ELATIONS OF DESIGNS

WILLIAM M. KANTOR

An elation of a design \mathscr{D} is an automorphism γ of \mathscr{D} fixing some block X pointwise and some point x on X blockwise. Lüneburg [4] and I [2] have proved results which state that a design admitting many elations and having additional properties must be the design of points and hyperplanes of a finite desarguesian projective space. In this note, additional results of this type will be proved and applied to yield a generalization of a previous result on Jordan groups [3]. The proofs were suggested by a result of Hering on elations of finite projective planes [1, pp. 122, 190].

Much of our notation can be found in [1]. Designs will always satisfy $v \geqq k+2$, and the blocks will be distinguishable as sets of points. Isomorphic designs will be identified. The complement of the block X is $\mathscr{C} X$. If Γ is an automorphism group of a design, and $x \in X$, then $\Gamma(X)$ and $\Gamma(x)$ are the largest subgroups of Γ fixing X pointwise and x blockwise, respectively. If $\Pi(X) \leqq \Gamma(X)$, then $\Pi(x, X)=\Gamma(x) \cap \Pi(X)$. If $\Pi(X) \leqq \Gamma(X)$ for all X, then, for each block X and each point $x, \Pi(X)^{*}$ is the set $\bigcup_{y \in X} \Pi(y, X)$ and $\Pi(x)^{*}=\bigcup_{x \in Y} \Pi(x, Y) .[\alpha, \beta]$ is the commutator $\alpha^{-1} \beta^{-1} \alpha \beta$. If g is a power of a prime p and n is an integer, $g \| n$ means that $g \mid n$ but $f g \nmid n$. A permutation group is said to act regularly if only the identity fixes a point.

Lemma 1. Let $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{s}$ be non-trivial normal subgroups of a finite group Δ such that $s \geqq 1, \Delta_{i} \cap \Delta_{j}=1$ if $i \neq j$, and

$$
\left(\bigcup_{0 \leqq i \leq s} \Delta_{i}\right) \Delta_{0} \subseteq \bigcup_{0 \leqq i \leq s} \Delta_{i}
$$

Then there is a prime p such that all Δ_{i} are p-groups.
Proof. Let $\delta_{0} \in \Delta_{0}$ have prime order p. If $\delta \in \Delta_{j}, j>0$, then

$$
\left[\delta_{0}, \delta\right] \in \Delta_{0} \cap \Delta_{j}=1
$$

Also,

$$
\delta \delta_{0} \in \underset{\substack{0 \leq i \leq s ; \\ i \neq j}}{\cup} \Delta_{i} .
$$

Consequently,

$$
\left(\delta \delta_{0}\right)^{p}=\delta^{p} \in \Delta_{j} \cap\left(\underset{\substack{0 \leq i \neq s_{i} \\ i \neq j}}{ } \Delta_{i}\right)=1
$$

Thus, each Δ_{j} with $j>0$ has exponent p. As this determines p uniquely, Δ_{0} is also a p-group.

Received March 3, 1969. This research was supported in part by NSF Grant GP-6539.

Lemma 2. Let \mathscr{D} be a design, Γ an automorphism group of \mathscr{D}, p, q points, and B, C blocks such that $p \in B-B \cap C, q \in B \cap C$. Also let $\theta, \theta^{\prime} \in \Gamma(p, B)$ and $\varphi, \varphi^{\prime} \in \Gamma(q, C)$. Then
(i) $[\theta, \varphi] \in \Gamma(q, B)$;
(ii) If $[\theta, \varphi]=\left[\theta^{\prime}, \varphi\right]$, then either $\varphi \in \Gamma(q, C) \cap \Gamma(D)$ where $D \neq C$, or $\theta^{\prime} \theta^{-1} \in \Gamma(p, B) \cap \Gamma(C) ;$ and
(iii) If $[\theta, \varphi]=\left[\theta, \varphi^{\prime}\right]$, then either $\varphi^{\prime} \varphi^{-1} \in \Gamma(q, C) \cap \Gamma(D)$, where $D \neq C$, or $\theta \in \Gamma(p, B) \cap \Gamma(C)$.
Proof. (i) $\theta^{-1} \varphi^{-1} \theta \in \Gamma\left(q, C^{\theta}\right)$ and $\varphi^{-1} \theta \varphi \in \Gamma\left(p^{\varphi}, B\right)$ imply that

