VOL. 5 (1971), 205-219.

Integrability of trigonometric series |||

Masako Izumi and Shin-ichi Izumi

Ralph P. Boas, Jr, proved the following theorem: Let g be an odd function, integrable on $(0, \pi)$ and periodic with period 2π, and its Fourier series be $\sum b_{n} \sin n t$. If $0<x<l$ and $b_{n} \geq 0$ for all n, then $t^{-r} g(t) \in L(0, \pi)$ if and only if the series $\sum b_{n} / n^{1-r}$ converges. Philip Heywood asked whether the conditions $g(t) \in L(0, \pi)$ and $b_{n} \geq 0$ can be replaced by $\operatorname{tg}(t) \in L(0, \pi)$ and $b_{n} \geq-A / n^{r}$ or not. We prove this problem affirmatively.
1.

Our object is to prove the following
THEOREM 1. Let $0<r<1$ and let g be an odd function satisfying the conditions:
(i) $\operatorname{tg}(t) \in L(0, \pi)$, and
(ii) $b_{n}(g) \geq-c / n^{2}$ for all $n \geq 1$ and a positive constant c, where $b_{n}(g)$ is the n-th generalized sine coefficient of g. Then $\int_{+0}^{\pi} t^{-r} g(t) d t$ exists, if and only if $\sum b_{n}(g) / n^{1-r}$ converges.

[^0]This theorem was conjectured by Heywood [3] and is a generalization of a theorem of Boas [1] (cf. [2]) where $g \in L$ and $b_{n}(g) \geq 0$ instead of (i) and (ii), respectively. We can prove the $\int \rightarrow \sum$ part of Theorem 1 without the assumption (ii), that is,

THEOREM 1'. Let $0<r<1$ and let g be an odd function. If $\operatorname{tg}(t) \in L(0, \pi)$ and $b_{n}(g)$ is the n-th generalized sine coefficient, then if $\int_{+0}^{\pi} t^{-r} g(t) d t$ exists, then $\sum b_{n}(g) / n^{l-r}$ converges.

2.

We shall transform Theorems 1 and 1'. By the definition,

$$
\begin{aligned}
b_{n}(g) & =\frac{2}{\pi} \int_{0}^{\pi} g(t) \sin n t d t=\frac{2}{\pi} \int_{0}^{\pi} 2 \operatorname{tg} t / 2 \cdot g(t) \frac{\sin n t}{2 \operatorname{tg} t / 2} d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t) \frac{\sin n t}{2 \operatorname{tg} t / 2} d t=s_{n}^{*}(f)
\end{aligned}
$$

where f is an even function defined by

$$
f(t)=2 t \varepsilon t / 2 \cdot g(t) \text { on }(0, \pi)
$$

and $s_{n}^{*}(f)$ is the modified n-th partial sum of the Fourier series of f at the origin. Using f and $s_{n}^{*}(f)$ instead of g and $b_{n}(g)$, Theorems 1 and l^{\prime} can be stated in the following equivalent form.

THEOREM 2. Let $0<r<1$ and let f be an even fronction such that (i) $f \in L(0, \pi)$, and
(ii) $s_{n}^{*}(f) \geq-c / n^{r}$ for all $n \geq 1$ and a positive constant c.

Then $\int_{+0}^{\pi} t^{-r-1} f(t) d t$ exists, if and only if $\sum s_{n}^{*}(f) / n^{1-r}$ converges.

THEOREM 2'. Let $0<r<1$ and let f be an even function integrable on $(0, \pi)$. Then if $\int_{+0}^{\pi} t^{-r-1} f(t) d t$ exists, then $\sum s_{n}^{*}(f) / n^{1-r}$ converges.

We can prove the following similar theorems.
THEOREM 3. Let $0<r<1$ and let f be an even function such that (i) $f \in L(0, \pi)$, and
(ii) $s_{n}(f) \geq-c / n^{r}$ for all $n \geq I$ and a positive constant c, where $s_{n}(f)$ is the n-th partial sum of the Fourier series of f at the origin.

Then $\int_{+0}^{\pi} t^{-r-1} f(t) d t$ exists, if and only if $\sum s_{n}(f) / n^{1-r}$ converges.

