Counting Multiple Cyclic Choices Without Adjacencies

Alice McLeod and William Moser

Abstract

We give a particularly elementary solution to the following well-known problem. What is the number of k-subsets $X \subseteq I_{n}=\{1,2,3, \ldots, n\}$ satisfying "no two elements of X are adjacent in the circular display of I_{n} "? Then we investigate a new generalization (multiple cyclic choices without adjacencies) and apply it to enumerating a class of 3-line latin rectangles.

1 Introduction

For $n \geq 1$ let $I_{n}=\{1,2,3, \ldots, n\}$ and let $\operatorname{circ} I_{n}$ denote the display of I_{n} in a circle, rising order clockwise. When $n \geq 2$ it is clear what is meant by " x is adjacent to y in circ I_{n}." When $n=1$ we have a seemingly peculiar situation: when you look from 1 in either direction (clockwise or counterclockwise) in circ I_{1}, the first element you see is 1 itself, so let us agree that " 1 is adjacent to 1 in circ I_{1} ".

Let $(n \mid k), n \geq 1, k \geq 0$, denote the number of sets $X \subseteq I_{n}$ such that $|X|=k$ and no elements in X are adjacent in $\operatorname{circ} I_{n}$. Clearly, when $n \geq 1,(n \mid 0)=1$ (the set \varnothing is counted); when $n \geq 2,(n \mid 1)=n$ (the 1-element subsets of I_{n} are counted); and $(1 \mid 1)=0$ (because 1 is adjacent to $1 \operatorname{in} \operatorname{circ} I_{1}$).

The numbers $(n \mid k)$ can be generalized as follows. For given integers $2 \leq n_{1} \leq$ $n_{2} \leq \cdots \leq n_{t}, t \geq 1, d k \geq 0$, we define the number of multiple cyclic k-choices

$$
\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right):=\sum_{\substack{i_{1}+i_{2}+\cdots+i_{t}=k \\ i_{1}, i_{2}, \ldots, i_{t} \geq 0}}\left(n_{1} \mid i_{1}\right)\left(n_{2} \mid i_{2}\right) \ldots\left(n_{t} \mid i_{t}\right) .
$$

These count the number of subsets of size k of the set

$$
\left\{1,2, \ldots, n_{1}+n_{2}+\cdots+n_{t}\right\}
$$

satisfying: no integers in a subset are adjacent in the display of these numbers in the t disjoint circles (of sizes $n_{1}, n_{2}, \ldots, n_{t}$)

$$
\begin{array}{cc}
1,2, \ldots, n_{1} & \text { in a circle } \\
n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2} & \text { in a circle } \\
\vdots & \\
n_{1}+n_{2}+\cdots+n_{t-1}+1, \ldots, n_{1}+n_{2}+\cdots+n_{t} & \text { in a circle }
\end{array}
$$

[^0]In $\S 2$ we determine the well-known numbers $(n \mid k)$ in a particularly elementary way and then obtain a new identity which expresses $\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right)$ as a sum of numbers $(m \mid i)$. In $\S 3$ we look at some special cases of this identity.

The Problème des Ménages asks for the (ménage) number $u_{n}, n \geq 2$, of permutations $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $(1,2,3, \ldots, n)$ such that the $3 \times n$ array

$$
\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-1 & n \\
n & 1 & 2 & \cdots & n-2 & n-1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n-1} & x_{n}
\end{array}
$$

is a latin rectangle, i.e., in every column the three integers are distinct.
Consider a permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ which has $t \geq 1$ cycles whose lengths are

$$
n_{1}, n_{2}, \ldots, n_{t}, \quad t \geq 1, \quad 2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{t}, \quad n_{1}+n_{2}+\cdots+n_{t}=n
$$

The number of permutations ($x_{1}, x_{2}, \ldots, x_{n}$) such that the array

$$
\begin{array}{cccccc}
1 & 2 & 3 & \cdots & n-1 & n \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{n} \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n-1} & x_{n}
\end{array}
$$

is a latin rectangle is the same for all permutations that have the same cycle structure as $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Let $u_{n_{1}, \ldots, n_{t}}$ denote this number. In $\S 4$ we express $u_{n_{1}, n_{2}, \ldots, n_{t}}$ as a sum of ménage numbers u_{m}.