$$
[\theta, \varphi] \in \Gamma(q) \cap \Gamma(B)=\Gamma(q, B) .
$$

(ii) As $\theta^{\prime} \theta^{-1}$ and φ commute, $\varphi \in \Gamma(q, C) \cap \Gamma\left(q, C^{\theta^{\prime} \theta^{-1}}\right)$. If $\theta^{\prime} \theta^{-1}$ is in $\Gamma(p, B)_{c}$, it fixes all lines [1, p. 65] on p meeting C and consequently is contained in $\Gamma(p, B) \cap \Gamma(C)$.
(iii) As θ and $\varphi^{-1} \varphi^{\prime}$ commute, $\varphi^{-1} \varphi^{\prime} \in \Gamma(q, C) \cap \Gamma\left(q, C^{\theta}\right)$. If $\theta \in \Gamma(p, B)_{c}$, then $\theta \in \Gamma(p, B) \cap \Gamma(C)$.
Theorem 1. Let \mathscr{D} be a design admitting an automorphism group Γ such that, for each block X, Γ_{X} has a normal subgroup $\Pi(X) \leqq \Gamma(X)$ satisfying the following conditions:
(i) $\Pi\left(X^{\gamma}\right)=\Pi(X)^{\gamma}$ for all X and all $\gamma \in \Gamma$;
(ii) $\Pi(x, X) \neq 1$ whenever $x \in X$; and
(iii) $\Pi(x, X) \cap \Pi(Y)=1$ whenever $x \in X \neq Y$.

Then \mathscr{D} is the design of points and hyperplanes of a finite projective space, and Γ contains the little projective group.

We remark that the case $\Pi(X)=\Gamma(X)$ of this theorem is only very slightly weaker than the theorem itself, and suffices for our application to Jordan groups. In later results, only the case $\Pi(X)=\Gamma(X)$ will be considered.

Proof. Let X and Y be distinct blocks, and suppose that $x \in X-X \cap Y$ and $y \in X \cap Y$. If $1 \neq \alpha \in \Pi(x, X)$, then as in Lemma $2, \beta \rightarrow[\alpha, \beta]$, $\beta \in \Pi(y, Y)$, defines an injection $\Pi(y, Y) \rightarrow \Pi(y, X)$. If $1 \neq \beta \in \Pi(y, Y)$, then $\alpha \rightarrow[\alpha, \beta], \alpha \in \Pi(x, X)$, defines an injection $\Pi(x, X) \rightarrow \Pi(y, X)$. Then $|\Pi(y, Y)| \leqq|\Pi(y, X)|$ and $|\Pi(x, X)| \leqq|\Pi(y, X)|$. As x and y are any points of X, while X and Y are any blocks on y, it follows that $|\Pi(x, X)|=g$ is independent of the block X and the point $x \in X$. The above mappings are thus bijective.

Let $1 \neq \alpha \in \Pi(x, X)$ and $\gamma \in \Pi(y, X)$. Then $\gamma=[\alpha, \beta]$ for some $\beta \in \Pi(y, Y)$, and $\alpha \gamma \in \Pi\left(x^{\beta}, X\right)$. Thus, $\Pi(X)^{*}$ is a subgroup of $\Pi(X)$. Similarly, $\Pi(x)^{*}$ is a subgroup of $\Gamma(x)$. By Lemma 1 , there is a prime p such that $g,\left|\Pi(X)^{*}\right|=1+(g-1) k$, and $\left|\Pi(x)^{*}\right|=1+(g-1) r$ are powers of p. In particular, $g \|(k-1)$ and $p \nmid r$. (iii) implies that $\Pi(x)^{*}$ acts regularly on the blocks not on x. Thus

$$
[1+(g-1) r] \mid(b-r)=(v-k)(r / k)
$$

so that $[1+(g-1) r] \mid(v-k) \cdot \lambda=(r-\lambda)(k-1)$ since $p \nmid r$. Since $g \|(k-1)$, it follows that

$$
[1+(g-1) r] \mid(r-\lambda) g<2[1+(g-1) r] .
$$

Thus, $r=g \lambda+1$.
If $y \neq x$, then, since $\Pi(x)^{*}{ }_{y}$ acts regularly on the blocks not on x,

$$
r-\lambda=1+(g-1) \lambda=\left|\bigcup_{x, y \in X} \Pi(x, X)\right| \leqq \mid \Pi(x)^{*}{ }_{y} \|(r-\lambda) .
$$

