×

+

Nk′b(2k′ + 1;N)qN

satisfying the following conditions (1), (2), and (3):

(1) F2k′+1 ∈ V(E2k′+1,χ) for any integer k′ � k′0;
(2) for each N ∈ Q×

+, there exists an element ΦN (X) ∈ R such that

b(2k′ + 1;N) = ΦN ({p−k′});
(3) there exists a congruence subgroup Γ ⊂ SL2(Z) such that F2k′+1 ∈M2k′+1(Γ) for all k′ � k′0.
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As in [Ike01], we have to prove the following lemma.

Lemma 7.4. Let

f(τ) =
∑
N>0

a(N)qN ∈ S2k+1(Γ0(D), χ)

be a primitive form and αp a Satake parameter of f(τ). Assume that there are a finite-dimensional

representation (u,Cd) of K and �ΦN (X) = t(Φ1,N (X), . . . ,Φd,N (X)) ∈ Rd (N ∈ Q×
+) satisfying the

following conditions (1) and (2).

(1) For each integer k′ � k′0, there exists a vector-valued modular form

�F2k′+1(τ) = �b(2k′ + 1; 0) +
∑
N∈Q×

+

Nk′�b(2k′ + 1;N)qN

of type u.

(2) For each i (1 � i � d), the ith component Fi,2k′+1(τ) of �F2k′+1(τ) is a compatible family of
Eisenstein series such that

bi(2k′ + 1;N) = Φi,N({p−k′}).
Here �b(2k′ + 1;N) = t(b1(2k′ + 1;N), . . . , bd(2k′ + 1;N)).

Put

�h(τ) =
∑
N∈Q×

+

Nk�ΦN({αp})qN .

Then we have �h(τ) ∈ I(V(f)d;u).

The lemma is proved at the end of § 9, using results in the following two sections.

8. Behavior of the Whittaker functions

In this section, we will investigate the behavior of Whittaker functions on GL2, which will be used
to prove Lemma 7.4.

In this section, F = Fv will denote a non-archimedean local field. We fix a non-trivial additive
character ψ of F . The maximal order of F , the prime ideal, and the order of the residue field are
denoted by o, p, and q, respectively. We put Rv = C[qs, q−s] and K̃v = GL2(o). The Borel subgroup
of GL2 that consists of all upper triangular matrices is denoted by B̃. We put B = B̃ ∩ SL2 and
Kv = K̃v ∩ SL2.

Let χ, χ
1

and χ
2

be characters of F×. The principal series representation Ĩ(χ
1

� χ
2
, s) =

IndGL2

B̃
(χ

1
| |s � χ

2
| |−s) is the representation of GL2 that is induced from the character of B̃

given by (
a b
0 d

)
�→ χ

1
(a)χ

2
(d)|ad−1|s.

Similarly, the principal series representation I(χ, s) = IndSL2
B (χ| |s) is the representation of SL2 that

is induced from the character of B given by(
a b
0 a−1

)
�→ χ(a)|a|s.

Then the restriction of Ĩ(χ
1
� χ

2
, s) to SL2 is canonically isomorphic to I(χ

1
χ−1

2
, 2s).

In this section, we assume that χ is a unitary character.

1121

https://doi.org/10.1112/S0010437X08003643 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003643


T. Ikeda

An Rv-valued function on GL2 can be regarded as a function f(g, s) on GL2 × C such that
f(g, s) ∈ Rv = C[qs, q−s] for each g ∈ GL2. We say that a function on GL2 × C or on SL2 × C is
right Kv-finite if there is an open subgroup Kc

v of Kv such that f(g, s) is right Kc
v-invariant for any

s. We also consider Rv-valued functions and right Kv-finiteness for SL2. Let u be an irreducible
representation of Kv . Then we shall say that a right Kv-finite function f(g, s) has Kv-type u if
f(g, s) has Kv-type u for each s ∈ C.

Definition 8.1. A right Kv-finite Rv-valued function f(g, s) on GL2 is called a holomorphic section
of Ĩ(χ

1
�χ

2
, s), if f(g, s) ∈ Ĩ(χ

1
�χ

2
, s) for each s ∈ C. A holomorphic section f(g, s) of Ĩ(χ

1
�χ

2
, s)

is called a standard section if the restriction of f(g, s) to Kv × C does not depend on s ∈ C. We
define holomorphic sections and standard sections of I(χ, 2s) similarly. We also define vector-valued
holomorphic and standard sections of I(χ, 2s) in an obvious way.

For f ∈ I(χ, 2s) or f ∈ Ĩ(χ
1
� χ

2
, s), we put

Whψ(f)(g) =
∫
F
f

(
w

(
1 x
0 1

)
g

)
ψ(x) dx,

where

w =
(

0 −1
1 0

)
.

The Haar measure dx is the self-dual measure with respect to the additive character ψ. This in-
tegral is absolutely convergent for Re(s) > 0. If f(g, s) is a holomorphic section of I(χ, 2s), then
Whψ(f(g, s)) is an Rv-valued function on SL2. Thus Whψ(f) is meaningful for any s ∈ C. We denote
Wψ(I(χ, 2s)) = {Whψ(f) f ∈ I(χ, 2s)} for each s ∈ C. It is known that Wψ(I(χ, 2s)) �= (0) for any
s ∈ C. If I(χ, 2s) is irreducible, then Wψ(I(χ, 2s)) is equal to the Whittaker space of I(χ, 2s).

We need to investigate the behavior of Whittaker functions at the points of reducibility of
I(χ, 2s). Since I(χ| |2s′ , 2s) 
 I(χ, 2(s + s′)), we have only to consider real s by changing χ if
necessary. If χ2 �= 1, then there are no real points of reducibility of I(χ, 2s). When χ = 1, the real
points of reducibility of I(1, 2s) are s = ±1/2. Then I(1, 1) contains the Steinberg representation
St, and the quotient of I(1, 1)/St is the trivial representation 1; and I(1,−1) contains 1, and
I(1,−1)/1 
 St. We have

Ker(Whψ : I(1, 1) → Wψ(I(1, 1))) = {0},
Ker(Whψ : I(1,−1) → Wψ(I(1,−1))) = 1.

If χ2 = 1, χ �= 1, then the real point of reducibility of I(χ, 2s) is s = 0. In this case, I(χ, 0) is the
direct sum of two irreducible representations I(χ, 0)+ ⊕ I(χ, 0)−. This decomposition is described
in terms of the normalized intertwining operator M∗(2s, χ, ψ) = ε(2s, χ, ψ)M(2s, χ). Note that
M∗(2s, χ, ψa) = χ(a)|a|2sM∗(2s, χ, ψ), where ψa(x) = ψ(ax). The irreducible constituents I(χ, 0)+

and I(χ, 0)− are the spaces of elements of I(χ, 0) on which M∗(0, χ, ψ) acts by 1 and by −1,
respectively. Furthermore,

Ker(Whψ : I(χ, 0) → Wψ(I(χ, 0))) = I(χ, 0)−.

Lemma 8.2. Let χ be a character of F× such that χ2 = 1. Any irreducible representation of Kv is

multiplicity-free in Ĩ(1 � χ−1, s). Moreover, the set of irreducible representations of Kv that occur

in Ĩ(1 � χ−1, s) is independent of s.

Proof. It is enough to consider the restriction of Ĩ(1 � χ−1, s) to SL2. Note that the restriction is
isomorphic to I(χ, 2s). Put B = B ∩ Kv and

N =
{(

1 n
0 1

) ∣∣∣∣ n ∈ o

}
.
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We are going to prove that the induced representation IndKv
B χ is multiplicity-free. Let H(B\Kv/B;χ)

be the Hecke algebra that consists of all locally constant functions φ on Kv such that φ(b1kb2) =
χ(b1b2)φ(k) for any b1, b2 ∈ B, k ∈ Kv . It is enough to prove that H(B\Kv/B;χ) is commutative.

We consider the anti-involution

τ

(
x y
z w

)
=
(
w y
z x

)
of Kv. We shall prove that, for any

k =
(
x y
z w

)
∈ Kv,

there exist b1, b2 ∈ B such that τk = b1kb2 and χ(b1b2) = 1. If z ∈ o×, then one can easily find
n1, n2 ∈ N such that τk = n1kn2. If z ∈ p, then

k = b

(
1 0
z′ 1

)
for some z′ ∈ p and b ∈ B. In this case one can choose b1 = b−1, b2 = τb. This completes the proof
of the first assertion. The last assertion of the lemma is clear.

Let (u,Cd) be an irreducible representation of Kv, which occurs in I(χ, 2s). There is a vector-
valued standard section

fu(g, s) = (fu,1(g, s), . . . , fu,d(g, s))

of I(χ, 2s) such that fu(gk, s) = fu(g, s)u(k) for any k ∈ Kv. By Lemma 8.2, such a section is unique
up to a scalar multiplication. The standard section fu(g, s) can be uniquely extended to a standard
section f̃u(g, s) of Ĩ(1 � χ, s). Set

Wu(g, s) = Whψ(fu(g, s)) = (Whψ(fu,1(g, s)), . . . ,Whψ(fu,d(g, s))),

W̃u(g, s) = Whψ(f̃u(g, s)) = (Whψ(f̃u,1(g, s)), . . . ,Whψ(f̃u,d(g, s))).

Let αψ,u(s) ∈ Rv be the generators of the ideal of Rv generated by {Wu,i(g, s) | g ∈ SL2, 1 � i � d}.
Set W ′

u(g, s) = αψ,u(s)−1Wu(g, s). Then we have W ′
u(gk, s0) = W ′

u(g, s0)u(k) for any k ∈ Kv and
s0 ∈ C. In particular, {W ′

u,i(g, s) | 1 � i � d} is linearly independent. It follows that fu,i(g, s0) ∈
Ker(Whψ) if and only if αψ,u(s0) = 0 for any 1 � i � d. Note that I(χ, 2s0) is reducible in this case,
since Ker(Whψ) �= I(χ, 2s0).

Similarly, let α̃u(s) ∈ Rv be the generators of the ideal of Rv generated by {W̃u,i(g, s) | g ∈
GL2, i = 1, . . . , d}. Then, α̃u(s0) = 0 if and only if u = 1 and q2s0 = q−1. Note that α̃u(s) does not
depend on the choice of ψ.

Lemma 8.3. If u = 1 and ψ is of order 0, then α̃u(s) = αψ,u(s). For each irreducible representation
u of Kv, there is an element a ∈ k× such that α̃u(s) = αψa,u(s). Here, ψa(x) = ψ(ax ).

Proof. The first part can be checked by direct calculation. For the proof of the latter part, we
may assume that u �= 1. We may also assume that χ is either the trivial character or a ramified
character of order 2. If χ = 1 and αψ,u(s) �= α̃u(s), then the Kv-type u occur in I(χur, 0)−, where
χur is the unramified character of order 2. Note that I(χur, 0) = I(1, π

√−1/ log q). In this case, one
can choose a ∈ k× such that χur(a) = −1.

Now let χ be a ramified character and χ2 = 1. Assume that the Kv-type u occur in I(χ, 0)ε1
and I(χχur, 0)ε2 , where ε1, ε2 ∈ {±1}. Choose a ∈ k× such that χ(a) = ε1 and χχur(a) = ε2. Then
ψa satisfies the condition of the lemma.
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Definition 8.4. A right Kv-finite Rv-valued function W (g, s) on SL2 is an Rv-valued Whittaker
function if W (g, s0) ∈ Wψ(I(χ, 2s0)) unless I(χ, 2s0) is reducible. Similarly, a right Kv-finite Rv-
valued function W̃ (g, s) on GL2 is an Rv-valued Whittaker function if W̃ (g, s0) ∈ Wψ(Ĩ(1 � χ, s0))
unless Ĩ(1 � χ, s0) is reducible. When we need to refer to ψ, we shall say ‘Rv-valued ψ-Whittaker
function’.

Lemma 8.5. Let u be an irreducible representation of Kv . Set

W ′
u,i(g, s) = αψ,u(s)−1Wu,i(g, s), W̃ ′

u,i(g, s) = α̃u(s)−1W̃u,i(g, s).

Then the Rv-module generated by the Rv-valued Whittaker function of I(χ, 2s) with Kv-type u
is generated by {W ′

u,i(g, s) | 1 � i � d}. Similarly, the Rv-module generated by the Rv-valued

Whittaker function of Ĩ(1 � χ, s) with Kv-type u is generated by {W̃ ′
u,i(g, s) | 1 � i � d}.

Proof. We prove only the first part. Note that {W ′
u,i(g, s0) | 1 � i � d} is linearly independent

for any s0 ∈ C. Let W (g, s) be an Rv-valued Whittaker function of I(χ, 2s) with Kv-type u. Then
there exists ci(s) ∈ Q(Rv) such that W (g, s) =

∑d
i=1 ci(s)W

′
u,i(g, s), where Q(R) is the quotient

field of Rv. Assume that ci(s) /∈ Rv. Then there exists s0 ∈ C such that ords=s0ci(s) > 0, where
ord is the order of the pole. We may assume that e = ords=s0c1(s) � ords=s0ci(s) for i = 2, . . . , d.
Then

d∑
i=1

((s − s0)eci(s))s=s0 ·W ′(g, s0) = 0,

which contradicts the linear independence of {W ′
u,i(g, s0) | 1 � i � d}.