THEOREM 3'. Let $0<r<1$ and let f be an even function integrable on $(0, \pi)$. Then if $\int_{+0}^{\pi} t^{-r-1} f(t) d t$ exists, then $\sum s_{n}(f) / n^{1-r}$ converges.
3. Proof of the $\sum \rightarrow \int$ part of the theorems
3.1. We shall first prove Theorem 3. We write $s_{n}=s_{n}(f)$ and

$$
f(t) \sim \sum_{n=1}^{\infty} a_{n} \cos n t
$$

We can take $c=1$, so that $s_{n}+1 / n^{r} \geq 0$ for all $n \geq 1$. Then
(1) $\int_{x}^{\pi} \frac{f(t)}{t^{r} \cdot 2 \sin t / 2} d t$

$$
=\sum_{n=1}^{\infty} a_{n} \int_{x}^{\pi} \frac{\cos n t}{t^{r} \cdot 2 \sin t / 2} d t
$$

$$
=\sum_{n=1}^{\infty}\left(s_{n}-s{ }_{n-1}\right) \int_{x}^{\pi} \frac{\cos n t}{t^{r} \cdot 2 \sin t / 2} d t
$$

$$
=\sum_{n=1}^{\infty} s_{n} \int_{x}^{\pi} \frac{\sin (n+1 / 2) t}{t^{r}} d t=\sum_{n=1}^{\infty} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{(n+1 / 2) \pi} \frac{\sin t}{t^{r}} d t
$$

$$
=\sum_{n=1}^{\infty} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t-\sum_{n=1}^{\infty} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) \pi}^{\infty} \frac{\sin t}{t^{r}} d t
$$

where the last series on the right side is a finite constant, since

$$
\begin{aligned}
\int_{(n+1 / 2) \pi}^{\infty} \frac{\sin t}{t^{r}} d t & =\left[-\frac{\cos t}{t^{r}}\right]_{t=(n+1 / 2) \pi}^{\infty}-r \int_{(n+1 / 2) \pi}^{\infty} \frac{\cos t}{t^{1+r}} d t \\
& =0\left(1 / n^{1+r}\right)
\end{aligned}
$$

and $s_{n}=o\left(n^{1-r}\right)$ by the convergence of the series $\sum s_{n} / n^{l-r}$.
Let ε be a positive number <1 and we write

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t & =\sum_{n=1}^{[\varepsilon / x]}+\sum_{n=[\varepsilon / x]+1}^{[1 / \varepsilon x]}+\sum_{n=[1 / \varepsilon x]+1}^{\infty} \\
& =P+Q+R .
\end{aligned}
$$

Putting $[\varepsilon / x]=y$, we get

$$
\begin{aligned}
P & =\sum_{n=1}^{y} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t \\
& =\frac{\pi}{2 \Gamma(r) \sin (r \pi / 2)} \sum_{n=1}^{y} \frac{s_{n}}{(n+1 / 2)^{1-r}}-\sum_{n=1}^{y} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{0}^{(n+1 / 2) x} \frac{\sin t}{t^{r}} d t \\
& =A \sum_{n=1}^{y} \frac{s_{n}}{(n+1 / 2)^{1-r}}-\sum_{n=1}^{y} \frac{s_{n}+1 / n^{r}}{(n+1 / 2)^{1-r}} \int_{0}^{(n+1 / 2) x} \frac{\sin t}{t^{r}} d t \\
& +\sum_{n=1}^{y} \frac{1}{n^{r}(n+1 / 2)^{1-r}} \int_{0}^{(n+1 / 2) x} \frac{\sin t}{t^{r}} d t
\end{aligned}
$$

$$
=S-T+U,
$$

where S tends to a constant as $x \rightarrow 0$, by the assumption, and

$$
\begin{aligned}
T & \leq A \sum_{n=1}^{y} \frac{s_{n}+1 / n^{r}}{n^{1-r}}(n x)^{2-r} \\
& =A x^{2-r} \sum_{n=1}^{y} n s_{n}+A x^{2-r} \sum_{n=1}^{y} n^{1-r} \\
& =A x^{2-r}\left(\sum_{n=1}^{y-1} \Delta n^{2-r} \sum_{m=1}^{n} \frac{s_{m}}{m^{1-r}}+y^{2-r} \sum_{m=1}^{y} \frac{s_{m}}{m^{1-r}}\right)+A \varepsilon^{2-r} \\
& \leq A \varepsilon^{2-r},
\end{aligned}
$$

and further

$$
U \leq A \sum_{n=1}^{y} \frac{1}{n}(n x) \leq A \varepsilon
$$

Therefore, collecting the above estimations, we get

$$
\begin{equation*}
\underset{x \rightarrow 0}{\lim \sup }|P-A| \leq A \varepsilon^{2-r} \tag{2}
\end{equation*}
$$