It follows that $\Pi(x)^{*}$ is transitive on the blocks not on x and $\Pi(x, X)$ acts regularly on $\mathscr{C} X$ when $x \in X$. Then $1+(g-1) r=\left|\Pi(x)^{*}\right|=b-r$ and each line has at least $g+1$ points. However, each line has at most $(b-\lambda) /(r-\lambda)=g+1$ points, and all lines have this many points if and only if \mathscr{D} consists of the points and hyperplanes of a projective space [1, pp. 65, 67]. Together with the transitivity of $\Pi(x)^{*}$, this proves that \mathscr{D} is desarguesian [1, p. 126] and Γ contains the little projective group.

Corollary 1. Let \mathscr{D} be a design admitting a 2-transitive automorphism group Γ such that, for each block X, Γ_{X} has a normal abelian subgroup fixing X pointwise and transitive on $\mathscr{C} X$. Then \mathscr{D} is either the design of points and hyperplanes of a finite desarguesian projective space or of an affine space over GF(2), or $v=22,23$ or 24 and \mathscr{D} is the design associated with the Mathieu group M_{v} (see [3]).

Proof. By [3, Theorem 6.5], we may assume that lines have more than two points. By [3, Lemma 8.1 (ii)], for each $x \in X$ the given subgroup $\Pi(X)$ of $\Gamma(X)$ has a non-trivial element fixing x blockwise. Since $\Pi(X)$ is abelian, it is regular on $\mathscr{C} X$. The result now follows from Theorem 1.

Corollary 2. Let Γ be a 2 -transitive but not k-transitive group of finite degree $v \geqq k+2>4$ such that, for some set X of k points, Γ_{X} has a normal abelian subgroup fixing X pointwise and transitive on the remaining points. Then Γ is similar to one of the following groups in its usual representation: a subgroup of $\operatorname{P\Gamma L}(d, q)$ containing $\operatorname{PSL}(d, q)$ for some d, q; the full collineation group of $\mathrm{AG}(d, 2)$ for some d; the Mathieu group $M_{v}, v=22,23$ or 24 ; or $\operatorname{Aut}\left(M_{22}\right)$.

Proof. Corollary 1 and [3, Lemma 3.2 and Theorem 5.3].
Corollary 3. Let \mathscr{D} be a design with $\lambda=1$ admitting an automorphism group Γ such that
(i) For each point x there is a block X on x for which $\Gamma(x, X) \neq 1$;
(ii) For each block X there is a point $x \in X$ for which $\Gamma(x, X) \neq 1$; and
(iii) $\Gamma(x, X) \cap \Gamma(Y)=1$ if $x \in X \neq Y$.

Then \mathscr{D} is a desarguesian plane and Γ contains the little projective group.

Proof. Suppose that $y \in X$. Let $y \neq x \in X$ and $y \in Y \neq X$. If $\Gamma(y, Y) \neq 1 \neq \Gamma(x, X)$, then $\Gamma(y, X) \neq 1$ by Lemma 2. Theorem 1 thus applies.

Theorem 2. Let \mathscr{D} be a design with $\lambda=1$ admitting an automorphism group Γ such that conditions (ii) and (iii) of Corollary 3 hold. Then \mathscr{D} is a projective plane.

Proof. We assume that \mathscr{D} is not a projective plane, and adopt the following terminology. Lines are blocks. A centre is a point c such that $\Gamma(c, L) \neq 1$ for some line L on c; any other point is a non-centre. A 1 -line is a line L such that $\Gamma(c, L) \neq 1$ for exactly one $c \in L$; any other line is called a 2 -line.

Let c and d be distinct centres and $L=c d$ the line joining them. Let $\Gamma(x, L) \neq 1, x \in L$, where we may assume that $x \neq c$. Suppose that $\Gamma\left(c, L^{\prime}\right) \neq 1$ with $c \in L^{\prime} \neq L$. By Lemma $2, \Gamma(c, L) \neq 1$. Thus, the join of two centres is a 2 -line. Therefore, 1 -lines contain only one centre, and if a line M contains a centre c, then $\Gamma(c, M) \neq 1$.