Let W (g, s) be an Rv-valued ψ-Whittaker function of I(χ, 2s) with Kv-type u. If s is not a point
of reducibility of I(χ, 2s), one can extend W (g, s) to a ψ-Whittaker function W̃ (g, s) of Ĩ(1�χ, s).

Lemma 8.6. Set βψ,u(s) = α̃u(s)−1αψ,u(s). Then βψ,u(s)W̃ (g, s) is an Rv-valued Whittaker function
of Ĩ(1 � χ, s).

Proof. This lemma follows immediately from the fact that the Rv-module generated by the Rv-
valued Whittaker function of I(χ, 2s) with Kv-type u is generated by {αψ,u(s)−1Wu,i(g, s) | i =
1, . . . , d}.
Lemma 8.7. Let N0 ⊂ R be an infinite subset such that I(χ, 2s) is irreducible for any s ∈ N0.

(1) Let W (g, s) be a right Kv-finite Rv-valued function on SL2 such that W (g, s) ∈ Wψ(I(χ, 2s))
for any s ∈ N0. Then W (g, s) is an Rv-valued Whittaker function of I(χ, 2s).

(2) Let W̃ (g, s) be a right K̃v-finite Rv-valued function on GL2 such that W̃ (g, s) ∈ Wψ(Ĩ(1�χ, s))
for any s ∈ N0. Then W̃ (g, s) is an Rv-valued Whittaker function of Ĩ(1 � χ, s).

Proof. We will prove only part (1), as the proof of part (2) is similar. Let (u,Cd) be an irreducible
representation of Kv. By standard arguments, it is enough to prove the following.

(1′) Let W (g, s) = (W1(g, s), . . . ,Wd(g, s)) be a vector of Rv-valued functions on SL2 such that
Wi(g, s0) ∈ Wψ(I(χ, 2s0)) (1 � i � d) for any s0 ∈ N0 and W (gk, s) = W (g, s)u(k) for any
k ∈ Kv. Then Wi(g, s) ∈ Wψ(I(χ, 2s0)) (1 � i � d) for any s0 ∈ C such that I(χ, 2s0) is
irreducible.

By Lemma 8.2, there exists an element ϕ(s) ∈ Rv such that W (g, s) = ϕ(s)αψ,u(s)−1Wu(g, s). Since
the zero of αψ,u(s) is a point of reducibility of I(χ, 2s), the lemma follows.
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9. Adelic compatible family

We put Ẑ =
∏
p Zp and Ẑ× =

∏
p Z×

p . Let

B̃ =
{(∗ ∗

0 ∗
)

∈ GL2

}
be the standard Borel subgroup of GL2. Put K = SL2(Ẑ), K̃ = GL2(Ẑ), and

K̃0 =
{(

a b
c d

)
∈ GL2(Ẑ)

∣∣∣∣ c ∈ DZ

}
.

Recall that, given h ∈ M2k+1(Γ0(D), χ), one can define an adelic cusp form h� on GL2(A) by
the formula

h�(g) = χ(d)(f |g∞)(
√−1)

for g = γg∞g0 ∈ GL2(A) with γ ∈ GL2(Q), g∞ ∈ GL+
2 (R), and

g0 =
(
a b
c d

)
∈ K̃0.

For a primitive form f ∈ S2k+1(Γ0(D), χ), we put f = f �. We also put E2k′+1,χ = (E2k′+1,χ)�. Let
π 
⊗′

v πv be an irreducible cuspidal automorphic representation of GL2(A) generated by f . Then
the central character of π is χ, and π∞ is the (limit of the) discrete series representation of GL2(R)
with minimal weight ±(2k + 1). The p-component πp is isomorphic to

Ĩ(1 � χ
p
, s0,p) = IndGL2(Qp)

B̃(Qp)
(| · |s0,p � χ

p
| · |−s0,p),

where s0,p ∈ C is a complex number such that e−s0,p·log p = αp. Note that Re(s0,p) = 0 by the
Ramanujan conjecture.

Let V(f) be the C-vector space spanned by the right translates of f by GL2(Af). Then V(f) can
be regarded as the representation space of

⊗′
p<∞ πp. We define V(E2k′+1,χ) similarly; V(E2k′+1,χ)

is isomorphic to
⊗′

p<∞ Ĩ(1 � χ
p
, k′).

For each h ∈ V(f) or h ∈ V(E2k′+1,χ), we can associate a function ξ(h) on H by

ξ(h)(τ) = h(g∞)j(g∞,
√−1)2k+1

for g∞ ∈ GL2(R)+ ⊂ GL2(A), g∞(
√−1) = τ .

Lemma 9.1. The map ξ gives surjections V(E2k′+1,χ) → V(E2k′+1,χ) and V(f) → V(f).

Proof. This follows from the equality GL2(Af) = GL2(Q)+ · K̃0, which follows from the strong
approximation of SL2.

One can define an action ρ of SL2(Af) on V(f) or on V(E2k′+1,χ) by ρ(g)h = h|γ−1, for γ ∈
SL2(Q) sufficiently close to g ∈ SL2(Af). Note that SL2(Q) is dense in SL2(Af) by the strong
approximation theorem.

The maps ξ : V(E2k′+1,χ) → V(E2k′+1,χ) and ξ : V(f) → V(f) are SL2(Af) equivariant. In
particular, ξ : V(E2k′+1,χ) → V(E2k′+1,χ) is an isomorphism for sufficiently large k′, since the
restriction of Ĩ(1 � χ

p
, s) to SL2(Qp) is irreducible for Re(s) > 1/2.

For x = (xv)v ∈ A, we set eA(x) =
∏
p ep(xp) ·e(x∞). Then for any non-trivial additive character

ψ of A/Q, there is a rational number t ∈ Q× such that ψ(x) = eA(tx). We assume that t > 0. For
h ∈ V(E2k′+1,χ) or h ∈ V(f), the Whittaker function Wψ,h of h is defined by

Wψ,h(g) =
∫
Q\A

h
((

1 x
0 1

)
g

)
ψ(x) dx.
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If the weight of h is 2k+ 1, then the Whittaker function Wψ,h can be decomposed into a finite part
and an infinite part:

Wψ,h = W 0
ψ,fW

∞
ψ,2k+1.

Here, the infinite part W∞
ψ,2k+1 is given by

W∞
ψ,2k+1

((
a x
0 1

)(
cos θ −sin θ
sin θ cos θ

))
=

{
e2π

√−1tx(ta)k+(1/2)e−2πtae
√−1(2k+1)θ if a > 0,

0 if a < 0.

If ψ′(x) = ψ(ax) for a ∈ Q×
+, then we have

W 0
ψ′,h(g) = W 0

ψ,h

((
a 0
0 1

)
g

)
, g ∈ GL2(Af).

Definition 9.2. Let k′0 be some fixed large integer. An adelic compatible family of Eisenstein series
is a family {F2k′+1}k′�k′0 that satisfies the following conditions (1) and (2):

(1) F2k′+1 ∈ V(E2k′+1,χ) for each k′ � k′0;

(2) there is an R-valued function Wψ(g; X) on GL2(Af) such that Wψ,F2k′+1
(g) = Wψ(g; {p−k′})

for each k′.

This definition does not depend on the choice of ψ. We call Wψ(g; X) the R-valued ψ-Whittaker
function associated to the family {F2k′+1}k′ . It is easily seen that {E2k′+1,χ}k′ is an adelic compatible
family of Eisenstein series.

Lemma 9.3. Let {F2k′+1}k′ be a family such that {F2k′+1|γ}k′ is a compatible family of Eisenstein
series for any γ ∈ SL2(Z). Then there exists an adelic compatible family {F2k′+1}k′ such that
ξ(F2k′+1) = F2k′+1.

Proof. Put F2k′+1 = ξ−1(F2k′+1). Let W 0
ψ,F2k′+1

be the finite part of the Whittaker function of
F2k′+1. We have to prove that W 0

ψ,F2k′+1
is an R-valued function, i.e. there exists an element

ϕg(X) ∈ R such that W 0
ψ,F2k′+1

(g) = ϕg({p−k′}) for each g ∈ GL2(Af) and k′ � k′0. First assume that
g ∈ SL2(Af). Then {ρ(g)F2k′+1}k′ is a compatible family of Eisenstein series, since SL2(Q) = B(Q) ·
SL2(Z) (cf. the proof of [Ike01, Lemma 10.3]). Then W 0

ψ,F2k′+1
(g) = W 0

ψ,ρ(g)F2k′+1
(12) is essentially

the tth Fourier coefficient of ρ(F2k′+1), where t is the rational number such that ψ(x) = eA(tx).
By Lemma 8.7(1), the restriction of W 0

ψ,F2k′+1
to SL2(Af) is an R-valued ψ-Whittaker function. We

shall show that W 0
ψ,F2k′+1

is an R-valued function on GL2(Af). We may assume that F2k′+1 has an
irreducible K-type u =

∏
v uv. By Lemma 8.6, (

∏
p βψp,up(s))W

0
ψ,F2k′+1

is an R-valued Whittaker

function of Ĩ(1�χ, s). By Lemma 8.3, there exists a non-trivial additive character ψ′ such that the
greatest common divisor of βψp,up(s) and βψ′

p,up(s) is 1 for any p. It follows that W 0
ψ,F2k′+1

is an
R-valued Whittaker function. Hence the lemma is proved.

Proof of Lemma 7.4. Put Fi,2k′+1 = ξ−1(Fi,2k′+1). Then, by Lemma 9.3, {Fi,2k′+1}k′ is an adelic
compatible family. Let

�W(g,X) = t(W1(g,X), . . . ,Wd(g,X))

be the Rd-valued ψ-Whittaker function associated to {�F2k′+1}k′ . Put Wi(g) = Wi(gf , {αp})W∞
ψ,2k+1

(g∞) for g = gfg∞, gf ∈ GL2(Af), g∞ ∈ GL2(R). Note that Wi(gf , {αp}) is a well-defined Whittaker
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function of
⊗′

p Ĩ(1 � χ, s0,p) by Lemma 8.7(2). Then

hi(g) =
∑
a∈Q×

Wi

((
a 0
0 1

)
g

)
∈ V(f)

for i = 1, . . . , d, since π is an irreducible cuspidal automorphic representation. Put �h = t(h1, . . . ,hd).
Then we have �h = ξ(�h) ∈ I(V(f)d;u).

10. Proofs of Theorems 5.1 and 5.2

Now we can prove Theorem 5.1. Let k′ be a sufficiently large integer. Then there is a vector-valued
modular form of weight 2k′ + 1 with values in CΞ = Map(Ξ,C) whose ξth component is the (S, ξ)-
component of the Fourier–Jacobi coefficient of the Eisenstein series

bS,ξ,2k′+1 +
∑
N∈Z+

Nk′
[∏
p|N

F̃p(HS,ξ(N); p−k
′
)
]
qN/∆.

Here bS,ξ,2k′+1 is some rational number and

∆ = [(O�)m−1 : SOm−1] = Dm−1(detS)2,

HS,ξ(N) =
(
S Sξ

tξS N/∆ + tξSξ

)
.

As we have seen in § 6, this vector-valued automorphic form is of type uS . Note that the type uS
does not depend on k′.

By [Ike94, Theorem 3.2], ES,ξ belongs to the space V(E2k′+1,χ) for each sufficiently large in-
teger k′. It follows that, when k′ extends over sufficiently large integers, (E(2n)

k′+n)S,ξ(τ) make up a
compatible family of Eisenstein series. By Lemma 7.4,

∞∑
N=1

Nk

(∏
p|N

F̃p(HS,ξ(N);αp)
)
qN/∆

is a vector-valued automorphic form with type uS. It follows that∑
ξ∈Ξ

θ[ξ](S; τ, z)
∞∑
N=1

Nk

(∏
p|N

F̃p(HS,ξ(N);αp)
)
qN/∆

is a Jacobi form with index S. For

γ =
(
a b
c d

)
,

we put

γ̄ =


1m−1 0 0m−1 0

0 a 0 b
0m−1 0 1m−1 0

0 c 0 d

 .

Then we have F (Z)|2k+2nγ̄ = F (Z) for any γ ∈ SL2(Z). It is proved by Klingen [Kli56] that Γ(m)
K

is generated by Γ(m)
K,∞ and (

0m −1m
1m 0m

)
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(see also § 12). Therefore F |2k+2n g = (det g)−k−nF for any g ∈ Γ(m)
K . This completes the proof of

Theorem 5.1.