Writing $z=[I / \varepsilon x]$ and using integration by parts and Abel's transformation, we get

$$
\begin{aligned}
R & =\sum_{n=z+1}^{\infty} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t \\
& =\sum_{n=z+1} \frac{s_{n}+1 / n^{r}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t
\end{aligned}
$$

$$
-\sum_{n=z+1}^{\infty} \frac{1}{n^{r}(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t
$$

$$
=\sum_{n=z+1} \frac{s_{n}+1 / n^{r}}{(n+1 / 2)^{1-r}}\left(\frac{\cos (n+1 / 2) x}{(n+1 / 2)^{r} x^{r}}-r \int_{(n+1 / 2) x}^{\infty} \frac{\cos t}{t^{1+r}} d t\right)+o\left(\varepsilon^{r}\right)
$$

$$
=\frac{1}{x^{2}}\left(S_{z+1} \cos (z+3 / 2) x-2 \sin x / 2 \sum_{n=z+2}^{\infty} S_{n} \sin n x\right)
$$

$$
+O\left(\frac{1}{x^{1+r}} \sum_{n=z+1}^{\infty} \frac{s_{n}+1 / n^{r}}{n^{2}}\right)+O\left(\varepsilon^{r}\right)
$$

$$
=O\left(\varepsilon^{r}\right)+O\left(\varepsilon^{r+1}\right)+O\left(\varepsilon^{r}\right)=O\left(\varepsilon^{r}\right)
$$

where

$$
S_{k}=\sum_{n=k}^{\infty} \frac{s_{n}+1 / n^{r}}{n+1 / 2}+0 \quad \text { and } \quad s_{k}=0\left(1 / k^{r}\right) \text { as } k \rightarrow \infty
$$

Therefore,

$$
\begin{equation*}
\underset{x \rightarrow 0}{\lim \sup }|R| \leq A \varepsilon^{r} \tag{3}
\end{equation*}
$$

Finally, using the expansion of sine series,

$$
\begin{align*}
Q & =\sum_{n=y+1}^{z} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{\infty} \frac{\sin t}{t^{r}} d t \tag{4}\\
& =\sum_{n=y+1}^{z} \frac{s_{n}}{(n+1 / 2)^{1-r}} \int_{0}^{(n+1 / 2) x} \frac{\sin t}{t^{r}} d t+o(1) \\
& =\sum_{n=y+1}^{z} \frac{s_{n}}{(n+1 / 2)^{1-r}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{(n+1 / 2) x} t^{2 k+1-r} d t+o(1) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+2-r}}{(2 k+1)!(2 k+2-r)} \sum_{n=y+1}^{z}(n+1 / 2)^{2 k+1} s_{n}+o(1) \\
& =o\left(\sum_{k=0}^{\infty} \frac{\varepsilon^{-2 k-2+r}}{(2 k+1)!(2 k+2-r)}\right)+o(1) \\
& =o(1) \text { as } x \rightarrow 0,
\end{align*}
$$

since, putting $t_{n}=\sum_{m=y+1}^{\infty} s_{m} /(m+1 / 2)^{1-r}$, we have

$$
\begin{aligned}
\sum_{n=y+1}^{z}(n+1 / 2)^{2 k+1} s_{n} & =\sum_{n=y+1}^{z} \frac{s_{n}}{(n+1 / 2)^{1-r}}(n+1 / 2)^{2 k+2-r} \\
& =\sum_{n=y+1}^{z}\left(t_{n}-t_{n-1}\right)(n+1 / 2)^{2 k+2-r} \\
& =t_{z}(z+1 / 2)^{2 k+2-r}+\sum_{n=y+1}^{z-1} t_{n} \Delta\left((n+1 / 2)^{2 k+2-r}\right) \\
& =o\left(1 /(\varepsilon x)^{2 k+2-x}\right) \text { as } x \rightarrow 0 .
\end{aligned}
$$

Combining (2), (3) and (4), we get

$$
\underset{x \rightarrow 0}{\lim \sup }\left|\int_{x}^{\pi} \frac{f(t)}{t^{r} \cdot 2 \sin t / 2} d t-A\right| \leq A \varepsilon^{r} .
$$