Let c, d, and L be as above. There is a centre not on L, since otherwise all lines would meet L. Thus, there is a 2 -line $L^{\prime} \neq L$ on c. Let $1 \neq \alpha \in \Gamma(d, L)$ and $\beta \in \Gamma(c, L)$. By Lemma $2, \gamma \rightarrow[\alpha, \gamma], \gamma \in \Gamma\left(c, L^{\prime}\right)$, defines an injection $\Gamma\left(c, L^{\prime}\right) \rightarrow \Gamma(c, L)$. By symmetry, this is a bijection. Then $\beta=[\alpha, \gamma]$ for some $\gamma \in \Gamma\left(c, L^{\prime}\right)$, so that $\alpha \beta \in \Gamma\left(d^{\gamma}, L\right)$. It follows from Lemma 1 that $\Gamma(L)^{*}$ is a p-group for some prime p. As $\left|\Gamma\left(c, L^{\prime}\right)\right|=|\Gamma(c, L)|$ and the join of two centres is a 2 -line, p is the same for all 2 -lines.

Let M be a 1 -line on c. We know that $\Gamma(c, M) \neq 1$. Let $1 \neq \alpha \in \Gamma(d, L)$. $\delta \rightarrow[\alpha, \delta], \delta \in \Gamma(c, M)$, defines an anti-monomorphism $\Gamma(c, M) \rightarrow \Gamma(c, L)$. For, if $\delta, \epsilon \in \Gamma(c, M)$, then

$$
[\alpha, \delta \epsilon]=[\alpha, \epsilon][\alpha, \delta]^{\epsilon}=[\alpha, \epsilon][\alpha, \delta]
$$

since $[\alpha, \delta] \in \Gamma(c, L), \epsilon \in \Gamma(c, M)$, and $\Gamma(c, L) \cap \Gamma(c, M)=1$ by (ii). Thus, all elations in Γ are p-elements. By Gleason's Lemma [1, p. 191], it follows that for each centre c and non-centre x, Γ_{c} is transitive on the 2-lines on c, while Γ_{x} is transitive on the lines on x.

There exist 1 -lines. Otherwise, Γ is line-transitive and thus point-transitive [1, p. 78]. Then all points are centres, and Corollary 3 yields a contradiction.

Let M be a 1 -line and c the centre on M. Γ transitively permutes the lines containing a point $\neq c$ on M, so that all such lines are 1 -lines. If N is any line containing a non-centre x, Γ_{x} has an element mapping N to a line meeting M at a point $\neq c$, and N is a 1 -line. Thus, for each 2 -line $L, \Gamma(c, L) \neq 1$ for all $c \in L$.

Let \mathscr{D}^{*} consist of the centres and 2 -lines. Then \mathscr{D}^{*} is a subdesign of \mathscr{D} fixed by Γ. By Corollary $3, \mathscr{D}^{*}$ is a projective plane. Let M be a 1 -line on a centre c. Then $\Gamma(c, M)$ induces a collineation group of \mathscr{D}^{*} with centre c. A non-trivial element of $\Gamma(c, M)$ must fix pointwise some line of \mathscr{D}^{*}. This contradicts (iii).

For further results on the planes characterized in Theorem 2, see [1, p. 193].
Theorem 3. Let \mathscr{D} be a design with $\lambda=1$ admitting an automorphism group Γ such that
(i) For each point x there are at least two blocks X on x for which $\Gamma(x, X) \neq 1$; and
(ii) $\Gamma(x, X) \cap \Gamma(Y)=1$ if $x \in X \neq Y$.

Then \mathscr{D} is a desarguesian projective plane and Γ contains the little projective group.

Proof. Blocks will again be called lines. A line L is an axis if $\Gamma(c, L) \neq 1$ for some $c \in L$, and a non-axis otherwise. In view of Corollary 3, we may assume that non-axes exist.
As in the proof of Corollary 3, if L is an axis, then $\Gamma(x, L) \neq 1$ for all $x \in L$. Let $c, d \in L, c \neq d$. Let M be an axis $\neq L$ on c, and $1 \neq \gamma \in \Gamma(c, M)$. By Lemma 2, $\alpha \rightarrow[\alpha, \gamma], \alpha \in \Gamma(d, L)$, defines an injection $\Gamma(d, L) \rightarrow \Gamma(c, L)$. By symmetry, $|\Gamma(c, L)|=g(L)$ depends only on L. Similarly, $|\Gamma(c, M)|=g(L)$. By our previous argument there is a prime p such that $\Gamma(L)^{*}$ and $\Gamma(c)^{*}$ are p-groups.