Now we consider Case O. Since the proof for Case O is almost the same as for Case E, we just
describe an outline. Let

E2k(τ) = −B2k

4k
+

∞∑
N=1

(∑
d|N

d2k−1

)
qN ∈M2k(SL2(Z))

be the usual Eisenstein series. Note that the Satake parameter of E2k is {pk−(1/2), p−k+(1/2)}.
Definition 10.1 (Case O). We define a compatible family of Eisenstein series {F2k′(τ)}k′�k′0 as
follows. A compatible family of Eisenstein series is a family {F2k′(τ)}k′ of modular forms

F2k′(τ) = b(2k′; 0) +
∑
N∈Q×

+

Nk′−(1/2)b(2k′;N)qN

satisfying the following conditions (1), (2), and (3):

(1) F2k′ ∈ V(E2k′) for any integer k′ � k′0;

(2) for each N ∈ Q×
+, there exists an element ΦN (X) ∈ R such that

b(2k′;N) = ΦN ({p−k′+(1/2)});
(3) there exists a congruence subgroup Γ ⊂ SL2(Z) such that F2k′ ∈M2k′(Γ) for all k′ � k′0.

As in Case E, one can prove the following lemma.

Lemma 10.2. Let

f(τ) =
∑
N>0

a(N)qN ∈ S2k(SL2(Z))

be a normalized Hecke eigenform and αp a Satake parameter of f(τ). Assume that there are a finite-

dimensional representation (u,Cd) of K, and �ΦN (X) = t(Φ1,N (X), . . . ,Φd,N (X)) ∈ Rd(N ∈ Q×
+)

satisfying the following conditions (1) and (2).

(1) For each sufficiently large integer k′, there exists a vector-valued modular form

�F2k′(τ) = �b(2k′; 0) +
∑
N∈Q×

+

Nk′−(1/2)�b(2k′;N)qN

of type u.

(2) For each i (1 � i � d), the ith component Fi,2k′(τ) of �F2k′(τ) is a compatible family of
Eisenstein series such that

bi(2k′;N) = Φi,N ({p−k′+(1/2)}).
Here �b(2k′;N) = t(b1(2k′;N), . . . , bd(2k′;N)).

Put

�h(τ) =
∑
N∈Q×

+

Nk−(1/2)�ΦN ({αp})qN .

Then we have �h(τ) ∈ I(V(f)d;u).

The proofs of Lemma 10.2 and Theorem 5.2 are the same as in Case E.
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11. Existence of some hermitian matrices

Lemma 11.1. If m is divisible by 4, then there exists an element H1 ∈ Λm(O)+ such that γ(H1) = 1.

Proof. We may assume that m = 4. We define hermitian matrices Hs and Hd by

Hs =
√−D −1

(
0 −12

12 0

)
, Hd =

(
D−2 0

0 13

)
.

Then Hs ∈ Λ4(O), Hd > 0 and detHs = detHd. Since detHs = detHd, there exists an element
Xp ∈ GL4(Kp) such that Hs = XpHd

tX̄p for each prime p (cf. Scharlau [Sch85]). Replacing Xp by

Xp

(
detX−1

p 0
0 13

)
,

we may assume that Xp ∈ SL4(Kp). We may also assume that Xp ∈ SL4(Op) for almost all p.
By the strong approximation theorem for SL4, there exists an element X ∈ SL4(K) such that
X−1Xp ∈ SL4(Op) for any p. Put H1 = XHd

tX̄ . Then we have H1 ∈ Λ4(O)+ and γ(H1) = 1.

Lemma 11.2. Assume that m is odd. For any integer N > 0, there exists an element HN ∈ Λm(O)+

such that |γ(HN )| = N .

Proof. By Lemma 11.1, we may assume that m = 1 or 3. If m = 1, we put HN = (N). The proof
in the case m = 3 is similar to Lemma 11.1. One can take

Hs =

−N 0 0
0 0 −√−D −1

0
√−D −1 0

 , Hd =
(
ND−1 0

0 12

)
.

Then one can find a desired element HN ∈ Λm(O)+ as in Lemma 11.1.

Lemma 11.3. Assume that m = 2n is even. Let N > 0 be a rational integer such that there exists
an element y ∈ O� such that Dyȳ ≡ (−1)nN modD. Then there exists an element HN ∈ Λm(O)+

such that |γ(HN )| = N .

Proof. We may assume that m = 2 or 4. Put x = (Dy ȳ − (−1)nN)/D. In the case m = 2, one can
put

HN =
(
x y
ȳ 1

)
.

In the case m = 4, we put

Hs =


x y 0 0
ȳ 1 0 0
0 0 0

√−D −1

0 0 −√−D −1 0

 , Hd =
(
ND−2 0

0 13

)
.

Then one can find a desired element HN ∈ Λm(O)+ as in Lemma 11.1.

Lemma 11.4. If m = 2n is even, then there are an infinite number of primes p such that |γ(H)| = p
for some H ∈ Λm(O)+.

Proof. If p ≡ (−1)n modD, then there exists H ∈ Λm(O) such that |γ(H)| = p by Lemma 11.3.
Hence the lemma is proved.

12. Hermitian modular groups of general type

In this section, we prove some facts about hermitian modular groups. We follow the argument of
Klingen [Kli56].
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For a fractional ideal a of K, the absolute norm of a is denoted by N(a). For an integral ideal β
of K, the set of prime divisors of β is denoted by Supp(β).

Lemma 12.1. Let a be a fractional ideal and b an integral ideal of K. Let a ∈ a−1 and b ∈ O be
elements such that (aa, b, b) = 1. Then there exists an element x ∈ a−1 such that ((a+xb)a, b) = 1.

Proof. Decompose the integral ideals aa and b into products of integral ideals

aa = β1γ1, b = β2γ2, (β1, γ1) = (β2, γ2) = (γ1, γ2) = 1

such that Supp(β1) = Supp(β2). Let γ3 be an integral ideal that belongs to the same ideal class as
aγ−1

2 , such that (γ3, β1γ1) = 1. Let x be an element such that (x) = a−1γ2γ3. Assume that there is
a prime ideal p such that p|((a+ xb)a, b). Then p|β2 or p|γ2. If p|β2, then p|β1, which is impossible,
since (β1, xa) = (β1, γ2γ3) = 1 and (β1, b) = 1. Now assume that p|γ2. This is also impossible, since
p|xba and p � aa. Hence the lemma is proved.

Lemma 12.2. Let α, a1, a2, and m be fractional ideals of K. Then there exist elements y1, y2 ∈ K
such that y1 ∈ α, m = y1a1 + y2a2.

Proof. Choose a non-zero element y1 ∈ ma−1
1 ∩α. Put n = y1a1m

−1. Choose an integral ideal b that
belongs to the same ideal class as m−1a2, such that (b, n) = 1. Put (y2) = ma−1

2 b. Then we have
y1a1 + y2a2 = mn + mb = m.

We fix fractional ideals a1, . . . , am of O. We define an O-module M by

M = {t(a1, . . . , am) ∈ Km | ai ∈ ai(i = 1, . . . ,m)}.
Note that the isomorphism class of M is determined by the ideal class of a1 · · · am. We define a
group U by

U = {g ∈ GLm(K) | gM = M}.
Lemma 12.3. Let x = t(x1, . . . , xm) and y = t(y1, . . . , ym) be column vectors in Km. Then there
exists an element g ∈ U such that gx = y if and only if x1a

−1
1 + · · ·+xma−1

m = y1a
−1
1 + · · ·+ yma−1

m .

Proof. The ‘only if’ part is clear from the definition. We may assume that m > 1. Assume that
x1a

−1
1 + · · · + xma−1

m = y1a
−1
1 + · · · + yma−1

m �= {0}. Let G be the algebraic group defined by G =
{g ∈ SLm(K) | gx = x}. Then the strong approximation theorem holds for G 
 Km−1 �SLm−1(K).
Put Kp = {g ∈ GLm(Kp) | gMp = Mp} for each prime p of K. Here, Mp is the closure of M in Km

p .
Then

∏
p Kp × GLm(C) is an open subgroup of GLm(AK). Choose an element h ∈ GLm(K) such

that hx = y. The set

h−1

(∏
p

Kp × GLm(C)
)
∩G(AK)

is a non-empty open subset of G(AK) by our assumption. By the strong approximation theorem
for G, there exists an element

g ∈ h−1

(∏
p

Kp × GLm(C)
)
∩G(K).

Then we have hg ∈ U and hgx = y.

We define a group Γ by

Γ =
{
g ∈ U(m,m)(Q) g

(
M

M′

)
=
(

M

M′

)}
,
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where M′ = {t(a1, . . . , am) ∈ Km | ai ∈ ā−1
i (i = 1, . . . ,m)}. We temporarily call Γ a hermitian

modular group of general type associated to M. If M1 and M2 are isomorphic O-modules, then
the corresponding groups Γ1 and Γ2 are conjugate by an element of U(m,m)(Q). We define the
subgroups MΓ, NΓ, and ÑΓ of Γ by

MΓ =
{(

g 0
0 tḡ−1

) ∣∣∣∣ g ∈ U
}
,

NΓ =
{(

1m B
0 1m

) ∣∣∣∣ tB̄ = B = (bij), bij ∈ aiāj

}
,

ÑΓ =
{(

1m 0
B 1m

) ∣∣∣∣ tB̄ = B = (bij), bij ∈ ā−1
i a−1

j

}
.

Let us denote the subgroup generated by MΓ, NΓ, and ÑΓ by Γ′. We shall prove that Γ′ = Γ. To
prove this, we may assume that a1 = O, by replacing ai by a−1

1 ai, and Γ by(
1m 0
0 N(a1)1m

)
Γ
(
1m 0
0 N(a1)−11m

)
.

Since it is easy to prove that Γ′ = Γ for m = 1, we consider the case m � 2.

Lemma 12.4. Assume that m � 2 and that a1 = O. Let b1, . . . , bm, c1, . . . , cm be elements of K
satisfying the following properties (1) and (2):

(1)
∑m

i=1 bia
−1
i + ciāi = O;

(2) b1c̄1 + · · · + bmc̄m ∈ Z.

Put e1 = t(1, 0, . . . , 0) ∈ K2m. Then there exists an element g ∈ Γ′ such that

ge1 = t(b1, . . . , bm, c1, . . . , cm).

Proof. Note that b1, c1 ∈ O, since a1 = O. Note also that the properties (1) and (2) are preserved by
changing t(b1, . . . , bm, c1, . . . , cm) by g · t(b1, . . . , bm, c1, . . . , cm) with g ∈ Γ. By using Lemmas 12.2
and 12.3, we may assume that c3 = · · · = cm = 0. If c1 = c2 = 0, then t(b1, . . . , bm) is the first row
of an element of U by Lemma 12.3, in which case we are done. Assume that (c1, c2) �= (0, 0). Put
α =

∑m
i=3 bia

−1
i , α′ =

∑m
i=1 bia

−1
i . By Lemmas 12.2 and 12.3, we may assume that

c1c2 �= 0, α′|c2ā2.

If b1 = 0, we replace b1 by b1 + c1. Thus we may assume that

(b1, b1a−1
2 , α, c1) = 1, b1c1c2 �= 0, c3 = · · · = cm = 0, α′|c2ā2.

Let ρ be the product of all prime ideals p such that p̄|b1, p � b1. Then we have (b2a−1
2 , α, ρ, b1) = 1.

By Lemma 12.1, there exists x ∈ a2 such that ((b2 + b1x)a−1
2 , α, ρ) = 1. Note that (b1, (b2 +

b1x)a−1
2 , α, c1 − x̄c2) = 1. Decompose the integral ideals ((b2 + b1x)a−1

2 , α) and b1 into products of
integral ideals

((b2 + b1x)a−1
2 , α) = β1γ1, b1 = β2γ2,

(β1, γ1) = (β2, γ2) = (γ1, γ2) = 1,

such that Supp(β1) = Supp(β2). Put y = N(γ1). We shall show that

(b1 + y(c1 − x̄c2), (b2 + b1x)a−1
2 , α) = 1.

Let p be a prime divisor of the left-hand side. Then we have either p|β1 or p|γ1. If p|γ1, then we have
p|y, and so p|b1, which is impossible. Now we assume that p|β1. Then we have p|β2, and so p|b1.
It follows that p|y(c1 − x̄c2). Note that p|(c1 − x̄c2) contradicts (b1, (b2 + b1x)a−1

2 , α, c1 − x̄c2) = 1.
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If p|y, then we have p|γ̄1, since p|γ1γ̄1 and p|β1. This implies that p̄ � b1, and so p̄|ρ, which contradicts
to ((b2 + b1x)a−1

2 , α, ρ) = 1. Hence we have (b1 + y(c1 − x̄c2), (b2 + b1x)a−1
2 , α) = 1. We replace

t(b1, . . . , bm, c1, . . . , cm) by

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1m′ 0 0 0
y 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1m′





1 0 0 0 0 0
x 1 0 0 0 0
0 0 1m′ 0 0 0
0 0 0 1 −x̄ 0
0 0 0 0 1 0
0 0 0 0 0 1m′





b1
b2
...
c1
c2
...


