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Counting Multiple Cyclic Choices Without
Adjacencies

Alice McLeod and William Moser

Abstract. We give a particularly elementary solution to the following well-known problem. What is

the number of k-subsets X ⊆ In = {1, 2, 3, . . . , n} satisfying “no two elements of X are adjacent in

the circular display of In”? Then we investigate a new generalization (multiple cyclic choices without

adjacencies) and apply it to enumerating a class of 3-line latin rectangles.

1 Introduction

For n ≥ 1 let In = {1, 2, 3, . . . , n} and let circ In denote the display of In in a circle,
rising order clockwise. When n ≥ 2 it is clear what is meant by “x is adjacent to y

in circ In.” When n = 1 we have a seemingly peculiar situation: when you look from

1 in either direction (clockwise or counterclockwise) in circ I1, the first element you
see is 1 itself, so let us agree that “1 is adjacent to 1 in circ I1”.

Let (n|k), n ≥ 1, k ≥ 0, denote the number of sets X ⊆ In such that |X| = k and
no elements in X are adjacent in circ In. Clearly, when n ≥ 1, (n|0) = 1 (the set ∅

is counted); when n ≥ 2, (n|1) = n (the 1-element subsets of In are counted); and
(1|1) = 0 (because 1 is adjacent to 1 in circ I1).

The numbers (n|k) can be generalized as follows. For given integers 2 ≤ n1 ≤
n2 ≤ · · · ≤ nt , t ≥ 1, dk ≥ 0, we define the number of multiple cyclic k-choices

(n1, n2, . . . , nt |k) :=
∑

i1+i2+···+it =k
i1,i2,...,it≥0

(n1 |i1)(n2 |i2) . . . (nt |it ).

These count the number of subsets of size k of the set

{1, 2, . . . , n1 + n2 + · · · + nt}

satisfying: no integers in a subset are adjacent in the display of these numbers in the t

disjoint circles (of sizes n1, n2, . . . , nt )

1, 2, . . . , n1 in a circle

n1 + 1, n1 + 2, . . . , n1 + n2 in a circle

...

n1 + n2 + · · · + nt−1 + 1, . . . , n1 + n2 + · · · + nt in a circle
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In §2 we determine the well-known numbers (n|k) in a particularly elementary
way and then obtain a new identity which expresses (n1, n2, . . . , nt |k) as a sum of

numbers (m|i). In §3 we look at some special cases of this identity.

The Problème des Ménages asks for the (ménage) number un, n ≥ 2, of permuta-
tions (x1, x2, . . . , xn) of (1, 2, 3, . . . , n) such that the 3 × n array

1 2 3 · · · n − 1 n

n 1 2 · · · n − 2 n − 1

x1 x2 x3 · · · xn−1 xn

is a latin rectangle, i.e., in every column the three integers are distinct.

Consider a permutation (a1, a2, . . . , an) which has t ≥ 1 cycles whose lengths are

n1, n2, . . . , nt , t ≥ 1, 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt , n1 + n2 + · · · + nt = n.

The number of permutations (x1, x2, . . . , xn) such that the array

1 2 3 · · · n − 1 n

a1 a2 a3 · · · an−1 an

x1 x2 x3 · · · xn−1 xn

is a latin rectangle is the same for all permutations that have the same cycle structure
as (a1, a2, . . . , an). Let un1,...,nt

denote this number. In §4 we express un1,n2,...,nt
as a

sum of ménage numbers um.

2 (n1, n2, . . . , nt |k) Is a Sum of Numbers (m|i)

For convenience we take
(

n
k

)

= n! /k! (n − k)! if 0 ≤ k ≤ n, and 0 otherwise. It is
well known [5, problem2, p. 222] that when n ≥ 1 and k ≥ 0

(n|k) =

{

n
n−k

(

n−k
k

)

if n 6= k,

0 if n = k.