$2\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right)$ Is a Sum of Numbers $(m \mid i)$

For convenience we take $\binom{n}{k}=n!/ k!(n-k)!$ if $0 \leq k \leq n$, and 0 otherwise. It is well known [5, problem2, p. 222] that when $n \geq 1$ and $k \geq 0$

$$
(n \mid k)= \begin{cases}\frac{n}{n-k}\binom{n-k}{k} & \text { if } n \neq k \\ 0 & \text { if } n=k\end{cases}
$$

Here is a particularly elementary proof of this for $0 \leq k \leq \frac{n}{2}, n \geq 1$. A choice of k integers from $\{1,2, \ldots, n\}$ corresponds to a sequence of k 1's and $n-k 0$'s in a row, or in a circle with one entry capped. We want to count the number of such circular displays of k l's and $n-k 0$'s in a circle, one entry capped, with every 1 followed (clockwise) by at least one 0 . We build and count these displays as follows. Place $n-k 0$'s in a circle, creating $n-k$ boxes (the spaces between the 0 's) and color one of the boxes (say blue). The boxes are now distinguishable. Choose k of these boxes ($\binom{n-k}{k}$ choices), place a single 1 into each of the chosen boxes, "cap" one of the n entries (n ways to do this), erase the color and the $n\binom{n-k}{k}$ displays fall into sets each containing $n-k$ congruent displays. Choose one display from each set and we have $\frac{n}{n-k}\binom{n-k}{k}$ displays, precisely those we want.

By taking $(0 \mid 0)=2$ and $(0 \mid k)=0$ if $k \geq 1$, (these have no combinatorial meaning) the numbers ($n \mid k), k \geq 0, n \geq 0$ satisfy and are determined by the recurrence

$$
\begin{gather*}
(n \mid k)=(n-1 \mid k)+(n-2 \mid k-1), \quad n \geq 2, k \geq 1 \tag{1}\\
(0 \mid 0)=2,(n \mid 0)=1 \text { for } n \geq 1, \quad(n \mid k)=0 \text { for } n=0,1, k \geq 1
\end{gather*}
$$

They are exhibited in Table 1. The initial conditions in boldface.

$k \backslash n$	0	1	2	3	4	5	6	7	8	9	\ldots
0	$\mathbf{2}$	$\mathbf{1}$	\ldots								
1	$\mathbf{0}$	$\mathbf{0}$	2	3	4	5	6	7	8	9	\ldots
2	$\mathbf{0}$	$\mathbf{0}$	0	0	2	5	9	14	20	27	\ldots
3	$\mathbf{0}$	$\mathbf{0}$	0	0	0	0	2	7	16	30	\ldots

Table 1. $(n \mid k)$
The recurrence (1) leads to the generating function

$$
\sum_{n, k \geq 0}(n \mid k) x^{n} z^{k}=\frac{2-x}{1-x-x^{2} z}=\frac{1}{1-\alpha x}+\frac{1}{1-\beta x}=\sum_{n \geq 0}\left(\alpha^{n}+\beta^{n}\right) x^{n}
$$

where α, β are power series in z satisfying $\alpha+\beta=1, \alpha \beta=-z$. Equating coefficients of x^{n} we have

$$
\sum_{k \geq 0}(n \mid k) z^{k}=\alpha^{n}+\beta^{n}, \quad n \geq 0, \quad \alpha+\beta=1, \quad \alpha \beta=-z
$$