,

where m′ = m− 2. Then we have b1a−1
1 + b2a

−1
2 + · · ·+ bmam = O. In this case, the proposition can

be easily proved by using Lemma 12.3.

Now we prove that Γ′ = Γ by induction with respect to m. Let g be any element of Γ and put
t(b1, . . . , bm, c1, . . . , cm) = ge1. Then it is easy to see that b1, . . . , bm, c1, . . . , cm satisfy the properties
(1) and (2) of Lemma 12.4. By Lemma 12.4, there exists an element h ∈ Γ′ such that ge1 = he1.
Put

h−1g =


1 ∗
0 A

∗ ∗
∗ B

0 0
0 C

1 0
∗ D

 , g1 =


1 0
0 A

0 0
0 B

0 0
0 C

1 0
0 D

 .

By the induction hypothesis, we have g1 ∈ Γ′. Clearly, we have g−1
1 h−1g ∈ Γ′. Thus we have

g ∈ hg1Γ′ = Γ′.

Proposition 12.5. Put ai = N(ai) (i = 1, . . . ,m). The hermitian modular group Γ is generated by
MΓNΓ and

wj =



1j−1 0 0 0 0 0
0 0 0 0 aj 0
0 0 1m−j 0 0 0
0 0 0 1j−1 0 0
0 a−1

j 0 0 0 0
0 0 0 0 0 1m−j

 , 1 � j � m.

Proof. Put A = diag(a1, . . . , am). Then we have(
0 A
A−1 0

)
NΓ

(
0 A
A−1 0

)
= ÑΓ.

Thus the proposition follows from Lemma 12.4.

Proposition 12.6. Let P be the Siegel parabolic subgroup of G = U(m,m). Then we have G(Q) =
P (Q) · Γ.

Proof. Put G1 = SU(m,m), P1 = P ∩ G1, and Γ1 = Γ ∩ G1(Q). It is enough to prove that G1(Q) =
P1(Q) · Γ1.

Let K1 be the maximal compact subgroup of G1(Af) defined by K1 = G1(Af) ∩ (
∏
p GL2m(Op)).

For j = 1, . . . ,m, we choose elements tj ∈ A×
K such that ordptj = ordpaj , (tj)∞ = 1. Put

t = diag(t1, . . . , tm, t̄−1
i , . . . , t̄−1

m ) ∈ G(Af ),

KΓ = tK1t
−1.
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Then we have G1(Q) ∩ KΓG1(R) = Γ1. Note that the Levi factor of P1 is isomorphic to {m ∈
GLm(K) | detm ∈ Q×}. In particular, the class number of P1 is 1. Thus we have

P1(Q)KΓG1(R) = P1(A)KΓG1(R) = G1(A).

Hence we have
G1(Q) = P1(Q) · (G1(Q) ∩ KΓG1(R)) = P1(Q) · Γ1.

Hence the proposition is proved.

13. Extension to the unitary group

In this section, we discuss the extension of Lift(m)(f) to an automorphic form on the adele group of
the unitary group G = U(m,m). Since G need not have class number 1, we need to consider several
congruence subgroups. Let T be the maximal torus of G, which consists of all diagonal elements.
Let K be the maximal compact subgroup of G(Af) defined by K = G(Af) ∩ (

∏
p GL2m(Op)).

Lemma 13.1. There is a natural bijection between the double coset G(Q)\G(A)/KG(R) and the
ideal class group CK of K.

Proof. Put H = U(1). Then by strong approximation of SU(m,m), there is a bijection G(Q)\G(A)/
KG(R) → H(Q)\H(A)/IH(R), where I is the image of K in H(Af). Consider the exact sequence

1 → A×
Q → A×

K → H(A) → 1,

where the map A×
K → H(A) is given by x �→ xx̄−1. One can easily show that I ⊂ H(Af) is equal to

the image of
∏
pO×
p ⊂ A×

K,f. Then we have H(Q)\H(A)/IH(R) 
 A×
K/A

×
Q

∏
pO×
p C× 
 CK .

Fix a complete set of representatives {γ1, . . . , γh} for the double coset G(Q)\G(A)/KG(R). We
may assume that γ1 = 12m and

γi =
(
ti 0
0 t̄−1

i

)
∈ T (Af).

Let ci be the ideal of K such that ordp(ci) = ordp((det ti)p), where det ti is considered as an element
of A×

K . Then the bijection G(Q)\G(A)/KG(R) → CK is given by

G(Q)γiKG(R) �→ the ideal class of ci.

Put
Γi = Γ(m)

i = G(Q) ∩ (γiKγ−1
i · G(R)).

Then Γi is a hermitian modular group of general type considered in § 12. Put

Λm(O)i = {H ∈ Hm(K) | t̄i,pHti,p ∈ Λm(Op) for any p}.
The set of positive definite elements of Λm(O)i is denoted by Λm(O)+i .

For a holomorphic function F on Hm and g ∈ G(R), we introduce the notation

F‖2l g = (det g)l · F |2l g.
When l is clear from the context, we drop it from the notation. For m � 2, put

M2l(Γi,det−l) = {F | F‖2l g = F for any g ∈ Γi}.
For m = 1, we require the usual holomorphy condition at cusps. Then F ∈ M2l(Γi,det−l) has a
Fourier expansion of the form

F (Z) =
∑

H∈Λm(O)i
H�0

A(H)e(HZ ).
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The space of cusp forms S2l(Γi,det−l) is defined by

{F ∈M2l(Γi,det−l) | A(H) = 0 unless H ∈ Λm(O)+i }.

Put i =
√−1 · 1m ∈ Hm. For (F1, . . . , Fh) ∈

⊕h
i=1M2l(Γi,det−l), we put

(F1, . . . , Fh)�(g) = (Fi‖2l x)(i) = Fi(x〈i〉) j(x, i)−2l(det x)l

for g = uγixκ, u ∈ G(Q), x ∈ G(R), κ ∈ K. Then (F1, . . . , Fh)� is an automorphic form on G(A). We
denote by M2l(G(Q)\G(A),det−l) the space of automorphic forms obtained in this way. Similarly,
we put S2l(G(Q)\G(A),det−l) = {(F1, . . . , Fh)� | Fi ∈ S2l(Γi,det−l)}.

Let f2l be the function on G(A) defined by

f2l(g) =
∏
p

|det(dpd̄p)|−lp j(g∞, i)−2l(det g∞)l,

where g = (gv)v ∈ G(A),

gp =
(
ap bp
0 dp

)
κp,

(
ap bp
0 dp

)
∈ P (Qp),

and κp ∈ Kp. We consider the normalized Eisenstein series

E(m)
2l (g) = 2−m

m∏
i=1

L(i− 2l, χi−1)
∑

γ∈P (Q)\G(Q)

f2l(γg).

Then we have E(m)
2l ∈ M2l(G(Q)\G(A),det−l). We denote the corresponding Eisenstein series for Γi

by Ei,2l. Thus (Ei,2l, . . . ,Ei,2l)� = E(m)
2l and

Ei,2l(Z) = 2−m
m∏
i=1

L(i− 2l, χi−1)
∑

g∈Γi,∞\Γi

(det g)lj(g, Z)−2l,

where Γi,∞ = P (Q) ∩ Γi. Note that P (Q)\G(Q) 
 Γi,∞\Γi by Proposition 12.6. As in § 4, one can
show that the Hth Fourier coefficient of Ei,2l(Z) is equal to

|γ(H)|l−(m/2)
∏
p

|det ti,pt̄i,p|m/2p F̃p(t̄i,pHti,p; p−l+(m/2))

for any H ∈ Λm(O)+i and any sufficiently large integer l. Set

Φi(H,X) =
∏
p

|det ti,pt̄i,p|m/2p F̃p(t̄i,pHti,p;Xp) ∈ R.

Then, for sufficiently large k′, the Hth Fourier coefficient of Ei,2k′+2n is equal to |γ(H)|k′−(e/2)Φi(H,
{p−k′+(e/2)}), where n = [m/2], e = m− 2n.

Theorem 13.2. In Case E, let f(τ) ∈ S2k+1(Γ0(D), χ) be a primitive form with Satake parameter
{αp, βp}. Then, for i = 1, . . . , h, the Fourier series

Fi(Z) =
∑

H∈Λ2n(O)+i

|γ(H)|kΦi(H, {αp})e(HZ )

belongs to S2k+2n(Γ
(2n)
i ,det−k−n). Put F = (F1, . . . , Fh)�. Then F is independent of the choice of

the representatives {γ1, . . . , γh}.
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Theorem 13.3. In Case O, let f(τ) ∈ S2k(SL2(Z)) be a normalized Hecke eigenform with Satake
parameter {αp, α−1

p }. Then, for i = 1, . . . , h, the Fourier series

Fi(Z) =
∑

H∈Λ2n+1(O)+i

|γ(H)|k−(1/2)Φi(H, {αp})e(HZ )

belongs to S2k+2n(Γ
(2n+1)
i ,det−k−n). Put F = (Fi, . . . , Fi)�. Then F is independent of the choice of

the representatives {γ1, . . . , γh}.

We prove only Theorem 13.3. The proof of Theorem 13.2 can be treated in the same way.

Proof. By Proposition 12.5, Γ = Γi is generated by MΓNΓ and wj (j = 1, . . . ,m), where MΓ, NΓ

and wj are as in § 12. Clearly, Fi(Z) is modular with respect to MΓNΓ. As in § 10, one can prove
that Fi(Z) is modular with respect to wm. By permutation of coordinates, Fi(Z) is also modular
with respect to wj (j = 1, . . . ,m). Therefore Fi(Z) is a hermitian modular form with respect to Γi.
The modularity of Fi follows from this. That Fi is a cusp form follows from Proposition 12.6.

We prove that the definition of F is independent of the choice of {γ1, . . . , γh}. Let M be the
Levi factor of the parabolic subgroup P such that

M(Q) =
{(

A 0
0 tĀ−1

) ∣∣∣∣ A ∈ GLm(K)
}
.

Then the natural map

M(Q)\M(A)/(K ∩M(Af))M(R) → G(Q)\G(A)/KG(R)

is surjective. Let {γ′1, . . . , γ′h},

γ′i =

(
t′i 0
0 t̄′i

−1

)
∈ T (Af)

be another set of representatives. Then there exists ui ∈M(Q) such that t′i ∈ uiti(K∩M(Af))M(R).
By multiplying some element in K from the right, we may assume that t′i = ui,fti, where ui = ui,fui,∞,
ui,f ∈M(Af), ui,∞ ∈M(R). Note that

γix =
(
u−1
i 0
0 tūi

)
γ′i

(
ui,∞ 0

0 tū−1
i,∞

)
x

for x ∈ G(R). We define E′
i,2l and F ′

i by using the representative γ′i instead of γi. Then we have

(Ei,2l‖2lx)(i) = E(m)
2l (γix) =

(
E′
i,2l‖2l

(
ui,∞ 0

0 tū−1
i,∞

)
x

)
(i).

It follows that

E′
i,2l = Ei,2l‖2l

(
u−1
i 0
0 tūi

)
.

Comparing the Fourier expansion, we have

F ′
i = Fi‖2k+2n

(
u−1
i 0
0 tūi

)
,

which implies the desired independence.

Definition 13.4. We call F in Theorem 13.2 or Theorem 13.3 the lift of f(τ) to S2k+2n(G(Q)\G(A),
det−k−n) and denote it by Lift (m)(f).
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Next, we shall show that Lift(m)(f) is a common Hecke eigenform for all Hecke operators if it
is not identically zero. Recall that the Eisenstein series E(m)

2l is a common Hecke eigenform for all
Hecke operators for (G(Af),K).

Recall that the action of a Hecke operator can be described as follows. Let T = KqK be a double
coset for q ∈ G(Af). Let

KqK =
∐
r∈I

Kqr, qr ∈ G(Af),

be a decomposition into a sum of left cosets, where I is a finite index set. For each r ∈ I, and
j ∈ {1, . . . , h}, choose ir,j ∈ {1, . . . , h} and ur,j ∈ G(Q) such that γjqr ∈ ur,jγir,jKG(R). Then the
action of the Hecke operator T on S2l(G(Q)\G(A),det−l) is given by

(F1, . . . , Fh)�|T =
(∑
r∈I

Fir,1‖2l u
−1
r,1 , . . . ,

∑
r∈I

Fir,h
‖2l u

−1
r,h

)�
.

Note that one can assume that ur,i ∈ P (Q) by Proposition 12.6.

Proposition 13.5. For each Hecke operator T for (G(Af),K), there exists an element ΦT ∈ R such
that

E(m)
2k′+2n|T = ΦT ({p−k′+(e/2)})E(m)

2k′+2n,

where e = 0 in Case E and e = 1 in Case O.