Here is a particularly elementary proof of this for 0 ≤ k ≤ n
2
, n ≥ 1. A choice of k

integers from {1, 2, . . . , n} corresponds to a sequence of k 1’s and n − k 0’s in a row,
or in a circle with one entry capped. We want to count the number of such circular
displays of k 1’s and n − k 0’s in a circle, one entry capped, with every 1 followed

(clockwise) by at least one 0. We build and count these displays as follows. Place
n − k 0’s in a circle, creating n − k boxes (the spaces between the 0’s) and color one
of the boxes (say blue). The boxes are now distinguishable. Choose k of these boxes
(
(

n−k
k

)

choices), place a single 1 into each of the chosen boxes, “cap” one of the n

entries (n ways to do this), erase the color and the n
(

n−k
k

)

displays fall into sets each
containing n − k congruent displays. Choose one display from each set and we have

n
n−k

(

n−k
k

)

displays, precisely those we want.
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By taking (0|0) = 2 and (0|k) = 0 if k ≥ 1, (these have no combinatorial mean-
ing) the numbers (n|k), k ≥ 0, n ≥ 0 satisfy and are determined by the recurrence

(1)
(n|k) = (n − 1|k) + (n − 2|k − 1), n ≥ 2, k ≥ 1,

(0|0) = 2, (n|0) = 1 for n ≥ 1, (n|k) = 0 for n = 0, 1, k ≥ 1.

They are exhibited in Table 1. The initial conditions in boldface.

k\n 0 1 2 3 4 5 6 7 8 9 . . .
0 2 1 1 1 1 1 1 1 1 1 . . .
1 0 0 2 3 4 5 6 7 8 9 . . .
2 0 0 0 0 2 5 9 14 20 27 . . .
3 0 0 0 0 0 0 2 7 16 30 . . .

Table 1. (n|k)

The recurrence (1) leads to the generating function

∑

n,k≥0

(n|k)xnzk
=

2 − x

1 − x − x2z
=

1

1 − αx
+

1

1 − βx
=

∑

n≥0

(αn + βn)xn,

where α, β are power series in z satisfying α+β = 1, αβ = −z. Equating coefficients
of xn we have

∑

k≥0

(n|k)zk
= αn + βn, n ≥ 0, α + β = 1, αβ = −z

(αn + βn is a polynomial in z).

Theorem 1 Let t ≥ 1, 0 ≤ n1 ≤ n2 ≤ · · · ≤ nt , k ≥ 0, It = {1, 2, . . . , t},

Ac
= It − A when A ⊆ It , s(A) =

∑

i∈A ni if A 6= ∅, s(∅) = 0,

m(A) = min (s(A), s(Ac)) , M(A) = max (s(A), s(Ac)) .

Then

(n1, n2, . . . , nt |k) =

∑

1∈D⊆It

(−1)m(D)
(

M(D) − m(D)|k − m(D)
)

.

Proof The generating function
∑

k≥0

(n1, n2, . . . , nt |k)zk
=

∑

k≥0

∑

i1+···+it=k
i1,i2,...,it≥0

(n1 |i1)zi1 (n2 |i2)zi2 · · · (nt |it )zit

=

∑

i1,i2,...,it≥0

(n1 |i1)zi1 (n2 |i2)zi2 · · · (nt |it )zit

=

(

∑

i1≥0

(n1 |i1)zi1

)(

∑

i2≥0

(n2 |i2)zi2

)

· · ·
(

∑

it≥0

(nt |it )zit

)

= (αn1 + βn1 ) (αn2 + βn2 ) · · · (αnt + βnt )
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(remember, α + β = 1, αβ = −z).
This product has a complete expansion in 2t terms, one term corresponding to

each subset A ⊆ It = {1, 2, . . . , t}, namely αs(A)βs(Ac) ; hence

(2)
∑

k≥0

(n1, n2, . . . , nt |k)zk
=

∑

A⊆It

αs(A)βs(Ac).

The 2t terms of this sum come in 2t−1 pairs: for each D ⊆ It with 1 ∈ D

αs(D)βs(Dc) is paired with αs(Dc)βs(D)

and now
∑

A⊆It

αs(A)βs(Ac)
=

∑

1∈D⊆It

(

αs(D)βs(Dc) + αs(Dc)βs(D)
)

.

We can simplify this sum. For any D ⊆ It with 1 ∈ D,

(3) αs(D)βs(Dc) + αs(Dc)βs(D)
= (αβ)m(D)

(

αM(D)−m(D) + βM(D)−m(D)
)

= (−z)m(D)
∑

k≥0

(

M(D) − m(D)|k
)

zk

= (−1)m(D)
∑

k≥0

(

M(D) − m(D)|k
)

zk+m(D)

= (−1)m(D)
∑

k≥0

(

M(D) − m(D)|k − m(D)
)

zk.

Now, from (2) and (3),

∑

k≥0

(n1, n2, . . . , nt |k)zk
=

∑

1∈D⊆It

(−1)m(D)
∑

k≥0

(

M(D) − m(D)|k − m(D)
)

zk

=

∑

k≥0

(

∑

1∈D⊆It

(−1)m(D)
(

M(D) − m(D)|k − m(D)
)

)

zk.