Letting $\varepsilon \rightarrow 0$, we get the $\Sigma \rightarrow \int$ part of Theorem 3 .
3.2. We shall prove Theorems 1 and 2. If we show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \int_{x}^{\pi} \frac{\sin (n+1 / 2) t}{t^{r}} d t=A+o(1) \text { as } x \rightarrow 0 \tag{5}
\end{equation*}
$$

then, by (1),
$\int_{x}^{\pi} \frac{f(t)}{t^{r} \cdot 2 \sin t / 2} d t=\sum_{n=1}^{\infty} \frac{s_{n}^{*}}{(n+1 / 2)^{1-r}} \int_{(n+1 / 2) x}^{(n+1 / 2) \pi} \frac{\sin t}{t^{r}} d t+A+o(1)$ as $x \rightarrow 0$.
We can apply the method in $\S 3.1$ to the right side integral under the assumption (ii) of Theorem 2, so we can complete the proof parallel to §3.1.

```
Now, the left side series of (5) is
```

$$
\begin{aligned}
& \sum_{n=1}^{\infty} s_{n} \int_{x}^{\pi} \frac{\sin (n+1 / 2) t-\sin (n-1 / 2) t}{t^{r}} d t \\
&=2 \sum_{n=1}^{\infty} s_{n} \int_{x}^{\pi} \frac{\sin t / 2}{t^{r}} \cos n t d t \\
&=2 \frac{\sin x / 2}{x^{r}} \sum_{n=1}^{\infty} \frac{s_{n}}{n} \sin n x+2 \sum_{n=1}^{\infty} \frac{s_{n}}{n} \int_{x}^{\pi} \frac{d}{d t}\left(\frac{\sin t / 2}{t^{r}}\right) \cos n t d t \\
&=2 V+2 W
\end{aligned}
$$

and

$$
V=\frac{\sin x / 2}{x^{r}} \sum_{n=1}^{\infty} \frac{s^{*}}{n} \sin n x+\frac{\sin x / 2}{2 x^{r}} \sum_{n=1}^{\infty} \frac{a_{n}}{n} \sin n x,
$$

where the series of the last term converges uniformly, since it is the termwise integrated series of the Fourier series of f and then the last term of the right side tends to zero as $x \rightarrow 0$. On the other hand, putting

$$
S_{n}^{*}=\sum_{k=n}^{\infty}\left(s_{k}^{*}+1 / k^{r}\right) / k^{1-r}
$$

we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{s_{n}^{*}}{n} \sin n x & =\sum_{n=1}^{\infty} \frac{s_{n}^{*}+1 / n^{r}}{n^{1-r}} \frac{\sin n x}{n^{r}}-\sum_{n=1}^{\infty} \frac{\sin n x}{n^{1+r}} \\
& =-\sum_{n=1}^{\infty} S_{n}^{*} \Delta\left(\frac{\sin n x}{n^{r}}\right)+o(1),
\end{aligned}
$$

and then V tends to zero as $x \rightarrow 0$.
Finally, putting

$$
S_{n}=\sum_{k=n}^{\infty} s_{k} / k^{l-r}
$$

and using Abel's transformation,

$$
\begin{aligned}
W & =\sum_{n=1}^{\infty} S_{n} \Delta\left(\frac{1}{n^{r}} \int_{x}^{\pi} \frac{d}{d t}\left(\frac{\sin t / 2}{t^{r}}\right) \cos n t d t\right) \\
& =2 \sum_{n=1}^{\infty} \frac{S_{n}}{n^{r}} \int_{x}^{\pi} \frac{d}{d t}\left(\frac{\sin t / 2}{t^{r}}\right) \sin t / 2 \sin (n+1 / 2) t d t+A+o(1),
\end{aligned}
$$

which tends to a limit as $x \rightarrow 0$, since the series on the right side is absolutely convergent. Thus we have proved the required (5).

4. Proof of the $\int \rightarrow \sum$ part of the theorems:

We shall prove Theorem l'. We can write $^{\prime}$

$$
\begin{aligned}
\sum_{n=M}^{N} \frac{b_{n}(g)}{n^{1-r}} & =\frac{1}{\pi} \int_{0}^{\pi} g(t)\left(\sum_{n=M}^{N} \frac{\sin n t}{n^{1-r}}\right) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} g(t) d t\left(\int_{M-1 / 2}^{N+1 / 2} \frac{\sin u t}{u^{1-r}} d u+\int_{M-1 / 2}^{N+1 / 2} \frac{\sin u t}{u^{1-r}} d j(u)\right) \\
& =\frac{1}{\pi}(P+Q),
\end{aligned}
$$

where

$$
j(u)=-u+[u]+1 / 2 \sim \frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin 2 \pi m u}{m}
$$