Proof. Put E(m)
2k′+2n|T = (E1,T , . . . , Eh,T ). Then, by using Proposition 12.6, one can easily show that

Ei,T has a Fourier expansion

Ei,T (Z) =
∑

H∈Λm(O)+i

|γ(H)|k′−(e/2)Φ′
i,T (H, {p−k′+(e/2)})

for some Φ′
i,T (X) ∈ R (cf. [Ike01, p. 664]). If m �≡ 2mod 4, then there exists an element H ∈ Λm(O)

such that |γ(H)| = 1 by Lemmas 11.1 and 11.2. For such an H, we have F̃p(H,X) = 1 for any prime
p. Therefore the eigenvalue is equal to Φ′

1,T (H, {p−k′+(e/2)}). If m ≡ 2mod 4, there exist an infinite
number of primes p such that p = −γ(H) for someH ∈ Λm(O)+ by Lemma 11.4. Choose such primes
p1 �= p2 with p1 = −γ(H1) and p2 = −γ(H2). Note that ordp1Fp1(H1,X) = ordp2Fp2(H2,X) = 1.
By the functional equation, we have Fp1(H1,X) = Fp2(H2,X) = 1 +X. It follows that∏

p

F̃p(H1,Xp) = Xp1 +X−1
p1 ,

∏
p

F̃p(H2,Xp) = Xp2 +X−1
p2 .

By Lemma 7.1, we have

(Xp1 +X−1
p1 )Φ′

1,T (H2,X) = (Xp2 +X−1
p2 )Φ′

1,T (H1,X).

By unique factorization of R, we have Φ′
1,T (H1,X)/(Xp1 + X−1

p1 ) ∈ R. Hence the proposition is
proved.

Theorem 13.6. The automorphic form Lift (m)(f) is a common eigenform of all Hecke operators
for (G(Af),K). Moreover, for each Hecke operator T for (G(Af),K), we have

Lift (m)(f)|T = ΦT ({αp})Lift (m)(f).

Proof. As in [Ike01, § 11], the theorem follows from Proposition 13.5 and Lemma 7.1.

Let c be an integral ideal of K. We assume that c is prime to D. Set C = N(c). We choose a
finite idele t = (tp)p ∈ AK,f such that ordptp = ordpc for each prime ideal p of K. Set

t =
(
1m−1 0

0 t

)
, γ =

(
t 0
0 t̄−1

)
.
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Definition 13.7. We set

Γ(m)
K [c] = G(Q) ∩ (γKγ−1 · G(R)),

Λcm(O)+ = {H ∈ Hm(K) H > 0, t̄pHtp ∈ Λm(Op) for any p}.
If f ∈ S2k(SL2(Z)) is a normalized Hecke eigenform, then the lift of f in S2k+2n(Γ

(2n+1)
K [c],det−k−n)

is denoted by Lift(2n+1)
c (f). Similarly, if f ∈ S2k+1(Γ0(D), χ) is a primitive form, then the lift of

f in S2k+2n(Γ
(2n)
K [c],det−k−n) is denoted by Lift(2n)

c (f). When c = O, we simply drop c from the
notation.

Note that Γ(m)
K [c] is a hermitian modular group of general type considered in § 12. We have

Lift(m)
c (f) = C−k−n ∑

H∈Λcm(O)+

|Cγ(H)|k−(e/2)
∏
p

F̃p(t̄pHtp;αp)e(HZ ),

where e = m−2[m/2]. If c1 = O, c2, . . . , ch is a representative for the ideal class group, then we have

Lift (m)(f) = (Lift(m)(f),Lift(m)
c2 (f), . . . ,Lift(m)

ch (f))�.

The proofs of the following lemmas are the same as for Lemmas 11.2 and 11.3. We omit the
details.

Lemma 13.8. Assume that m is odd. For any integer N > 0, there exists an element HN ∈ Λcm(O)+

such that C|γ(HN )| = N .

Lemma 13.9. Assume that m = 2n is even. Let N > 0 be a rational integer such that there exists an
element y ∈ c−1O� such that CDyȳ ≡ (−1)nN modD. Then there exists an element HN ∈ Λcm(O)+

such that C|γ(HN )| = N .

14. Linearization of the lifting for Case O

In this section, we consider only Case O. Put m = 2n+ 1. We fix an integral ideal c of K such that
C = N(c) is prime to D. We choose t as in the last section. Let f(τ) ∈ S2k(SL2(Z)) be a normalized
Hecke eigenform. For each N > 0, we put

Ψp(N ;X) = p−e/2
Xe+1 −X−e−1

X −X−1
, e = ordpN,

Ψ(N ; X) =
∏
p|N

Ψp(N ;Xp) ∈ R.

Then the Nth Fourier coefficient af (N) of f is equal to NkΨ(N ; {αp}).
Fix an element H ∈ Λc2n+1(O)+. Then F̃p(t̄pHtp;X) belongs to the C-vector space

{Φ ∈ X−ordpCγ(H)C[X2] | Φ(X−1) = Φ(X)}.
Note that {

Ψp

(
C|γ(H)|
p2i

;X
) ∣∣∣∣ 0 � 2i � ordpCγ(H)

}
is a basis of this vector space. It follows that there exists φ(a,H) ∈ C for each a2|Cγ(H) such that

|Cγ(H)|−1/2
∏

p|Cγ(H)

F̃p(t̄pHtp;Xp) =
∑

a2|Cγ(H)

φ(a,H)Ψ
(
C|γ(H)|

a2
; X
)
.

One can easily show that φ(a,H) ∈ Q. Moreover, φ(1,H) = 1 for any H ∈ Λc2n+1(O)+, as the
constant term of Fp(t̄pHtp;X) is 1.
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For each f0(τ) =
∑

N>0 af0(N)qN ∈ S2k(SL2(Z)), we put

ι(f0)(Z) =
∑

H∈Λc2n+1(O)+

∑
a2|Cγ(H)

a2kφ(a,H)af0

(
C|γ(H)|

a2

)
e(HZ ).

If f is a normalized Hecke eigenform, then ι(f) = Ck+nLift(2n+1)
c (f). Since normalized Hecke eigen-

forms span S2k(SL2(Z)), the image of ι is contained in S2k+2n(Γ
(2n+1)
K [c],det−k−n).

We shall show that ι is injective. Assume that ι(f0) = 0 for some f0 ∈ S2k(SL2(Z)). We show
that all Fourier coefficients of f0 are 0. By Lemma 13.8, there exists an element HN ∈ Λc2n+1(O)+

such that C|γ(HN )| = N . Then the HNth Fourier coefficient of ι(f0) is af0(N) + (lower terms).
It follows that af0(N) = 0 by induction. Thus we have proved the following theorem.

Theorem 14.1. There exists an injective linear map

ι : S2k(SL2(Z)) → S2k+2n(Γ
(2n+1)
K [c],det−k−n)

satisfying the following properties:

(1) for each f0 =
∑

N>0 af0(N)qN ∈ S2k(SL2(Z)),we have

ι(f0)(Z) =
∑

H∈Λc2n+1(O)+

∑
a2|Cγ(H)

a2kφ(a,H)af0

(
C|γ(H)|

a2

)
e(HZ );

(2) if f(τ) ∈ S2k(SL2(Z)) is a normalized Hecke eigenform, then ι(f) = Ck+nLift(2n+1)
c (f).

Corollary 14.2. Let f(τ) ∈ S2k(SL2(Z)) be a normalized Hecke eigenform. Then Lift(2n+1)
c (f) is

not identically zero.

Obviously, Corollary 14.2 implies that Lift(2n+1)(f) �= 0 for any normalized Hecke eigenform
f ∈ S2k(SL2(Z)).

15. Linearization of the lifting for Case E

In this section, we consider Case E. Put m = 2n. We fix an integral ideal c of K such that C = N(c)
is prime to D. We are going to show that the lifting can be described by a linear map

Sε∗2k+1(Γ0(D), χ) → S2k+2n(Γ
(2n)
K [c],det−k−n),

where Sε∗2k+1(Γ0(D), χ) is a certain subspace of S2k+1(Γ0(D), χ). Unlike Case O, the subspace Sε∗2k+1

(Γ0(D), χ) depends on the ideal class (more precisely, the genus) of c.
Let QD be the set of all primes that divide D. For each prime q ∈ QD, we put Dq = qordqD.

We define a primitive Dirichlet character χq by

χq(N) =

{
χ(N ′) if (N, q) = 1,
0 if q|N,

where N ′ is an integer such that

N ′ ≡
{
N mod Dq,

1 mod D−1
q D.

Then we have χ =
∏
q|D χq. Note that Dq is the conductor of χq and that χq corresponds to the

quadratic field with discriminant χq(−1)Dq. One should not confuse χq with χ
q
.

Lemma 15.1. If q � N , then χq(N) = χ
q
(N).
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Proof. Since χq corresponds to Q(
√
χq(−1)Dq)/Q, we have

χq(N) =
(
χq(−1)Dq, N

Qq

)
=
(−D,N

Qq

)
×
∏

q′∈QD
q′ �=q

(
χq′(−1)Dq′ , N

Qq

)
.

In this equation, the second factor is trivial since both χq′(−1)Dq′ and N are units in Qq, and
χq′(−1)Dq′ ≡ 1mod 4 if q = 2.

When Q is a subset of QD, we set

χQ =
∏
q∈Q

χq, χ′
Q =

∏
q∈QD
q /∈Q

χq, DQ =
∏
q∈Q

Dq.

When Q = {q}, χ′
{q} is simply denoted by χ′

q.

As in § 13, let c be an integral ideal of K such that C = N(c) is prime to D. Put ε(Q) = χQ(C).
Then we have

ε(∅) = ε(QD) = 1,
ε(Q)ε(Q′) = ε(Q ∪Q′)ε(Q ∩Q′),

for any Q,Q′ ⊂ QD. By genus theory (see e.g. Hecke [Hec81, § 48]), any function ε : {Q | Q ⊂
QD} → {±1} with these properties is obtained in this way. Moreover, two integral ideals c and c′

give the same function ε if and only if c and c′ belong to the same genus. If Q = {q}, we denote
ε({q}) simply by ε(q).

We fix a primitive form f =
∑
af (N)qN ∈ S2k+1(Γ0(D), χ). Recall that, for each subsetQ ⊂ QD,

there exists a primitive form

fQ =
∑
N>0

b(N)qN ∈ S2k+1(Γ0(D), χ)

such that (see Miyake [Miy89, Theorem 4.6.16]){
b(p) = χQ(p)af (p) if p /∈ Q,

b(q) = χ′
Q(q)af (q) if q ∈ Q.

Note that (fQ)Q′ = fQ′′ where Q′′ = (Q ∪Q′) − (Q ∩Q′).

Definition 15.2. If f ∈ S2k+1(Γ0(D), χ) is a primitive form, we put

f ε∗ =
∑
Q⊂QD

ε(Q)χQ(−1)nfQ.

When ε = 1, f ε∗ is simply denoted by f∗.

Obviously, (fQ)ε∗ = ε(Q)χQ(−1)nf ε∗.

Definition 15.3. Following Krieg [Kri91], we define

aεD(N) =
∏
q∈QD

(1 + ε(q)χq((−1)nN)) =
∏
q∈QD
q�N

(1 + χ
q
((−1)nCN )).

Here, ε(q) = ε({q}). When ε = 1, aεD(N) is simply denoted by aD(N). Note that aεD(N) = aD(CN).
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Lemma 15.4. The Nth Fourier coefficient of fQ is equal to

afQ
(N) = af (N ′N ′

Q)af (NQ)
∏
q∈Q

χ
q
(N),

where

N ′ =
∏
p�D

pordpN , N ′
Q =

∏
q∈QD
q /∈Q

qordqN , NQ =
∏
q∈Q

qordqN .

Proof. It is enough to consider the case when Q = {q} and q|N . In this case, we have

afQ
(N) = afQ

(N ′)afQ
(N ′

Q)afQ
(NQ)

= af (N ′N ′
Q)af (NQ)χq(N ′N ′

Q)χ′
q(NQ).

By Lemma 15.1, we have χq(N ′N ′
Q) = χ

q
(N ′N ′

Q). We shall show that

χ′
q(NQ) =

(−D,NQ

Qq

)
= χ

q
(NQ).

It is enough to show that χ′
q(q) = χ

q
(q), since NQ is a power of q. By Lemma 15.1, we have

χ′
q(q) =

∏
q′∈QD
q′ �=q

χq′(q) =
∏

q′∈QD
q′ �=q

(−D, q
Qq′

)
.

By the Hilbert product formula,

χ′
q(q)χq(q) =

(−D, q
R

) ∏
p/∈QD

(−D, q
Qp

)
.

The first factor on the right-hand side is 1 since q > 0. The second factor is 1 because both −D and
q are units in Qp, and −D ≡ 1mod 4 if 2 /∈ QD. Hence the lemma is proved.

Corollary 15.5. The Nth Fourier coefficient of f ε∗ is given by

afε∗(N) = af (N ′)
∏
q|D

(af (Nq) + χ
q
((−1)nCN)af (Nq))

= aεD(N)af (N ′)
∏

q|(D,N)

(af (Nq) + χ
q
((−1)nCN)af (Nq)).