Set $g=g(L)$. Then $\left|\Gamma(L)^{*}\right|=1+(g-1) k$ shows that $g \|(k-1)$. If there are s axes on c, then $\left|\Gamma(c)^{*}\right|=1+(g-1) s$. Suppose that $s<r$. Since $\Gamma(c)^{*}$ acts regularly on the points $\neq c$ of a non-axisth rough c (by (ii)), $[1+(g-1) s] \mid(k-1)$, contradicting $g \|(k-1)$. Since c is any point, and all lines on c are axes, there are no non-axes, a contradiction.

Theorem 4. Let \mathscr{D} be a design with $\lambda>1$ admitting an automorphism group Γ fixing a block B and satisfying the following conditions:
(i) $\Gamma(x, X)$ is non-trivial and acts regularly on $\mathscr{C} X$ whenever $x \in B$ and $x \in X$; and
(ii) If X and Y are blocks $\neq B$ such that $B \cap X \cap Y \neq \emptyset$ but $B \cap X \neq$ $B \cap Y$, then $B \cap X \not \supset B \cap Y$.
Then \mathscr{D} is the design of points and hyperplanes of a projective space.
Proof. Let x and y be distinct points of B, and X a block on x not on y. If $1 \neq \gamma \in \Gamma(x, X)$ then, by Lemma $2, \beta \rightarrow[\gamma, \beta], \beta \in \Gamma(y, B)$, defines an injection $\Gamma(y, B) \rightarrow \Gamma(x, B)$. By symmetry, this is bijective and $|\Gamma(x, B)|=g$ is independent of $x \in B$. If $\alpha \in \Gamma(x, B)$, then $\alpha=[\gamma, \beta]$ for some $\beta \in \Gamma(y, B)$, so that $\gamma \alpha \in \Gamma(x)^{*}$. Thus, $\Gamma(x)^{*} \Gamma(x, B) \subseteq \Gamma(x)^{*}$. By Lemma 1 , there is a prime p such that $\Gamma(x, B)$ and $\Gamma(x, X)$ are p-groups. Then g is a power of p, and p is independent of the choice of x and X.

Let L be a line contained in B. If $x \in L$, let $x \in X, L \not \subset X$. Then a nontrivial element of $\Gamma(x, X)$ is a p-element fixing L but moving all points of $L-\{x\}$. By Gleason's Lemma [1, p. 191], Γ is transitive on B.

Let X and Y be distinct blocks $\neq B$ on x, where once again $x \in B$. If there is a point $y \in B \cap Y-B \cap X \cap Y$, let $1 \neq \gamma \in \Gamma(y, Y)$. By Lemma 2, $\alpha \rightarrow[\alpha, \gamma], \alpha \in \Gamma(x, X)$, defines an injection $\Gamma(x, X) \rightarrow \Gamma(x, Y)$. By (ii) we
may use symmetry to deduce that $|\Gamma(x, X)|=|\Gamma(x, Y)|$. Suppose next that $B \cap X=B \cap Y$. If $B \cap X=\{x\}$, choose a block $Z \neq B$ on x meeting B in a point $\neq x$; then $B \cap Z$ properly contains $B \cap X$, contradicting (ii). We can thus find a block Z on x not containing $B \cap X$. Then

$$
|\Gamma(x, X)|=|\Gamma(x, Z)|=|\Gamma(x, Y)| .
$$

As Γ is transitive on $B,|\Gamma(x, X)|=g^{\prime}$ is independent of $x \in B$ and $X \neq B$ on x. As already noted, g^{\prime} is a power of p.

We now prove that $\Gamma(x)^{*}$ is a group. We have already shown that $\Gamma(x)^{*} \Gamma(x, B) \subseteq \Gamma(x)^{*}$. Once again assume that X and Y are distinct blocks $\neq B$ on x such that there is a point $y \in B \cap Y-B \cap X \cap Y$. Let $1 \neq \alpha \in \Gamma(x, X)$ and $\beta \in \Gamma(x, Y)$. By Lemma 2, $\gamma \rightarrow[\alpha, \gamma], \gamma \in \Gamma(y, Y)$, defines a bijection $\Gamma(y, Y) \rightarrow \Gamma(x, Y)$ so that $\beta=[\alpha, \gamma]$ for some such γ, and $\alpha \beta \in \Gamma(x)^{*}$.