Now

$$
\begin{aligned}
P & =\int_{0}^{\pi} \frac{g(t)}{t^{r}} d t \int_{(M-1 / 2) t}^{(N+1 / 2) t} \frac{\sin v}{v^{1-r}} d v \\
& =\int_{0}^{(M-1 / 2) t} \frac{\sin v}{v^{1-r}} d v \int_{v /(N+1 / 2)}^{v /(M-1 / 2)} \frac{g(t)}{t^{r}} d t \\
& +\int_{(M-1 / 2) \pi}^{(N+1 / 2) \pi} \frac{\sin v}{v^{1-r}} d v \int_{v /(N+1 / 2)}^{\pi} \frac{t^{r}}{(M(t)} d t
\end{aligned}
$$

$$
=R+S
$$

and

$$
\begin{aligned}
R & =\left[\sum_{k=0}^{M-1} \int_{k \pi}^{(k+1) \pi} d v-\int_{(M-1 / 2) \pi}^{M \pi} d v\right) \int_{v /(N+1 / 2)}^{v /(M-1 / 2)} d t \\
& =\sum_{k=1}^{[(M-1 / 2)]}\left(\int_{(2 k-1) \pi}^{2 k \pi}+\int_{2 k \pi}^{(2 k+1) \pi}\right) d v \int_{v /(N+1 / 2)}^{v /(M-1 / 2)} d t+o(1) \\
& =R^{\prime}+o(1) \text { as } M, N \rightarrow \infty .
\end{aligned}
$$

Writing $[(M-1) / 2]=M^{\prime}$,

$$
=T_{1}-T_{2}
$$

We can easily see that $T_{1}=O(1)$ as $M, N \rightarrow \infty$ and

$$
\begin{aligned}
& R^{\prime}=-\sum_{k=1}^{M^{\prime}} \int_{0}^{\pi} \sin v d v\left\{\frac{1}{((2 k-1) \pi+v)^{1-r}} \int \begin{array}{l}
((2 k-1) \pi+v) /(M-1 / 2) \\
((2 k-1) \pi+v) /(N+1 / 2) \frac{g(t)}{t^{r}}
\end{array} d t\right. \\
& \left.-\frac{1}{(2 k \pi+v)^{1-r}} \int_{(2 k \pi+v) /(N+1 / 2)}^{(2 k \pi+v) /(M-1 / 2)} \frac{g(t)}{t^{r}} d t\right\} \\
& =-\int_{0}^{\pi} \sin v d v\left\{\sum _ { k = 1 } ^ { M ^ { \prime } } \left(\frac{1}{((2 k-1) \pi+v)^{1-r}}\right.\right. \\
& \left.-\frac{1}{(2 k \pi+v)^{1-r}}\right) \int \begin{array}{l}
((2 k-1) \pi+v) /(M-1 / 2) \\
((2 k-1) \pi+v) /(N+1 / 2) \frac{g(t)}{t^{r}} d t
\end{array} \\
& +\sum_{k=1}^{M^{\prime}} \frac{1}{(2 k \pi+v)^{1-r}} \int\left(\begin{array}{l}
((2 k-1) \pi+v) /(M-1 / 2) \\
((2 k-1) \pi+v) /(N+1 / 2)
\end{array}-\int_{(2 k \pi+v) /(N+1 / 2)}^{(2 k \pi+v) /(M-1 / 2)} \frac{g(t)}{t^{r}} d t\right\}
\end{aligned}
$$

$$
\begin{aligned}
T_{2} & =\int_{0}^{\pi} \sin v d v\left\{\sum_{k=1}^{M^{\prime}} \frac{1}{(2 k \pi+v)^{1-r}} \int_{((2 k-1) \pi+v) /(N+1 / 2)}^{(2 k \pi+v) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t\right. \\
& \left.-\sum_{k=1}^{M^{\prime}} \frac{1}{(2 k \pi+v)^{1-r}} \int_{((2 k-1) \pi+v) /(M-1 / 2)}^{(2 k \pi+v) /(M-1 / 2)} \frac{g(t)}{t^{r}} d t\right\} \\
& =T_{2}^{\prime}-T_{2}^{\prime \prime},
\end{aligned}
$$

where

$$
\begin{aligned}
T_{2}^{\prime}= & \int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{d \omega}{(2 \pi \omega+v)^{1-r}} \int_{(2 \pi \omega-\pi+v) /(N+1 / 2)}^{(2 \pi \omega+v) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t \\
& +\int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{d j(\omega)}{(2 \pi \omega+v)^{1-r}} \int_{(2 \pi \omega-\pi+v) /(N+1 / 2)}^{(2 \pi \omega+v) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t \\
= & U_{1}+U_{2} .
\end{aligned}
$$