Here Nq = N{q}. In particular, we have afε∗(N) = aεD(N)af (N) for (N,D) = 1. Note that f ε∗ is
characterized as the unique element of S2k+1(Γ0(D), χ) with this property.

Corollary 15.6. The form f ε∗(τ) = 0 if and only if f(τ) comes from a Hecke character of
Q(
√
χQ(−1)DQ), for some Q ⊂ QD, ε(Q)χQ(−1)n = −1. In particular, f∗ = 0 if and only if n is

odd and f(τ) comes from a Hecke character Q(
√−DQ) for some Q ⊂ QD, χQ(−1) = −1.

Proof. If f(τ) comes from a Hecke character of Q(
√
χQ(−1)DQ) with ε(Q)χQ(−1)n = −1, then

obviously f ε∗ = 0, since f ε∗ = (fQ)ε∗ = −f ε∗. Conversely, assume that f ε∗ =
∑

Q⊂QD
ε(Q)χQ(−1)n

fQ = 0. As the primitive forms are linearly independent, there exists a subset Q ⊂ QD such that
fQ = f and ε(Q)χQ(−1)n = −1. It follows that f comes from a Hecke character of Q(

√
χQ(−1)DQ)

by Labesse and Langlands [LL79].

Definition 15.7. For each primitive form f ∈ S2k+1(Γ0(D), χ), put

ηεn(f) =
∑
Q⊂QD
fQ=f

ε(Q)χQ(−1)n.
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Lemma 15.8. If k > 0, then 0 � ηεn(f) � 2. When k = 0, we have 0 � ηεn(f) � 4.

Proof. That ηεn(f) � 4 follows from Labesse and Langlands [LL79]. To prove the first part, it is
enough to prove that, if k > 0, then there is no non-empty Q ⊂ QD such that f = fQ, χQ(−1) = 1.
Assume that f = fQ, Q �= ∅, χQ(−1) = 1. Let KQ be the quadratic field corresponding to χQ.
Since χQ(−1) = 1, the quadratic field KQ is real. Then f(τ) comes from a Hecke character of KQ.
Comparing the gamma factor, it is impossible if k > 0.

Lemma 15.9. We have f ε∗ = 0 if and only if ηεn(f) = 0.

Proof. This lemma follows from Corollary 15.6.

Recall that the Petersson inner product of cusp forms f1, f2 ∈ Sl(Γ′) for a congruence subgroup
Γ′ ⊂ SL2(Z) is given by

〈f1, f2〉 = [SL2(Z) : Γ′ · {±1}]−1

∫
Γ′\H1

f1(τ)f2(τ)yl−2 dx dy.

The complete adjoint L-function Λ(s, f,Ad) is defined by

Λ(s, f,Ad) = ΓR(s+ 1)ΓC(s+ 2k)L(s, f,Ad),

ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s),

L(s, f,Ad) =
∏
p�D

[(1 − αpβ
−1
p p−s)(1 − p−s)(1 − α−1

p βpp
−s)]−1

∏
q|D

(1 − q−s)−1.

The following lemma is well known (cf. e.g. Hida [Hid00, Theorem 5.15] for k > 0).

Lemma 15.10. Let f ∈ S2k+1(Γ0(D), χ) be a primitive form. Then we have

〈f, f〉 = 2−2k−1Λ(1, f,Ad)
∏
q|D

(1 + q−1)−1,

In particular, we have 〈f, f〉 = 〈fQ, fQ〉 for any Q ⊂ QD.

Lemma 15.11. Put t = �QD. Then we have

〈f∗, f∗〉 = 2tηn(f)〈f, f〉.
Proof. We may assume that f∗ �= 0. Let {Q1, Q2, . . . , Ql} be a maximal subset such that {fQ1 ,

fQ2, . . . , fQl
} are linearly independent. Then ηn(f)l = 2t and f∗ = ηn(f)

∑l
i=1 fQi . Note that

〈fQi , fQj〉 = 0 for 1 � i, j � l, i �= j,

since fQ1 and fQ2 are different primitive forms. Therefore we have 〈f∗, f∗〉 = lηn(f)2〈f, f〉 =
2tηn(f)〈f, f〉.
Proposition 15.12. The form f∗(τ) is identically zero if and only if n is odd and f(τ) comes from
a Hecke character of some imaginary quadratic field.

Proof. It is enough to prove that f comes from a Hecke character of some quadratic field K ′,
then K ′ = Q(

√
χQ(−1)DQ) for some Q ⊂ QD. Let ρ =

⊗
v ρv be the Hecke character of A×/Q×

corresponding to K ′/Q. Then Ĩ(1 � χ
p
, s0,p) is isomorphic to Ĩ(ρp � ρpχp, s0,p) for each prime p.

Comparing the conductor, one can shows that either ρp or ρpχ−1
p

is unramified. It follows that

K ′K/K is unramified, and so K ′ = Q(
√
χQ(−1)DQ) for some Q ⊂ QD by genus theory.

Lemma 15.13. Let f0(τ) be an element of S2k+1(Γ0(D), χ). Assume that the Nth Fourier coefficient
af0(N) is zero whenever (N,D) = 1. Then f0 = 0.
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Proof. This is a special case of Miyake [Miy89, Theorem 4.6.8].

Lemma 15.14. Let N be a rational integer. Then there exists an integer y ∈ c−1O� such that
CDyȳ ≡ (−1)nN modD if and only if aεD(N) �= 0.

Proof. As remarked in Krieg [Kri91, p. 670], we have

aD(N) = �{u ∈ O�/O | Duū ≡ (−1)nN mod D}.
Choose α ∈ c such that (α,D) = 1. Put c′ = (α)c−1, C ′ = N(c′). Then c and c′ are integral ideals
that belong to the same genus. Note that χQ(N(α)) = χQ(C)χQ(C ′) = 1 for any Q ⊂ QD. The map
y �→ u = αy induces an isomorphism c−1O�/c−1 
 O�/O. Then we have

aεD(N) = aD(C ′N) = �{u ∈ O�/O | Duū ≡ (−1)nC ′N}
= �{y ∈ c−1O�/c−1 | N(α)Dyȳ ≡ (−1)nC ′N}
= �{y ∈ c−1O�/c−1 | CDyȳ ≡ (−1)nN}.

Hence the lemma is proved.

Lemma 15.15. Let N be a positive integer. Then there exists an element H ∈ Λc2n(O)+ such that
C|γ(H)| = N if and only if aεD(N) �= 0.

Proof. Assume that aεD(N) �= 0. Then, by Lemmas 13.9 and 15.14, there exists an element H ∈
Λc2n(O)+ such that C|γ(H)| = N . Conversely, assume that N = C|γ(H)| for H ∈ Λc2n(O)+. It is
enough to prove that χ

q
(N) = χ

q
((−1)nC) for any q|D, q � N . Since γ(H) = (−1)nNC−1 ∈ Z×

q , we

have F̃q(H,X) = 1. Then χ
q
(γ(H)) = 1 by Lemma 2.2. Hence the lemma is proved.

Definition 15.16. Let Sε∗2k+1(Γ0(D), χ) be the space of cusp forms

f0(τ) =
∑
N>0

af0(N)qN ∈ S2k+1(Γ0(D), χ)

whose Nth Fourier coefficient is zero whenever aεD(N) = 0. If ε = 1, then Sε∗2k+1(Γ0(D), χ) is simply
denoted by S∗

2k+1(Γ0(D), χ).

Let {fi}i∈I be the set of primitive forms in S2k+1(Γ0(D), χ). By Corollary 15.5, f ε∗i ∈ Sε∗2k+1

(Γ0(D), χ). The following proposition is essentially Krieg [Kri91, p. 671, Proposition].

Proposition 15.17. The space Sε∗2k+1(Γ0(D), χ) is spanned by {f ε∗i }i∈I .
Proof. Let {fi}i∈I be the set of primitive forms of S2k+1(Γ0(D), χ). Then it is well known that
{fi}i∈I is a basis of S2k+1(Γ0(D), χ). Let g be an element of Sε∗2k+1(Γ0(D), χ). Then g can be
uniquely expressed as a linear combination g =

∑
i∈I ai · fi. For Q ⊂ QD, set g′ =

∑
i∈I ai · (fi)Q.

If (DQ, N) = 1, then the Nth Fourier coefficient of g − ε(Q)χQ(−1)ng′ vanishes. By Lemma 15.13,
we have g = ε(Q)χQ(−1)ng′. Hence the lemma is proved.

Let f ∈ S2k+1(Γ0(D), χ) be a primitive form. In terms of Satake parameters, afε∗(N) can be
expressed as follows. Put

Ψε
p(N ;X) =


Xep,N+1 − (ξpX−1)ep,N+1

X − ξpX−1
p �∈ QD,

Xep,N + χ
p
((−1)nCN)X−ep,N p ∈ QD,

where ep,N = ordpN and ξp = χ(p). Put

Ψε(N ; X) =
∏
p|DN

Ψε
p(N ;Xp) ∈ R.
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Then we have afε∗(N) = NkΨε(N ; {αp}) by Corollary 15.5. Note that Ψε(N ; X) = 0 if and only if
aεD(N) = 0.

Fix H ∈ Λc2n(O)+. Then F̃p(t̄pHtp;X) belongs to the Q-vector space

V = {Φ ∈ X−ordpCγ(H)Q[X2] | Φ(X−1) = χ
p
(Cγ(H))Φ(X)}.

We put

Bp(H) =
{
pr
∣∣∣∣ 0 � 2r � ordp(Cγ(H)),aεD

(
C|γ(H)|
p2r

)
�= 0
}
.

Since {
Ψε
p

(
C|γ(H)|
p2r

;X
) ∣∣∣∣ pr ∈ Bp(H)

}
is a basis of V,

Fp(t̄pHtp;X) =
∑

pr∈Bp(H)

φp(pr,H)Ψε
p

(
C|γ(H)|
p2r

;X
)

for some φp(pr,H) ∈ Q. Note that

φp(1,H) =

{
1
2 p ∈ QD, p � Cγ(H),
1 otherwise.

The set B(H) =
∏
p Bp(H) can be identified with the set of positive integers a such that a2|Cγ(H)

and aεD(C|γ(H)|/a2) �= 0. For each a =
∏
p|a p

rp ∈ B(H), we put φ(a,H) =
∏
p φp(p

rp ,H). Then we
have ∏

p

F̃p(t̄pHtp;Xp) =
∏
p

[ ∑
pr∈Bp(H)

φp(pr,H)Ψε
p

(
C|γ(H)|
p2r

;Xp

)]

=
∑

a∈B(H)

φ(a,H)Ψε

(
C|γ(H)|

a2
; X
)
.

Here we have used the fact that Ψε
p(a2N ;X) = Ψε

p(N ;X) for p � a. Note that 1 ∈ B(H) by
Lemma 15.15. One can easily see that φ(1,H) = aεD(C|γ(H)|)−1 �= 0.

For each f0(τ) =
∑

N>0 af0(N)qN ∈ Sε∗2k+1(Γ0(D), χ), we put

ι(f0)(Z) =
∑

H∈Λc2n(O)+

∑
a∈B(H)

a2kφ(a,H)af0

(
C|γ(H)|

a2

)
e(HZ ).

If f ∈ S2k+1(Γ0(D), χ) is a primitive form, then

ι(f ε∗) = Ck+nLift(2n)
c (f) ∈ S2k+2n(Γ

(2n)
K [c],det−k−n).

Since {f ε∗i }i∈I spans Sε∗2k+1(Γ0(D), χ), the image of ι is contained in S2k+2n(Γ
(2n)
K [c],det−k−n).

Theorem 15.18. There exists an injective linear map

ι : Sε∗2k+1(Γ0(D), χ) → S2k+2n(Γ
(2n)
K [c],det−k−n)

satisfying the following properties:

(1) for each f0 ∈ Sε∗2k+1(Γ0(D), χ), we have

ι(f0)(Z) =
∑

H∈Λc2n(O)+

∑
a∈B(H)

a2kφ(a,H)af0

(
C|γ(H)|

a2

)
e(HZ ),
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where

B(H) =
{
a ∈ Z

∣∣∣∣ a > 0, a2|Cγ(H),aD

(
C|γ(H)|

a2

)
�= 0
}

;

(2) if f is a primitive form in S2k+1(Γ0(D),det−k−n), then ι(f ε∗) = Ck+nLift(2n)
c (f).

Proof. We need to prove the injectivity of ι. Assume that ι(f0) = 0 for f0 ∈ Sε∗2k+1(Γ0(D), χ).
We have to show that af0(N) = 0 for aεD(N) �= 0. By Lemma 15.15, there exists an element
HN ∈ Λcm(O)+ such that C|γ(HN )| = N . As in Case O, the HN th Fourier coefficient of ι(f0) is
equal to aεD(N)−1af0(N) + (lower terms). By induction, we have af0(N) = 0.