$\left(\alpha^{n}+\beta^{n}\right.$ is a polynomial in $\left.z\right)$.
Theorem 1 Let $t \geq 1,0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{t}, k \geq 0, I_{t}=\{1,2, \ldots, t\}$, $A^{c}=I_{t}-A$ when $A \subseteq I_{t}, s(A)=\sum_{i \in A} n_{i}$ if $A \neq \varnothing, s(\varnothing)=0$,

$$
m(A)=\min \left(s(A), s\left(A^{c}\right)\right), \quad M(A)=\max \left(s(A), s\left(A^{c}\right)\right)
$$

Then

$$
\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right)=\sum_{1 \in D \subseteq I_{t}}(-1)^{m(D)}(M(D)-m(D) \mid k-m(D))
$$

Proof The generating function

$$
\begin{aligned}
\sum_{k \geq 0}\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right) z^{k} & =\sum_{k \geq 0} \sum_{\substack{i_{1}, \ldots+i_{t}=k \\
i_{1}, i_{2}, \ldots, i_{t} \geq 0}}\left(n_{1} \mid i_{1}\right) z^{i_{1}}\left(n_{2} \mid i_{2}\right) z^{i_{2}} \cdots\left(n_{t} \mid i_{t}\right) z^{i_{t}} \\
& =\sum_{\substack{i_{1}, i_{2}, \ldots, i_{t} \geq 0}}\left(n_{1} \mid i_{1}\right) z^{i_{1}}\left(n_{2} \mid i_{2}\right) z^{i_{2}} \cdots\left(n_{t} \mid i_{t}\right) z^{i_{t}} \\
& =\left(\sum_{i_{1} \geq 0}\left(n_{1} \mid i_{1}\right) z^{i_{1}}\right)\left(\sum_{i_{2} \geq 0}\left(n_{2} \mid i_{2}\right) z^{i_{2}}\right) \cdots\left(\sum_{i_{t} \geq 0}\left(n_{t} \mid i_{t}\right) z^{i_{t}}\right) \\
& =\left(\alpha^{n_{1}}+\beta^{n_{1}}\right)\left(\alpha^{n_{2}}+\beta^{n_{2}}\right) \cdots\left(\alpha^{n_{t}}+\beta^{n_{t}}\right)
\end{aligned}
$$

(remember, $\alpha+\beta=1, \alpha \beta=-z$).
This product has a complete expansion in 2^{t} terms, one term corresponding to each subset $A \subseteq I_{t}=\{1,2, \ldots, t\}$, namely $\alpha^{s(A)} \beta^{s\left(A^{c}\right)}$; hence

$$
\begin{equation*}
\sum_{k \geq 0}\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right) z^{k}=\sum_{A \subseteq I_{t}} \alpha^{s(A)} \beta^{s\left(A^{c}\right)} \tag{2}
\end{equation*}
$$

The 2^{t} terms of this sum come in 2^{t-1} pairs: for each $D \subseteq I_{t}$ with $1 \in D$

$$
\alpha^{s(D)} \beta^{s\left(D^{c}\right)} \text { is paired with } \alpha^{s\left(D^{c}\right)} \beta^{s(D)}
$$

and now

$$
\sum_{A \subseteq I_{t}} \alpha^{s(A)} \beta^{s\left(A^{c}\right)}=\sum_{1 \in D \subseteq I_{t}}\left(\alpha^{s(D)} \beta^{s\left(D^{c}\right)}+\alpha^{s\left(D^{c}\right)} \beta^{s(D)}\right)
$$

We can simplify this sum. For any $D \subseteq I_{t}$ with $1 \in D$,

$$
\begin{align*}
\alpha^{s(D)} \beta^{s\left(D^{c}\right)}+\alpha^{s\left(D^{c}\right)} \beta^{s(D)} & =(\alpha \beta)^{m(D)}\left(\alpha^{M(D)-m(D)}+\beta^{M(D)-m(D)}\right) \tag{3}\\
& =(-z)^{m(D)} \sum_{k \geq 0}(M(D)-m(D) \mid k) z^{k} \\
& =(-1)^{m(D)} \sum_{k \geq 0}(M(D)-m(D) \mid k) z^{k+m(D)} \\
& =(-1)^{m(D)} \sum_{k \geq 0}(M(D)-m(D) \mid k-m(D)) z^{k}
\end{align*}
$$