Writing $2 \pi \omega /(N+1 / 2)=\omega^{\prime}, v /(N+1 / 2)=v^{\prime}$, we have

$$
U_{1}=\frac{(N+1 / 2)^{1+x}}{2} \int_{0}^{\pi /(N+1 / 2)} \sin (N+1 / 2) v^{\prime} d v^{\prime}
$$

$$
\cdot \int_{1 / 2(N+1 / 2)}^{\left(M^{\prime}+1 / 2\right) /(N+1 / 2)} \frac{d \omega^{\prime}}{\left(w^{\prime}+v^{\prime}\right)^{1-r}} \int_{w^{\prime}+v^{\prime}-\pi /\left(N+\frac{1}{2}\right)}^{w^{\prime}+v^{\prime}} \frac{g(t)}{t^{r}} d t
$$

$$
=\frac{(N+1 / 2)^{1+x}}{2} \int_{0}^{\pi /(N+1 / 2)} \sin (N+1 / 2) v^{\prime} d v^{\prime}
$$

$$
\cdot \int_{\pi /(N+1 / 2)}^{\left(M^{\prime}+1 / 2\right) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t \int_{t-v^{\prime}}^{t-v^{\prime}+\pi /(N+1 / 2)} \frac{d \omega^{\prime}}{\left(\omega^{\prime}+v^{\prime}\right)^{1-r}}+o(1)
$$

For any $\varepsilon>0$, there is a $\delta>0$ such that

$$
\left|\int_{b}^{c} g(t) t^{-r} d t\right|<\varepsilon \text { for any } 0<b<c<\delta ;
$$

then, if $\pi /(N+1 / 2)<\delta<\left(M^{\prime}+1 / 2\right) /(N+1 / 2)$, we get

$$
\begin{gathered}
U_{1}=\frac{(N+1 / 2)^{1+r}}{2 \pi} \int_{0}^{\pi /(N+1 / 2)} \sin (N+1 / 2) v^{\prime} d v^{\prime} \\
\cdot\left(\int_{\pi /(N+1 / 2)}^{\delta} \frac{g(t)}{t^{r}} d t+\int_{\delta}^{\left(M^{\prime}+1 / 2\right) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t\right) \\
\cdot \int_{t-v^{\prime}}^{t-v^{\prime}+\pi /(N+1 / 2)} \frac{d w^{\prime}}{\left(\omega^{\prime}+v^{\prime}\right)^{1-r}}+o(1)
\end{gathered}
$$

$$
=U_{1}^{\prime}+U_{1}^{\prime \prime}+o(1)
$$

where

$$
\left|U_{1}^{\prime}\right| \leq A(N+1 / 2)^{1+r} \frac{A}{N+1 / 2} \frac{(N+1 / 2)^{1-r}}{N+1 / 2} \varepsilon \leq A \varepsilon
$$

and

$$
\left|U_{1}^{\prime \prime}\right| \leq A(N+1 / 2)^{1+r} \frac{1}{N+1 / 2} \frac{A}{N+1 / 2}=o(1) \quad \text { as } \quad M, N \rightarrow \infty
$$

Thus we have $\left|U_{1}\right| \leq A \varepsilon$ which holds also for all cases of δ and then $U_{1}=O(1)$ as $M, N \rightarrow \infty$. Now, by integration by parts,

$$
U_{2}=\int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{j(w)}{(2 \pi w+v)^{2-r}} d v \cdot \int_{(2 \pi w-\pi+v) /(N+1 / 2)}^{(2 \pi w+v) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t
$$

$$
+\int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{j(w)}{(2 \pi w+v)^{1-r}} \frac{g((2 \pi \omega+v) /(N+1 / 2))}{((2 \pi \omega+v) /(N+1 / 2))^{r}} \cdot \frac{2 \pi}{N+1 / 2} d w
$$

$$
-\int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{j(w)}{(2 \pi \omega+v)^{1-r}} \frac{q((2 \pi \omega-\pi+v) /(N+1 / 2))}{((2 \pi w-\pi+v) /(N+1 / 2))^{r}} \cdot \frac{2 \pi}{N+1 / 2} d v
$$