Corollary 15.19. Let f(τ) ∈ S2k+1(Γ0(D), χ) be a primitive form. Then Liftc(f) = 0 if and only
if f comes from a Hecke character of a field Q(

√
χQ(−1)DQ) such that ε(Q)χQ(−1)n = −1.

Corollary 15.20. Let f(τ) ∈ S2k+1(Γ0(D), χ) be a primitive form. Then the following conditions
are equivalent:

(1) Lift(2n)(f) = 0;
(2) f∗ = 0;
(3) n is odd and f(τ) comes from a Hecke character Q(

√−DQ) for some Q ⊂ QD, χQ(−1) = −1;
(4) n is odd and f comes from a Hecke character of some imaginary quadratic field.

Corollary 15.21. Let f(τ) ∈ S2k+1(Γ0(D), χ) be a primitive form. Then Lift (2n)(f) ∈ S2k+2n

(G(Q)\G(A),det−k−n) is identically zero if and only if n is odd and f comes from a Hecke character
of K.

Proof. Note that Lift(2n)(f) = 0 if and only if f ε∗ = 0 for any ε. Assume that f ε∗ = 0 for any ε.
Then n is odd, since otherwise f∗ �= 0. If n is odd, we have

f − fQD
= 21−t∑

ε

f ε∗ = 0,

where t = �QD. Conversely, if n is odd and f = fQD
, then f ε∗ = 0 for any ε. Hence the corollary is

proved.

16. An example: the case m = 2

The case m = 2 was first considered by Kojima [Koj82] for K = Q(
√−1) and later by

Gritsenko [Gri90]. Krieg [Kri91] and Sugano [Sug85] investigated the Maass spaces for arbitrary
imaginary quadratic field. In this case, Lift(2)(f) is called the Maass lift of f . Recently, Klosin
[Klo07b] defined the Maass space for U(2, 2) in the adelic setting, and constructed the extension of
Lift(2)(f) under the assumption that the class number hK is odd. As we described in § 15, there is
an injective linear map S∗

2k+1(Γ0(D), χ)hK → S2k+2(G(Q)\G(A),det−k−1) in this case.
We do not give a detailed proof for the results in this section, as most of the results are not new,

and are contained in the references above (at least when c = O).
Let c be an integral ideal of K such that C = N(c) is prime to D.

Definition 16.1. The function

F (Z) =
∑

H∈Λc2(O)

AF (H)e(HZ ) ∈M2k+2(Γ
(2)
K [c],det−k−1)

satisfies the Maass relation if and only if there is a function

α∗
F : Z�0 → C
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such that

AF (H) =
∑
d|ε(H)

d2k+1α∗
F

(
C|γ(H)|

d2

)
for H �= 0.

Here
ε(H) = max{q ∈ Z>0 | q−1H ∈ Λc2(O)}.

Note that the values α∗
F (N) for aεD(N) = 0 play no role. We denote the space of elements of

M2k+2(Γ
(2)
K ,det−k−1) satisfying the Maass relation by MMaass

2k+2 (Γ(2)
K ,det−k−1). We set SMaass

2k+2

(Γ(2)
K ,det−k−1) = MMaass

2k+2 (Γ(2)
K ,det−k−1) ∩ S2k+2(Γ

(2)
K ,det−k−1).

It is known that the normalized hermitian Eisenstein series

F = E(2)
2k+2(Z) =

B2k+2B2k+1,χ

8(k + 1)(2k + 1)
E

(2)
2k+2(Z)

satisfies the Maass relation for c = O. The function α∗
F is given by

α∗
F (N) =


0 aD(N) = 0,

−B2k+1,χ/(4k + 2) N = 0,

aD(N)−1
∑
d|N

∑
Q⊂QD

χQ(−N/d)χ′
Q(d)d2k N > 0, aD(N) �= 0

(cf. Krieg [Kri91, p. 679]; Krieg [Kri91] assumed wK |(2k + 2), but the modification is easy). Using
these results, one can calculate the Laurent polynomial F̃p(H;X) as follows:

F̃p(H;X) =



b∑
i=0

pi
a−2i∑
j=0

χ
p
(p)jXa−2i−2j if p � D,

b∑
i=0

pi(Xa−2i + χ
p
(γ(H))X−a+2i) if p|D, 2b < a,

pb +
b−1∑
i=0

pi(Xa−2i +X−a+2i) if p|D, 2b = a.

Here a = ordpγ(H), and b = ordpε(H). When the class number of K is 1, this has already been
essentially calculated by Nagaoka [Nag92, Theorem 1.3.1]. Using this formula, we have∏

p

F̃p(t̄pHtp;Xp) =
∑

d∈ε(H)

daεD

(
C|γ(H)|

d2

)−1

Ψε

(
C|γ(H)|

d2
; X
)

for H ∈ Λc2(O)+. It follows that the map

ι : Sε∗2k+1(Γ0(D), χ) → S2k+2(Γ
(2)
K [c],det−k−1)

is given by

ι(f)(Z) =
∑

H∈Λ2(O)+

∑
d∈ε(H)

d2k+1aεD

(
C|γ(H)|

a2

)−1

af

(
C|γ(H)|

a2

)
e(HZ ).

In particular, the image of ι is contained in SMaass
2k+2(Γ(2)

K [c],det−k−1).

For F ∈ S2k+2(Γ
(2)
K [c],det−k−1), consider the first Fourier–Jacobi coefficient

φ1(τ, z1, z2) =
∑

l∈C−1Z
t∈c−1O�

AF

((
1 t
t̄ l

))
e(lτ + t̄z1 + tz2).
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Then there exist functions f[u](τ) (u ∈ c−1O�/c−1) such that

φ1(τ, z1, z2) =
∑

u∈c−1O�/c−1

θ[u](τ, z1, z2)f[u](τ/C),

where

θ[u](τ, z1, z2) =
∑

a∈u+c−1

e(aāτ + āz1 + az2).

Then one can show that:

(1) f[u] ∈ S2k+1(Γ(D)), where Γ(D) is the principal congruence subgroup of SL2(Z) modulo D;

(2) f[u](τ + 1) = e(−Cuū)f[u];

(3) f[u]|2k+1

[
0 −1
1 0

]
= −(1/

√−D)
∑

v∈c−1O�/c−1 e(C(uv̄ + vū))f[v];

(4) f[0] ∈ S2k+1(Γ0(D), χ).

If c = O, this is proved in Krieg [Kri91, p. 669]. One can easily treat the general case by using the
theta transformation formula for a hermitian theta function (see Shintani [Shi75], Shimura [Shi97,
A7]). Set

Ω(F )(τ) =
∑

u∈c−1O�/c−1

f[u](Dτ).

Then we have Ω(F ) ∈ Sε∗2k+1(Γ0(D), χ). If F ∈ SMaass
2k+2(Γ(2)

K [c],det−k−1), then we have

f[u](τ) =
∑

N≡−CDuū mod D

α∗
F (N)e(Nτ/D),

Ω(F )(τ) =
∑
N>0

aεD(N)α∗
F (N)e(Nτ).

It follows that ι gives the isomorphism between Sε∗2k+1(Γ0(D), χ) and SMaass
2k+2(Γ(2)

K [c],det−k−1).

17. Petersson norms of Lift(m)(f)

We recall the definition of the Petersson inner product for hermitian modular forms. For F1, F2 ∈
Sl(Γ

(m)
K , σ), the Pertersson inner product 〈F1, F2〉 is defined by

〈F1, F2〉 =
∫

Γ
(m)
K \Hm

F1(Z)F2(Z)(detY )l−2m dX dY,

where X = (Z + tZ̄)/2, and Y = (Z − tZ̄)/(2
√−1). The measure dX on the space of hermitian

matrices is defined by dX =
∏
i�j dX

(r)
ij

∏
i<j dX

(i)
ij , whereX = X(r)+

√−1X(i), and X(r)
ij ,X

(i)
ij ∈ R.

In this section, we investigate the Petersson norm of the lifts of f . For simplicity, we only consider
the case c = O.

Let f ∈ S2k+1(Γ0(D), χ) be a primitive form. Put F = Lift(2)(f) ∈ S2k+2(Γ
(2)
K ,det−k−1). As we

have seen in § 16, the first Fourier–Jacobi coefficient φ1 of F has the decomposition

φ1(τ, z1, z2) =
∑

u∈O�/O
f[u](τ)θ[u](τ, z1, z2),

θ[u](τ, z1, z2) =
∑

a≡umodO
e(aāτ + āz1 + az 2),
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where

f[u](τ) =
∑

N≡−DuūmodD

α∗
F (N)e(Nτ/D)

for each u ∈ O�/O. Note that f∗(τ) =
∑

u∈O�/O f[u](Dτ).
The Petersson inner product 〈φ1, φ1〉 is defined by∫

J\(h1×C2)
φ1(τ, z1, z2)φ1(τ, z1, z2)yl−4e−π|z1−z̄2|

2/y dt1 dw1 dt2 dw2 dx dy.

Here, J = J2,1(O), τ = x+
√−1 y, z1 = t1 +

√−1w1, and z2 = t2 +
√−1w2.

Proposition 17.1. We have

〈φ1, φ1〉 =
√
D

4

∑
u∈O�/O

〈f[u], f[u]〉.

Proof (cf. [EZ85, Theorem 5.3]). Since the non-trivial element of the center of SL2(Z) acts on C2/Lτ
by (z1, z2) �→ (−z1,−z2), we have

J\(h1 × C2) = {(τ, z1, z2) | τ ∈ SL2(Z)\h1, (z1, z2) ∈ (C2/Lτ )/{±1}}.
It follows that 〈φ1, φ1〉 is equal to

1
2
[SL2(Z) : Γ(D){±1}]−1

∫
τ∈(Γ(D)\h1)

∑
u,v∈O�/O

f[u](τ)f[v](τ)y
2k−2

×
∫
C2/Lτ

θ[u](τ, z1, z2)θ[v](τ, z1, z2)e
−πy|z1−z̄2|2 dt1 dw1 dt2 dw2 dx dy,

where Lτ = {(λτ + µ, λ̄τ + µ̄) | λ, µ ∈ O}. It is easy to show that∫
C2/Lτ

θ[u](τ, z1, z2)θ[v](τ, z1, z2)e
−π|z1−z̄2|2/y dt1 dw1 dt2 dw2 = δuv

√
D

2
y.

Hence the proposition is proved.

Lemma 17.2. Set Nu = −Duū ∈ Z/DZ for each u ∈ O�/O. Then we have

〈f[u], f[u]〉 = aD(Nu)−1〈f[0], f[0]〉.
Proof. Let

∑
u∈O�/O Cf[u] be the space generated by {f[u] | u ∈ O�/O}. It is well known that

the space
∑

u∈O�/O Cf[u] can be naturally identified with a subrepresentation of the (finite) Weil

representation (cf. Shintani [Shi75]). Let C[O�/O] =
⊕

q|D C[O�
q/Oq] be the space of functions on

O�/O =
⊕

q|DO�
q/Oq, where O�

q = O� ⊗O Oq. Let ϕu ∈ C[O�/O] be the characteristic function
of u ∈ O�/O. Recall that there exists a representation, called the (finite) Weil representation ω of
SL2(Z/DZ) on C[O�/O], that is characterized by:

(i) ω
(
1 1
0 1

)
ϕu = e(−uū)ϕu;

(ii) ω
(
0 −1
1 0

)
ϕu = −(1/

√−D)
∑

v∈O�/O e(uv̄ + vū)ϕv .

The Weil representation ω is a unitary representation with respect to the natural inner product
on C[O�/O] = L2(O�/O). For each prime q ∈ QD, let Uq be the kernel of the norm map NKq/Qq

:
K×
q → Q×

q . Note that the group U =
∏
q|D Uq acts on C[O�/O]. This action commutes with the

action ω of SL2(Z/DZ). We denote by C[O�/O]U the space of U -invariants in C[O�/O]. This is an
irreducible subrepresentation of ω. Then the space

∑
u∈O�/O Cf[u] is isomorphic to C[O�/O]U as a
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representation of SL2(Z/DZ). Put

ϕ̃u = aD(Nu)−1
∑

v∈O�/O
Nv=Nu

ϕv .

Then f[u] corresponds to ϕ̃u under the isomorphism. Clearly we have aD(Nu)‖ϕ̃u‖2 = ‖ϕ̃0‖2, since
aD(Nu) = #{v ∈ O�/O | Nv = Nu}.
Proposition 17.3. We have∑

u∈O�/O
〈f[u], f[u]〉 = D2k+1

(∏
q|D

1
2(1 + q−1)

)
〈f∗, f∗〉.

Proof. By Lemma 17.2, we have∑
u∈O�/O

〈f[u], f[u]〉 =
( ∑
u∈O�/O

aD(Nu)−1

)
〈f[0], f[0]〉

= �{N mod D | aD(N) �= 0} · 〈f[0], f[0]〉

= D

(∏
q|D

1
2 (1 + q−1)

)
〈f[0], f[0]〉.