Now, from (2) and (3),

$$
\begin{aligned}
\sum_{k \geq 0}\left(n_{1}, n_{2}, \ldots, n_{t} \mid k\right) z^{k} & =\sum_{1 \in D \subseteq I_{t}}(-1)^{m(D)} \sum_{k \geq 0}(M(D)-m(D) \mid k-m(D)) z^{k} \\
& =\sum_{k \geq 0}\left(\sum_{1 \in D \subseteq I_{t}}(-1)^{m(D)}(M(D)-m(D) \mid k-m(D))\right) z^{k}
\end{aligned}
$$

Equate coefficients of z^{k} and we have completed the proof of Theorem 1.

3 Special Cases of Theorem 1

In the case $t=2$ of Theorem $1,0 \leq n_{1} \leq n_{2}, k \geq 0, I_{2}=\{1,2\}$,

$$
\left(n_{1}, n_{2} \mid k\right)=\sum_{1 \in D \subseteq I_{2}}(-1)^{m(D)}(M(D)-m(D) \mid k-m(D)) .
$$

The table below shows all the information we need to simplify this:

D	D^{c}	$s(D)$	$s\left(D^{c}\right)$	$m(D)$	$M(D)$
$\{1,2\}$	\varnothing	$n_{1}+n_{2}$	0	0	$n_{1}+n_{2}$
$\{1\}$	$\{2\}$	n_{1}	n_{2}	n_{1}	n_{2}

and we have

$$
\begin{equation*}
\left(n_{1}, n_{2} \mid k\right)=\left(n_{1}+n_{2} \mid k\right)+(-1)^{n_{1}}\left(n_{2}-n_{1} \mid k-n_{1}\right), \quad 0 \leq n_{1} \leq n_{2} \tag{4}
\end{equation*}
$$

This identity was established by Moser and Pollack [3].
When $n_{1}=n_{2}=m \geq 0$, the Moser-Pollack identity (4) simplifies to

$$
(m, m \mid k)=(2 m \mid k)+(-1)^{m}(0 \mid k-m), \quad m \geq 0
$$

so that

$$
(m, m \mid m)=(2 m \mid m)+(-1)^{m} 2=2+(-1)^{m} 2= \begin{cases}4 & \text { if } 0 \leq m \text { is even } \\ 0 & \text { if } 1 \leq m \text { is odd }\end{cases}
$$

4 Ménage Identities

Using $[i, j]$ to denote the property "the integer i is in the j th place", u_{n} is the number of permutations possessing none of the properties

$$
[1,1][1,2][2,2][2,3] \cdots[n-1, n-1][n-1, n][n, n][n, 1]
$$

Since two of these properties are consistent if and only if they are not adjacent when the $2 n$ properties are arranged in a circle (so that $[1,1]$ follows $[n, 1]$), the Principle of Inclusion and Exclusion yields

$$
u_{n}=\sum_{0 \leq k \leq n}(-1)^{k}(2 n \mid k)(n-k)!, \quad n \geq 2
$$

This is of course well known [1, p. 14].
Now let $u_{m, n},(0 \leq m \leq n)$ denote the number of permutations of $\{1,2, \ldots$, $m+n\}$ discordant with the two permutations

$$
\begin{array}{ccccccccc}
1 & 2 & 3 & \cdots & m & m+1 & m+2 & \cdots & m+n \\
m & 1 & 2 & \cdots & m-1 & m+n & m+1 & \cdots & m+n-1 .
\end{array}
$$

Clearly the number of such permutations is

$$
\begin{aligned}
u_{m, n}= & \sum_{k \geq 0}(-1)^{k}(2 m, 2 n \mid k)(m+n-k)! \\
= & \sum_{k \geq 0}(-1)^{k}(2 m+2 n \mid k)(m+n-k)! \\
& \quad+\sum_{k \geq 2 m}(-1)^{k}(2 n-2 m \mid k-2 m)(n+m-k)! \\
= & u_{m+n}+\sum_{j \geq 0}(-1)^{j}(2 n-2 m \mid j)(n-m-j)! \\
= & u_{m+n}+u_{n-m} .
\end{aligned}
$$

The generalization is contained in the following theorem.