$$
=U_{2}^{\prime}+U_{2}^{\prime \prime}-U_{2}^{\prime \prime \prime}
$$

where, substituting the Fourier series of $j(w)$,

$$
\begin{aligned}
U_{2}^{\prime}= & A \sum_{m=1}^{\infty} \frac{1}{m} \int_{0}^{\pi} \sin v d v \int_{1 / 2}^{M^{\prime}+1 / 2} \frac{\sin 2 \pi m v}{(2 \pi \omega+v)^{2-r}} d \omega \int_{(2 \pi \omega-\pi+v) /(N+1 / 2)}^{(2 \pi \omega+v) /(N+1 / 2)} \frac{g(t)}{t^{r}} d t \\
= & A(N+1 / 2)^{r} \sum_{m=1}^{\infty} \frac{1}{m} \int_{0}^{\pi /(N+1 / 2)} \sin (N+1 / 2) v d v \\
& \cdot \int_{\pi /(N+1 / 2)}^{2 \pi\left(M^{\prime}+1 / 2\right) /(N+1 / 2)} \frac{\sin m(N+1 / 2) \omega^{\prime}}{\left(\omega^{\prime}+v^{\prime}\right)^{2-r}} d w^{\prime} \cdot \int_{w^{\prime}+v^{\prime}-\pi /(N+1 / 2)}^{w^{\prime}+v^{\prime}} \frac{g(t)}{t^{r}} d t \\
= & A(N+1 / 2)^{r} \sum_{m=1}^{\infty} \frac{1}{m} \int_{0}^{\pi /(N+1 / 2)} \sin (N+1 / 2) v d v \\
& \cdot \int_{\pi /(N+1 / 2)}^{2 \pi\left(M^{\prime}+1 / 2\right)(N+1 / 2)} \frac{g(t)}{t^{r}} d t \int_{t-v^{\prime}}^{t-v^{\prime}+\pi /(N+1 / 2)} \frac{\sin m(N+1 / 2) \omega^{\prime}}{\left(\omega^{\prime}+v^{\prime}\right)^{2-r}} d w^{\prime}+o(1) \\
= & o(1), \text { as } M, N \rightarrow \infty ;
\end{aligned}
$$

and, by the second mean value theorem,

$$
\begin{aligned}
U_{2}^{\prime \prime} & =\frac{2 \pi}{N+1 / 2} \int_{0}^{\pi} \sin v d v \sum_{k=1}^{\left[M^{\prime}+1 / 2\right]} \int_{k}^{k+1} \frac{j(w)}{(2 \pi \omega+v)^{1-r}} \frac{q((2 \pi \omega+v) /(N+1 / 2))}{((2 \pi \omega+v) /(N+1 / 2))^{r}} d v+o(1) \\
& =\frac{2 \pi}{N+1 / 2} \int_{0}^{\pi} \sin v d v \sum_{k=1}^{\left[M^{\prime}+1 / 2\right]} \frac{1}{(2 \pi k+v)^{1-r}} \\
& \cdot\left(\int_{k}^{k^{\prime}}-\int_{k^{\prime \prime}}^{k^{\prime \prime}} \left\lvert\, \frac{g((2 \pi \omega+v) /(N+1 / 2))}{((2 \pi \omega+v) /(N+1 / 2))^{r}} d \omega+o(1)\right.\right. \\
& =o(1) \text {, as } M, N \rightarrow \infty,
\end{aligned}
$$

where $k<k^{\prime}<k^{\prime \prime}<k^{\prime \prime \prime}<k+1$, and similarly $U_{2}^{\prime \prime}=o(1)$. Therefore $U_{2}=o(1)$. Thus we have proved that $T_{2}^{\prime}=U_{1}+U_{2}=o(1)$. Similarly $T_{2}^{\prime \prime}=o(1)$, and then $T_{2}=T_{2}^{\prime}-T_{2}^{\prime \prime}=o(1)$. Thus $R=o(1)$. Estimation of S is similar to R, and then $P=o(1)$.

Now, we shall estimate Q.

$$
\begin{aligned}
Q & =\int_{0}^{\pi} g(t) d t \int_{M-1 / 2}^{N+1 / 2} \frac{\sin u t}{u^{1-r}} d j(u) \\
& =-\int_{0}^{\pi} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{d}{d u}\left(\frac{\sin u t}{1-r}\right) d u \\
& =-\int_{0}^{\pi} t g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\cos u t}{u^{1-r}} d u . \\
& +(1-r) \int_{0}^{\pi} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\sin u t}{u^{2-r}} d u
\end{aligned}
$$

Using the Fourier expansion of j,

$$
\begin{aligned}
\int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\cos u t}{u^{1-r}} d u & =\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \int_{M-1 / 2}^{N+1 / 2} \frac{\cos u t \sin 2 \pi m u}{u^{1-r}} d u \\
& =\frac{1}{2 \pi} \sum_{m=1}^{\infty} \frac{1}{m} \int_{M-1 / 2}^{N+1 / 2} \frac{\sin (2 \pi m+t) u+\sin (2 \pi m-t) u}{u^{1-r}} d u \\
& =O\left(\frac{1}{M^{1-r}} \sum_{m=1}^{\infty} \frac{1}{m^{2}}\right)=O\left(\frac{1}{M^{1-r}}\right)
\end{aligned}
$$

and then

$$
\left|Q_{1}\right| \quad \frac{A}{M^{1-r}} \int_{0}^{\pi} t|g(t)| d t=o(1) \quad \text { as } \quad M+\infty .
$$

