
CORRESPONDENCE

The Joint Editors, 12 December 1949
The Journal of the Institute of
Actuaries Students' Society

A Proof of Certain Statistical Distributions

Sirs,

Dr J. Wishart, following an admirable lecture(i), recently gave
your readers a simple proof of certain fundamental theorems in
mathematical statistics (2,3).

What I believe to be an even simpler proof of some of the results,
based on a method given by Prof. J. F. SteffensenU), may be stated
as follows:

xit 2 = 1 to n, are n independent observations from a normal
distribution with mean £ and variance a2, so that the probability
that x1x2.-.xn fall within dx1 dx2... dxn is given by

p(x1...xn)dx1...dxn

= (2W)-imexp[-i^S (Xi-{)j/o*yXl...dxn.

Note that £ (xt -1)2 = £ (Xi -xf + n(x- £f,
n

where x= S xjn.
i=l

Let us make the transformation

x—z + u^S (i— 1 to n)

n n
subject to 2 u~o and 2 « ! = I -

i=l i=l

Summing the n equations shows that

n

z= 2 xt/n=x,
i
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n
since S M» = o> a n d summing the (#£ — z)2 shows that

n
V (v v\%

since

i=l
n

1 = 1

Further, since two equations hold between the M1( any two of
them, say «„_! and un, can in theory be expressed in terms of the
remaining ut.

We are thus transforming from n functionally independent
variables xi to n functionally independent variables x, S, u1...un_2.
The Jacobian of the transformation is then 8(x1... xn)/8 (xSuv. -un_2),
which is

2VS

o o : :

0 O

. Sun~l

2VS 2M» - 2

This formidable looking affair immediately factorizes into
1 \ux 1 0 0 : : o

1 i w , o 1 0

o o

du,m—2
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and all we need note about this determinant is that it is a function of
the ut only, say f{u1... «m_2)>

 a nd does not contain x or S.
Performing the transformation, remembering that dxx dx2... dxn

transforms into | J | dSdxdux... dun__2, we find that the probability
that S, x, ux... un_2 fall within dS dxdut... dun_2 is given by

p (S, *, u±... un_2) dS dxdu±... dun_%

= cS«*-» exp [ - 1 {S + n (x - |)2}/a2]/(Wl... un_2) dS dxdux.. .dun_2,
where c is a constant.

This factorizes at sight and shows that
p(S)dS = c1 S«»-3> exp ( -
p [x)dx = c2 exp { - \n (x -
p(ux... un_2) dux... dun_2 = cJ^Ui... un_2) duxdu2... dun_2.

It also shows that S, x and the ut taken as a group are stochastically
independent. (Among themselves the ui are correlated; but this is
a fact without interest to us here.) c1 and c2 are rapidly obtained from

JO' 0

The Mj we cheerfully ignore since we are not interested in them, and
the method has yielded the two distributions that we do want in
a delightfully ' sudden' manner. The method can be applied again,
with a slight modification, in the first part of Dr Wishart's third
paperO), but I do not wish to use up any more of your valuable space.

Yours faithfully,
University of the Witwatersrand J- E. KERRICH
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[The method used by our correspondent may be compared with R. A. Fisher's
' geometrical' method, of which it appears to be the analytical equivalent. The
subject is discussed in Chapter 10 of M. G. Kendall's Advanced Theory of
Statistics—Eds. J.S.S.]
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