Now let X and Y be distinct and on x, let $1 \neq \alpha \in \Gamma(x, X), 1 \neq \beta \in \Gamma(x, Y)$ and $\alpha \beta \notin \Gamma(x)^{*}$. Then $B \cap X=B \cap Y$. Let $z \in B-B \cap X$ and $x, z \in Z \neq B$. Also let $1 \neq \gamma \in \Gamma(x, Z)$. As $\delta \rightarrow[\alpha, \delta], \delta \in \Gamma(z, Z)$, defines a bijection $\Gamma(z, Z) \rightarrow \Gamma(x, Z), \gamma=[\alpha, \delta]$ where $1 \neq \delta \in \Gamma(z, Z)$. Similarly, $\gamma=\left[\beta^{-1}, \epsilon\right]$ where $\epsilon \in \Gamma(z, Z)$. Here $\alpha \beta=\delta^{-1} \alpha \delta \cdot \epsilon^{-1} \beta \epsilon \notin \Gamma(x)^{*}$. Since $\delta^{-1} \alpha \delta \in \Gamma\left(x, X^{\delta}\right)$ and $\epsilon^{-1} \beta \epsilon \in \Gamma\left(x, Y^{\epsilon}\right)$, it follows that $B \cap X^{\delta}=B \cap Y^{\epsilon}$. Then $\delta \epsilon^{-1} \in \Gamma(z, Z)$ fixes $B \cap X=B \cap Y$, thus by (ii) fixes a point of $B \cap X-B \cap X \cap Z$, and so is equal to 1 by (i). Then $[\alpha, \delta]=\gamma=\left[\beta^{-1}, \delta\right]$, so that $\alpha \beta$ commutes with δ and thus fixes z. As z was arbitrary and $\alpha \beta$ fixes $B \cap X$ pointwise, $\alpha \beta \in \Gamma(x) \cap \Gamma(B) \subseteq \Gamma(x)^{*}$, a contradiction. This proves that $\Gamma(x)^{*}$ is a p-group.

If $x \neq y \in B$ and $z \notin B$, then, by (i),

$$
\left|\Gamma(x)^{*}{ }_{y}\right|=1+(g-1)+\left(g^{\prime}-1\right)(\lambda-1)
$$

and $\left|\Gamma(x)^{*}{ }_{z}\right|=1+\left(g^{\prime}-1\right) \lambda$ are powers of p. Since

$$
1+(g-1)+\left(g^{\prime}-1\right)(\lambda-1)=\left[1+\left(g^{\prime}-1\right) \lambda\right]+\left(g-g^{\prime}\right),
$$

it follows that $g=g^{\prime}$. It is now easy to show that $\Gamma(B)^{*}$ is a group. As in the proof of Theorem $1, b=g r+1$ and $r=g \lambda+1 . b k=v r$ and $\lambda(v-1)=$ $r(k-1)$ imply that \mathscr{D} is symmetric, so that $\left|\Gamma(B)^{*}\right|=1+(g-1) k=v-k$ and $\Gamma(B)^{*}$ is transitive on $\mathscr{C} B$. The theorem now follows from [1, p. 85] or [2].

Corollary 4. Let \mathscr{D} be a symmetric design with $\lambda>1$ admitting an automorphism group Γ fixing a block B and such that $\Gamma(x, X) \neq 1$ whenever $x \in B, X$. Then \mathscr{D} is the design of points and hyperplanes of a projective space.

Proof. [4, Hilfsatz 10] and Theorem 4.
This corollary is [4, Satz 10] but without assumption (1) (also see [1, p. 86]).
Theorem 5. Let \mathscr{D} be a design with $\lambda>1$ admitting an automorphism group Γ fixing a point q and such that:
(i) $\Gamma(x, X)$ is non-trivial and acts regularly on $\mathscr{C} X$ whenever $q, x \in X$;
(ii) There are no blocks X and Y such that $X \cap Y=\{q\}$; and
(iii) A non-trivial element of $\Gamma(q)$ fixes pointwise at most $\lambda+1$ blocks not on q. Then \mathscr{D} is the design of points and hyperplanes of a projective space.