On the other hand

$$
\begin{aligned}
Q_{2}= & \int_{0}^{\pi} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\sin u t}{u^{2-r}} d u \\
= & \int_{0}^{1 /(N+1 / 2)} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\sin u t}{2-r} d u \\
& +\int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} g(t) d t\left(\int_{M-1 / 2}^{1 / t}+\int_{1 / t}^{N+1 / 2}\right) j(u) \frac{\sin u t}{2-r} d u \\
& +\int_{1 /(M-1 / 2)}^{\pi} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) \frac{\sin u t}{u^{2-r}} d u
\end{aligned}
$$

$$
=V_{1}+V_{2}+V_{3}+V_{4}
$$

We have

$$
V_{1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{1 /(N+1 / 2)} t^{2 k+1} g(t) d t \int_{M-1 / 2}^{N+1 / 2} j(u) u^{2 k-1+r} d u
$$

and then

$$
\begin{aligned}
\left|V_{1}\right| \leq & \int_{0}^{1 /(N+1 / 2)} t|g(t)| d t\left|\int_{M-1 / 2}^{N+1 / 2} \frac{j(u)}{u^{1-r}} d u\right| \\
& +\sum_{k=1}^{\infty} \frac{1}{(2 k+1)!} \int_{0}^{1 /(N+1 / 2)} t^{2 k+1}|g(t)| d t \cdot\left|\int_{M-1 / 2}^{N+1 / 2} j(u) u^{2 k-1+r} d u\right| \\
& \leq \frac{A}{m^{1-r}} \int_{0}^{1 /(N+1 / 2)} t|g(t)| d t \\
& \quad+\sum_{k=1}^{\infty} \frac{(N+1 / 2)^{2 k-1+r}}{(2 k+1)!(N+1 / 2)^{2 k}} \int_{0}^{1 /(N+1 / 2)} t|g(t)| d t \\
& =o(1), \text { as } M, N \rightarrow \infty .
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
V_{2} & =\int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} g(t) d t \int_{M-1 / 2}^{1 / t} j(u) \frac{\sin u t}{u^{2-r}} d u \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} t^{2 k+1} g(t) d t \int_{M-1 / 2}^{1 / t} j(u) u^{2 k-1+r} d u
\end{aligned}
$$

and then

$$
\begin{aligned}
\left|V_{2}\right| & \leq \frac{A}{M^{1-r^{2}}} \int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} t|g(t)| d t+A \sum_{k=1}^{\infty} \frac{1}{(2 k+1)!} \int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} t^{2-r}|g(t)| d t \\
& =o(1), \text { as } M, N \rightarrow \infty .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
V_{3} & =\int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} g(t) d t \int_{1 / t}^{N+1 / 2} j(u) \frac{\sin u t}{u^{2-r}} d u \\
& =o\left(\int_{1 /(N+1 / 2)}^{1 /(M-1 / 2)} t^{2-r}|g(t)| d t\right) \\
& =o(1), \text { as } M, N \rightarrow \infty,
\end{aligned}
$$

since

$$
\begin{aligned}
\int_{1 / t}^{N+1 / 2} j(u) \frac{\sin u t}{u^{2-r}} d u & =\frac{1}{\pi} \sum_{m}^{\infty} \frac{1}{m} \int_{1 / t}^{N+1 / 2} \frac{\sin 2 \pi m u \cdot \cos u t}{u^{2-r}} d u \\
& =O\left(t^{2-r} \sum_{m=1 m^{2}}^{\infty} \frac{1}{2}\right)=O\left(t^{2-r}\right)
\end{aligned}
$$

and similarly V_{4} is also $o(1)$. Thus we have proved the theorem. The proofs of Theorems 2^{\prime} and 3^{\prime} are now immediate.

References

[1] R.P. Boas, Jr, "Fourier series with positive coefficients", J. Math. Anal. Appl. 17 (1967), 463-483.
[2] Ralph P. Boas, Jr, Integrability theorems for trigonometric transforms
(Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38.
Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[3] Philip Heywood, "Some theorems on trigonometric series", Quart. J. Math. Oxford (2) 20 (1969), 465-481.

Department of Mathematics,
University of Sherbrooke,
Sherbrooke,
Quebec, Canada,
and

Department of Mathematics,
Institute of Advanced Studies, Australlan National University, Canberra, ACT.

[^0]: Received 31 March 1971. Papers I and II in this series are not referred to in this paper.