Theorem 2 For $t \geq 2,2 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{t}$, and $n_{1}+n_{2}+\cdots+n_{t}=n$,

$$
u_{n_{1}, n_{2}, \ldots, n_{t}}=\sum_{1 \in D \subseteq I_{t}} u_{M(D)-m(D)}=\sum_{1 \in D \subseteq I_{t}} u_{n-m(D)}
$$

where

$$
\begin{gathered}
M(D)=\max \left(s(D), s\left(D^{c}\right)\right), \quad m(D)=\min \left(s(D), s\left(D^{c}\right)\right) \\
s(D)=\sum_{i \in D} 2 n_{i}, \quad s\left(D^{c}\right)=\sum_{i \in D^{c}} 2 n_{i}
\end{gathered}
$$

Proof By the Principle of Inclusion and Exclusion

$$
\begin{aligned}
u_{n_{1}, n_{2}, \ldots, n_{t}} & =\sum_{k \geq 0}(-1)^{k}\left(2 n_{1}, 2 n_{2}, \ldots, 2 n_{t} \mid k\right)(n-k)! \\
& =\sum_{k \geq m(D)}(-1)^{k} \sum_{1 \in D \subseteq I_{t}}(-1)^{m(D)}(M(D)-m(D) \mid k-m(D))(n-k)! \\
& =\sum_{1 \in D \subseteq I_{t}}(-1)^{m(D)} \sum_{k \geq m(D)}(-1)^{k}(M(D)-m(D) \mid k-m(D))(n-k)! \\
& =\sum_{1 \in D \subseteq I_{t}} \sum_{j \geq 0}(-1)^{j}(M(D)-m(D) \mid j)(n-m(D)-j)! \\
& =\sum_{1 \in D \subseteq I_{t}} \sum_{j \geq 0}(-1)^{j}(2(n-m(D)) \mid j)(n-m(D)-j)! \\
& =\sum_{1 \in D \subseteq I_{t}} u_{n-m(D)} .
\end{aligned}
$$

This identity, in the form

$$
u_{n_{1}, n_{2}, \ldots, n_{t}}=\sum u_{n_{1} \pm n_{2} \pm \cdots \pm n_{t}}
$$

where the sum is over the 2^{t-1} possible assignments of + and - signs, with the understanding that $u_{0}=2, u_{1}=-1$ and $u_{-n}=u_{n}$, was known to Touchard [6]. It was proved by "symbolic operator" methods (see [2]) and used by Riordan [4] to give a remarkably attractive formula for the number of $3 \times n$ latin rectangles.

References

[1] M. Hall, Jr. Combinatorial Theory. Second edition. John Wiley, New York, 1986.
[2] I. Kaplansky, On a generalization of the "Problème des recontres". Amer. Math. Monthly 46(1939), 159-161
[3] W. Moser and R. Pollack, A new identity and some applications. Canad. Math. Bull. 23(1980), 281-290.
[4] J. Riordan, Three-line Latin rectangles. Amer. Math. Monthly 51(1944), 450-452.
[5] _ An Introduction to Combinarorial Analysis. John Wiley, New York, 1958.
[6] J. Touchard, Sur un problème de permutations. C. R. Acad. Sci. Paris 198(1934), 631-633.

Department of Mathematics and Statistics
McGill University
Montreal, Quebec
H3A2K6

[^0]: Received by the editors June 9, 2003; revised November 27, 2004.
 AMS subject classification: Primary: 05A19; secondary: 05A05.
 ©Canadian Mathematical Society 2005.