Proof. Let $q \in X \cap Y, X \neq Y, x \in X-X \cap Y$ and $1 \neq \gamma \in \Gamma(x, X)$. By Lemma $2, \beta \rightarrow[\gamma, \beta], \beta \in \Gamma(q, Y)$, defines an injection $\Gamma(q, Y) \rightarrow \Gamma(q, X)$. Then $|\Gamma(q, Y)| \leqq|\Gamma(q, X)|$ implies that $|\Gamma(q, X)|=g$ is independent of the block X on q. If $\alpha \in \Gamma(q, X)$, then $\alpha=[\gamma, \beta]$ with $\beta \in \Gamma(q, Y)$, and $\gamma \alpha \in \Gamma\left(x^{\beta}, X\right)$. Thus, $\Gamma(X)^{*} \Gamma(q, X) \subseteq \Gamma(X)^{*}$.

Let q, x, and y be distinct points of X. If there is a block Y on q and y but not on x, let $1 \neq \gamma \in \Gamma(y, Y)$. By Lemma $2, \alpha \rightarrow[\alpha, \gamma], \alpha \in \Gamma(x, X)$, defines an injection $\Gamma(x, X) \rightarrow \Gamma(y, X)$. Thus, $|\Gamma(x, X)| \leqq|\Gamma(y, X)|$, so that $|\Gamma(x, X)|=|\Gamma(y, X)|$. If, however, q, x, and y are collinear, let $z \in X-q x$. Then $|\Gamma(x, X)|=|\Gamma(z, X)|=|\Gamma(y, X)|=g(X)$ is independent of $x \in X$, $x \neq q$.

Let X and X^{\prime} be distinct blocks on q, so that $\left|X \cap X^{\prime}\right| \geqq 2$ by (ii). Let $q \neq x \in X \cap X^{\prime}, z \in X^{\prime}-X \cap X^{\prime}$, and $1 \neq \delta \in \Gamma\left(z, X^{\prime}\right)$. By Lemma 2, $\alpha \rightarrow[\alpha, \delta], \alpha \in \Gamma(x, X)$, defines an injection $\Gamma(x, X) \rightarrow \Gamma\left(x, X^{\prime}\right)$. It follows that $g(X)=g\left(X^{\prime}\right)=g^{\prime}$ is independent of the block X on q.

To show that $\Gamma(X)^{*}$ is a group when $q \in X$, let q, x, and y be non-collinear points of X, let $q, y \in Y$ and $x \notin Y$. Also let $1 \neq \alpha \in \Gamma(x, X)$ and $\beta \in \Gamma(y, X)$. As usual, $\beta=[\alpha, \gamma]$ for some $\gamma \in \Gamma(y, Y)$. Thus, $\alpha \beta \in \Gamma(X)^{*}$.

Now let q, x, and y be distinct and on X, let $1 \neq \alpha \in \Gamma(x, X)$, $1 \neq \beta \in \Gamma(y, X)$ and $\alpha \beta \notin \Gamma(X)^{*}$. Then $q x=q y$. If $q \in Z$ and $x \notin Z$, then by (ii) there is a point $z \neq q$ on $X \cap Z$. Let $1 \neq \gamma \in \Gamma(z, Z)$. As $\delta \rightarrow[\alpha, \delta]$, $\delta \in \Gamma(z, Z)$, defines a bijection $\Gamma(z, Z) \rightarrow \Gamma(z, Z), \gamma=[\alpha, \delta]$ for some such δ, and $\delta \neq 1$. Similarly, $\gamma=\left[\beta^{-1}, \epsilon\right]$ for some $\epsilon \in \Gamma(z, Z)$. Since

$$
\begin{gathered}
\alpha \beta=\delta^{-1} \alpha \delta \cdot \epsilon^{-1} \beta \epsilon \notin \Gamma(X)^{*}, \\
\delta^{-1} \alpha \delta \in \Gamma\left(x^{\delta}, X\right) \text { and } \epsilon^{-1} \beta \epsilon \in \Gamma\left(y^{\epsilon}, X\right),
\end{gathered}
$$

it follows that $q x^{\delta}=q y^{\epsilon}$. Then $\delta \epsilon^{-1} \in \Gamma(z, Z)$ fixes $q x$ and thus $=1$. Then $[\alpha, \delta]=\left[\beta^{-1}, \delta\right]$, so that $\alpha \beta$ commutes with δ and thus fixes Z. Since $\alpha \beta$ also fixes all blocks on q and $x, \alpha \beta \in \Gamma(X) \cap \Gamma(q) \subseteq \Gamma(X)^{*}$, a contradiction. $\Gamma(X)^{*}$ is thus a group.