Since ∑
u∈O�/O

f[u] = −√−Df[0]|2k+1

[
0 −1
1 0

]
,

we have

D〈f[0], f[0]〉 =
〈 ∑
u∈O�/O

f[u],
∑

u∈O�/O
f[u]

〉
.

Since f∗(τ) =
∑

u∈O�/O f[u](Dτ), the proposition follows.

By Lemmas 15.10 and 15.11, and Propositions 17.1 and 17.3, we have

〈φ1, φ1〉 = 2−2k−3D2k+(3/2)η1(f)Λ(1, f,Ad).

Sugano [Sug95, Corollary 8.3] has proved that

〈F,F 〉 = 2−2k−5D3/2π−2ξ(2)Λ(2, f,Ad, χ)〈φ1, φ1〉,
where

ξ(s) = ΓR(s)ζ(s),
Λ(s, f,Ad, χ) = ΓR(s)ΓC(s+ 2k)L(s, f,Ad, χ),

L(s, f,Ad, χ) =
∏
p�D

[(1 − α2
pp

−s)(1 − χ(p)p−s)(1 − β2
pp

−s)]−1

×
∏
q|D

[(1 − α2
qq

−s)(1 − α−2
q q−s)]−1.

Note that Sugano has formulated his theorems in terms of orthogonal groups. In particular, the
normalization of the inner products is different from our normalization. By combining our calculation
and Sugano’s result, we obtain the following proposition.

Proposition 17.4. Let f ∈ S2k+1(Γ0(D), χ) be a primitive form, and put F = Lift(2)(f). Then we
have

〈F,F 〉 = η1(f)2−4k−8D2k+3π−2ξ(2)Λ(1, f,Ad)Λ(2, f,Ad, χ).
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Proposition 17.4 can be proved by using the method of [RS91]. As in Ikeda [Ike06], we can give
a conjecture on the Petersson norm of Lift(m)(f). We define the modified complete L-functions as
follows. Put

Λ̃(s, χi) =

{
ΓC(s)ζ(s) if i is even,
ΓC(s)L(s, χ) if i is odd.

For a normalized eigenform f ∈ S2k(SL2(Z)), we put

Λ̃(s, f,Ad, χi) = ΓC(s)ΓC(s+ 2k − 1) ×
{
L(s, f,Ad) if i is even,
L(s, f,Ad, χ) if i is odd,

L(s, f,Ad) =
∏
p

[(1 − α2
pp

−s)(1 − p−s)(1 − β2
pp

−s)]−1,

L(s, f,Ad, χ) =
∏
p

[(1 − α2
pχ(p)p−s)(1 − χ(p)p−s)(1 − β2

pχ(p)p−s)]−1.

Similarly, for a primitive form f ∈ S2k+1(Γ0(D), χ), we put

Λ̃(s, f,Ad, χi) = ΓC(s)ΓC(s+ 2k) ×
{
L(s, f,Ad) if i is even,
L(s, f,Ad, χ) if i is odd.

Conjecture 17.5. Let f ∈ S2k(SL2(Z)) be a normalized Hecke eigenform. Then the Petersson
norm of F = Lift(2n+1)(f) is given by

〈F,F 〉 = 2αDβΛ̃(1, f,Ad)
2n+1∏
i=2

Λ̃(i, χi)Λ̃(i, f,Ad, χi−1)

for some integers α and β depending only on n and k.

Conjecture 17.6. Let f ∈ S2k+1(Γ0(D), χ) be a primitive form. Then the Petersson norm of
F = Lift(2n)(f) is given by

〈F,F 〉 = ηn(f)2γDδΛ̃(1, f,Ad)
2n∏
i=2

Λ̃(i, χi)Λ̃(i, f,Ad, χi−1)

for some integers γ and δ depending only on n and k. For the definition of ηn(f), see Definition 15.7.

18. An interpretation in terms of automorphic representations

Let f be as in Theorem 5.1 or as in Theorem 5.2. Now we consider the L-function of Lift(m)(f).
Recall that the L-group of G = U(m,m) is described as

LG = GL2m(C) �WQ,

where WQ is the Weil group of Q. The action of WQ on GL2m(C) factors through WQ → Gal(K/Q)
and the non-trivial element of Gal(K/Q) acts by g �→ g∗, where

g∗ =
(

0 −w−1
1

w1 0

)
· tg−1 ·

(
0 w−1

1

−w1 0

)
,

w1 =


(−1)m−1

. . .

−1
1

 ∈ GLm(C).
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The homomorphism st : LG → GL4m(C) is defined by

g � u �→



(
g 0
0 g∗

)
if u ∈WK ,(

0 g

g∗ 0

)
otherwise.

Here, WK is the Weil group of K. Let L(s, f, χ) be the twist of L(s, f) by χ. In terms of the Euler
product, L(s, f, χ) is defined by

L(s, f, χ) =
∏
p�D

(1 − αpχ(p)pk−s)−1(1 − βpχ(p)pk−s)−1
∏
q|D

(1 − α−1
p pk−s)−1

if m is even, and by

L(s, f, χ) =
∏
p�D

(1 − αpχ(p)pk−s)−1(1 − βpχ(p)pk−s)−1

if m is odd. As in [Ike01, § 11], Theorem 13.6 implies the following theorem.

Theorem 18.1. Let m, n, and f be as in Theorem 5.1 or as in Theorem 5.2. Assume that
Lift(m)(f) �= 0. Let L(s,Lift (m)(f), st) be the L-function of Lift (m)(f) associated to st : LG →
GL4m(C). Then up to bad Euler factors, L(s,Lift(m)(f), st) is equal to

m∏
i=1

L(s + k + n− i+ 1
2 , f)L(s+ k + n− i+ 1

2 , f, χ).

In terms of the Arthur conjecture, Theorem 18.1 can be interpreted as follows. From now on, we
assume the Arthur conjecture. Let LQ be the hypothetical Langlands group for Q. The canonical
homomorphism LQ →WQ is denoted by pr. Let τ be an irreducible cuspidal automorphic represen-
tation of GL2(AQ) generated by f . Note that the central character ωτ is equal to χm−1. We denote
the Langlands parameter of τ by ρτ : LQ → GL2(C). We normalize the irreducible representation
Symm−1 : SL2(C) → SLm(C) so that

t Symm−1(x)−1 = w1 Symm−1(x)w−1
1 , x ∈ SL2(C).

We put

ρ(m)
τ (u) =

(
ωτ (u)a · 1m b · 1m
ωτ (u)c · 1m d · 1m

)
� pr(u)

for u ∈ LQ, (
a b
c d

)
= ρτ (u),

and put

ρ(m)
τ (x) =

(
Symm−1(x) 0

0 Symm−1(x)

)
� 1

for x ∈ SL2(C). Then we get a homomorphism ρ
(m)
τ : LQ× SL2(C) → LG. One can easily show that

L(s, st ◦ ρ(m)
τ ) = L(s,Lift (m)(f), st). Thus the Arthur parameter of Lift(m)(f) should be ρ(m)

τ .
In Case O, τ can be considered as an automorphic representation of PGL2(A). The automor-

phic representation generated by Lift (m)(f) can be considered as a functorial lift of τ by the L-
homomorphism

LPGL2 × SL2(C) = SL2(C) ×WQ × SL2(C) → LG
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given by (
a b
c d

)
× u× x �→

(
a · Symm−1(x) b · Symm−1(x)
c · Symm−1(x) d · Symm−1(x)

)
� u.

In Case E, we take an auxiliary Hecke character χ̂ : A×
K/K

× → C× such that χ̂|A×
Q

= χ. Consider

the algebraic groups G′ and Z defined over Q such that

G′(Q) = {(x, g) ∈ K× × GL2(Q) | NK/Q(x) det g = 1},
Z(Q) = {(z, z−1) ∈ G′ | z ∈ Q×} 
 Q×.

Then there is an exact sequence

1 → Z → G′ → U(1, 1) → 1.

Here, the map G′ → U(1, 1) is given by (x, g) �→ xg. Then χ̂−1 � τ induces an automorphic
representation τ̂ of U(1, 1)(A). Fix an element u0 ∈ WQ, u0 /∈ WK . Then one can define an L-
homomorphism

LU(1, 1) � SL2(C) = GL2(C) �WQ × SL2(C) → LG
by (

a b
c d

)
�→
(
a · 1m b · 1m
c · 1m d · 1m

)
� 1,

(
a b
c d

)
∈ GL2(C),

u �→ χ̂(u) · 12m � u, u ∈WK ,

u0 �→
(−1m 0

0 1m

)
� u0,

x �→
(

Symm−1(x) 0
0 Symm−1(x)

)
� 1, x ∈ SL2(C).

The automorphic representation generated by Lift(m)(f) can be considered as a functorial lift of τ̂
by this L-homomorphism.

We recall Arthur’s conjectural multiplicity formula [Art89]. Let ψ : LQ × SL2(C) → LG =
Ĝ � WQ be an A-parameter for a quasi-split reductive algebraic group G. Let Π(ψ) and Πv(ψ)
be the global and local A-packet for ψ. Set S = CentĜ(ψ)/Cent(Ĝ)WQ . The group S is closely
related to the internal structure of the A-packet. Arthur conjectured that there exist a pairing
〈s, πv〉v : S × Πv(ψ) → C and a ‘sign character’ εψ(s) ∈ {±1} for each s ∈ S and πv ∈ Πv(ψ). (In
fact, Arthur treated these objects locally.) For each π =

⊗′
vπv, πv ∈ Πv(ψ), set

mψ(π) =
1
�S
∑
s∈S

εψ(s)
∏
v

〈s, πv〉v .

Then Arthur’s conjectural multiplicity formula says that the multiplicity of π in the space of square-
integrable automorphic forms on G(A) is equal to

∑
π∈Π(ψ)mψ(π).

Now we consider the case ψ = ρ
(m)
τ . In this case, the sign character εψ(s) must be trivial. One

can easily show that

S 

{
{±1} if τ comes from a Hecke character of K,
{1} otherwise.

Let π =
⊗

v πv be an element of the conjectural A-packet Π(ρ(m)
τ ). If S = {1}, then the Arthur con-

jectural multiplicity formula suggests that any element of the global A-packet should be
automorphic. In particular, Corollary 14.2 is compatible with the Arthur conjectural multiplicity
formula.
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Now assume that S 
 {±1}. Note that m must be even, since a normalized Hecke eigenform of
S2k(SL2(Z)) does not come from a Hecke character of a quadratic field. Let s ∈ S be the non-trivial
element.

For each prime p, τp is a principal series induced from(
x ∗
0 y

)
�→ µp(x)νp(y).

Here, µp and νp are characters of Qp such that µp(x) = α
ordpx
p and µpνp = χ

p
. The local A-packet

Πp(ρ
(m)
τp ) should consist of the irreducible components of the degenerate principal series induced

from the character

(µp ◦ NKp/Qp
◦ det) : P (Qp) → C×.

Here, P is the Siegel parabolic subgroup of G. If πp ∈ Πp(ρ
(m)
τp ) has a vector fixed by the maximal

compact subgroup G(Qp) ∩ GL2m(Op), then the character 〈∗, πp〉p should be trivial.

At infinite place, the local A-packet should consist of certain cohomologically induced modules
(see Adams and Johnson [AJ87]). If π∞ is the lowest weight module of G(R) generated by Lift (m)(f),
then 〈s, π∞〉∞ = (−1)m/2 by the result of [AJ87]. Therefore Corollary 15.21 is compatible with the
Arthur conjectural multiplicity formula.

Next, we describe the multiplicity formula for G1 = SU(m,m). We consider only Case E. Let ψ
be the Arthur parameter LQ × SL2(C) → LG1 induced from ρ

(m)
τ . In this case, the group S can be

identified with the group

{χQ | fQ = f}.
For a prime p, the local A-packet Πp(ψ) should consist of the irreducible constituents of the degen-
erate principal series induced from the character

(µ2
p ◦ det) : P1(Qp) → C×.

Here, P1 is the Siegel parabolic subgroup of G1. We denote the maximal compact subgroup GL2m(Op)
∩ G1(Qp) by K1,p. If πp is the element of the packet Πp(ψ) with non-trivial K1,p-fixed vector, then
the pairing 〈∗, πp〉p should be trivial. Let c be an integral ideal of K such that C = N(c) is prime to
DK . If πp ∈ Πp(ψ) has a K1[c]p-fixed vector, where K1[c]p is the closure of Γ(m)

K [c]∩G1(Q) in G1(Qp),
then the pairing S × Πp(ρ

(m)
τ ) should be given by

〈χQ, πp〉p = χQ(p)ordpC , p � DK .

For v = ∞, we have 〈χQ, π∞〉∞ = χQ(−1)m/2. Set π =
⊗

p<∞ πp ⊗ π∞, where πp ∈ Πp(ψ) has a
non-trivial K1[c]p-fixed vector. Then mψ(π) = 1 if and only if ε(Q) = χQ(−1)m/2 for any Q ⊂ QD
such that fQ = f . Therefore Corollary 15.19 is compatible with the Arthur conjectural multiplicity
formula.
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