Equate coefficients of zk and we have completed the proof of Theorem 1.

3 Special Cases of Theorem 1

In the case t = 2 of Theorem 1, 0 ≤ n1 ≤ n2, k ≥ 0, I2 = {1, 2},

(n1, n2 |k) =

∑

1∈D⊆I2

(−1)m(D)
(

M(D) − m(D)|k − m(D)
)

.

The table below shows all the information we need to simplify this:

D Dc s(D) s(Dc) m(D) M(D)
{1, 2} ∅ n1 + n2 0 0 n1 + n2

{1} {2} n1 n2 n1 n2
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and we have

(4) (n1, n2 |k) = (n1 + n2 |k) + (−1)n1 (n2 − n1 |k − n1), 0 ≤ n1 ≤ n2.

This identity was established by Moser and Pollack [3].

When n1 = n2 = m ≥ 0, the Moser-Pollack identity (4) simplifies to

(m, m|k) = (2m|k) + (−1)m(0|k − m), m ≥ 0,

so that
(m, m|k) = (2m|k), m ≥ 0, k 6= m,

(m, m|m) = (2m|m) + (−1)m2 = 2 + (−1)m2 =

{

4 if 0 ≤ m is even,

0 if 1 ≤ m is odd.

4 Ménage Identities

Using [i, j] to denote the property “the integer i is in the jth place”, un is the number

of permutations possessing none of the properties

[1, 1] [1, 2] [2, 2] [2, 3] · · · [n − 1, n − 1] [n − 1, n] [n, n] [n, 1] .

Since two of these properties are consistent if and only if they are not adjacent when
the 2n properties are arranged in a circle (so that [1, 1] follows [n, 1]), the Principle

of Inclusion and Exclusion yields

un =

∑

0≤k≤n

(−1)k(2n|k)(n − k)!, n ≥ 2.

This is of course well known [1, p. 14].

Now let um,n, (0 ≤ m ≤ n) denote the number of permutations of {1, 2, . . . ,
m + n} discordant with the two permutations

1 2 3 · · · m m + 1 m + 2 · · · m + n

m 1 2 · · · m − 1 m + n m + 1 · · · m + n − 1.

Clearly the number of such permutations is

um,n =

∑

k≥0

(−1)k(2m, 2n|k)(m + n − k)!

=

∑

k≥0

(−1)k(2m + 2n|k)(m + n − k)!

+
∑

k≥2m

(−1)k(2n − 2m|k − 2m)(n + m − k)!

= um+n +
∑

j≥0

(−1) j(2n − 2m| j)(n − m − j)!

= um+n + un−m.

The generalization is contained in the following theorem.
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Theorem 2 For t ≥ 2, 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt , and n1 + n2 + · · · + nt = n,

un1,n2,...,nt
=

∑

1∈D⊆It

uM(D)−m(D) =

∑

1∈D⊆It

un−m(D),

where

M(D) = max(s(D), s(Dc)), m(D) = min(s(D), s(Dc)),

s(D) =

∑

i∈D

2ni, s(Dc) =

∑

i∈Dc

2ni.

Proof By the Principle of Inclusion and Exclusion

un1,n2,...,nt
=

∑

k≥0

(−1)k(2n1, 2n2, . . . , 2nt |k)(n − k)!

=

∑

k≥m(D)

(−1)k
∑

1∈D⊆It

(−1)m(D)(M(D) − m(D)|k − m(D))(n − k)!

=

∑

1∈D⊆It

(−1)m(D)
∑

k≥m(D)

(−1)k(M(D) − m(D)|k − m(D))(n − k)!

=

∑

1∈D⊆It

∑

j≥0

(−1) j(M(D) − m(D)| j)(n − m(D) − j)!

=

∑

1∈D⊆It

∑

j≥0

(−1) j(2(n − m(D))| j)(n − m(D) − j)!

=

∑

1∈D⊆It

un−m(D).

This identity, in the form

un1,n2,...,nt
=

∑

un1±n2±···±nt
,

where the sum is over the 2t−1 possible assignments of + and − signs, with the un-
derstanding that u0 = 2, u1 = −1 and u−n = un, was known to Touchard [6]. It was
proved by “symbolic operator” methods (see [2]) and used by Riordan [4] to give a
remarkably attractive formula for the number of 3 × n latin rectangles.
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