By a standard argument, $\Gamma(X)^{*}$ is an elementary abelian p-group for some prime p. Thus, g, g^{\prime}, and $1+(g-1)+\left(g^{\prime}-1\right)(k-1)$ are powers of p, and $g \|(k-1)$. By (i) it follows that $g \mid(v-k)$ but $g \nVdash(v-k)$. It follows that $g \|(v-1)$.

Let $x \neq q$, and let X and Y be distinct blocks on q and x. In the usual way we can define a bijection $\Gamma(x, X) \rightarrow \Gamma(x, Y)$ in order to show that $\Gamma(x)^{*}$ is a p-group of order $1+\left(g^{\prime}-1\right) \lambda$. Then $g^{\prime} \mid(\lambda-1)$. Since $\Gamma(x)^{*}$ acts regularly on the blocks on q but not x (by (i)), $p \mid(r-\lambda)$. Thus, $p \mid(r-1)$.
Γ is transitive on the points $\neq q$. For, if L is a line not on q and $x \in L$, then
Γ has a p-element fixing x and L but moving all points of $L-\{x\}$. The assertion then follows from Gleason's Lemma [1, p. 191].

Since $\Gamma(q, X) \cap \Gamma(q, Y)=1$ if $q \in X \cap Y, X \neq Y$, the subgroup $\overline{\Gamma(q)}$ of Γ generated by $\Gamma(q)^{*}$ is an elementary abelian p-group. Clearly $\overline{\Gamma(q)} \unlhd \Gamma$. Then all orbits of $\overline{\Gamma(q)}$ of points $\neq q$ have the same length \bar{g}. If $q \in X$, then

$$
g=|\Gamma(q, X)| \leqq \bar{g} \mid(v-1)
$$

However, $g \|(v-1)$ and \bar{g} is a power of p. Thus, $\bar{g}=g$.
We now show that $\overline{\Gamma(q)}$ acts regularly on the blocks not on q. For let $\varphi \in \overline{\Gamma(q)}$ fix Z, where $q \notin Z$. φ fixes each block in $Z^{\overline{\Gamma(q)}}$ pointwise, and thus fixes some block $Z^{\prime} \neq Z$ not on q. Then φ fixes a point $x \neq q$ not on Z. If $\gamma \in \Gamma(x)^{*}$, then $[\varphi, \gamma] \in \Gamma(x)^{*} \cap \Gamma(q)=1$. Thus, φ fixes Z^{\prime} and all blocks in $Z^{\Gamma(x) *}$, a total of at least $1+1+\left(g^{\prime}-1\right) \lambda \geqq \lambda+2$ blocks. By (iii), $\varphi=1$, as claimed.

Thus, $|\overline{\Gamma(q)}| \mid(b-r)=(r / k)(v-k)=(r / k \lambda)(k-1) g^{-1} \cdot g(r-\lambda)$. Since $p \nmid r$ and $g \|(k-1)$, it follows that

$$
1+(g-1) r \leqq|\overline{\Gamma(q)}| g g(r-\lambda)<2[1+(g-1) r]
$$

This implies that $|\overline{\Gamma(q)}|=g(r-\lambda)$. If $x \neq q$, then $\left|\overline{\Gamma(q)_{x}}\right|=g(r-\lambda) / \bar{g}=$ $r-\lambda$. Then $\overline{\Gamma(q)_{x}}$ is transitive on the blocks on x not on q, so that $\overline{\Gamma(q)}$ is transitive on the blocks not on q. Then $b-r=g(r-\lambda)$, or $v-1=g k$, and $(v, k)=1$. Since $b-r=(r / k)(v-k)$ is a power of p and $p \nmid r$, it follows that $r / k=1$. Corollary 4 now completes the proof.

References

1. P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44 (Springer-Verlag, New York, 1968).
2. W. M. Kantor, Characterizations of finite projective and affine spaces, Can. J. Math. 21 (1969), 64-75.
3. -_Jordan groups, J. Algebra 12 (1969), 471-493.
4. H. Lüneburg, Zentrale Automorphismen von λ-Räumen, Arch. Math. 12 (1961), 134-145.

University of Illinois,
Chicago, Illinois

