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Monotone Paths on Zonotopes and
Oriented Matroids
Christos A. Athanasiadis and Francisco Santos

Abstract. Monotone paths on zonotopes and the natural generalization to maximal chains in the poset
of topes of an oriented matroid or arrangement of pseudo-hyperplanes are studied with respect to
a kind of local move, called polygon move or flip. It is proved that any monotone path on a d-
dimensional zonotope with n generators admits at least �2n/(n−d + 2)�−1 flips for all n ≥ d + 2 ≥ 4
and that for any fixed value of n− d, this lower bound is sharp for infinitely many values of n. In par-
ticular, monotone paths on zonotopes which admit only three flips are constructed in each dimension
d ≥ 3. Furthermore, the previously known 2-connectivity of the graph of monotone paths on a poly-
tope is extended to the 2-connectivity of the graph of maximal chains of topes of an oriented matroid.
An application in the context of Coxeter groups of a result known to be valid for monotone paths on
simple zonotopes is included.

1 Introduction

Let P be a d-dimensional polytope in Rd and f be a generic linear functional on
Rd, meaning that f is nonconstant on every edge of P. Such a functional f takes
its minimum and maximum over P at unique vertices s and t , respectively. An f -
monotone path on P is a sequence s = a0, a1, . . . , an = t of vertices of P such that
for each i with 1 ≤ i ≤ n, vertices ai−1 and ai are joined by an edge of P and
f (ai−1) < f (ai). A flip for such a path γ is a 2-dimensional face F of P such that
one of the two f -monotone paths on F, considered as a polytope on its own, forms
a subsequence of consecutive vertices in γ. Two distinct f -monotone paths on P are
said to differ by a polygon move, or flip, across F [1], [14] if they have F as a common
flip and agree on vertices not in F.

The polygon moves give rise to a natural graph structure G(P, f ) on the vertex
set of f -monotone paths on P, which is the analogue of the graph of triangulations
of a given point configuration and geometric bistellar operations and that of cubical
tilings of a zonotope and cube-flips, in the context of the generalized Baues prob-
lem [4]; see [14, Section 2]. In the case of triangulations and tilings and for a fixed
dimension, the problem to determine the level of connectivity of such a graph and,
in particular, the minimum possible number of neighbors of a vertex, has attracted
considerable attention in recent years; see e.g. [14], [15]. For the graph G(P, f ) these
questions were raised in [14, Section 6] and studied in [1]. Recall that a graph G is
k-connected if any subgraph of G obtained by removing a set of at most k− 1 vertices
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and their incident edges is connected and contains at least two vertices. The relevant
results of [1] can be summarized as follows.

Theorem 1.1 ([1])

(i) If P is any polytope of dimension d ≥ 3 then G(P, f ) is 2-connected. In particular,
any f -monotone path on P has at least two flips.

(ii) For any d ≥ 4 there exists a d-polytope P, a linear functional f and an f -monotone
path on P with as few as two flips. Furthermore, for d = 4 the polytope in the last
statement can be chosen to be a zonotope with six generators.

(iii) If P is a simple d-polytope then the graph G(P, f ) is (d − 1)-connected. In partic-
ular, any f -monotone path on P has at least d− 1 flips.

An f -monotone path on P is called coherent if it can be obtained by minimizing
some fixed and sufficiently generic linear functional on each slice P ∩ f−1(c) of P or,
in other words, if the path projects to the boundary of some 2-dimensional and suf-
ficiently generic projection of P. This notion agrees with the definition of coherency
in the more general framework introduced in [3]. The results there imply that there
exists a polytope of dimension d − 1, the monotone path polytope of P and f , whose
vertices are in bijection with coherent f -monotone paths and whose edges represent
flips among them (see also [14], [16, Chapter 9] and Remark 3.2). In particular, co-
herent monotone paths have at least d − 1 flips. For this reason, monotone paths
with less than d− 1 flips are called flip-deficient.

We will be interested in the special case in which P is a zonotope (see Section 2 for
definitions). In this case the graph G(P, f ) has an alternative description in terms of
the arrangement A of linear hyperplanes polar to P (see [5, Section 1.2]), which we
briefly outline next. If B is the region of A which corresponds to the f -minimizing
vertex of P then the f -monotone paths on P biject to the maximal chains of the
poset of regions of A (see [10]) with basis B. The flips correspond to the “elemen-
tary homotopies” connecting these maximal chains (see Section 6), a concept which
originated in the work of Deligne [9], and reduce to the “Coxeter moves” in the im-
portant special case of reflection arrangements (see [5, Section 2.3] and Section 7).
Moreover, this graph of maximal chains and elementary homotopies can be defined
for an arbitrary oriented matroid L with fixed tope B and was shown to be con-
nected in [8]. We will consider the problem to determine the minimum number of
flips possible for monotone paths on zonotopes of fixed dimension as well as number
of generators. Our first result gives a lower bound on this number.

Theorem 1.2 Let Z be a zonotope of dimension d ≥ 2 with n generators and f be a
generic linear functional on Z. Any f -monotone path on Z admits at least m(n, d) flips,
where

m(n, d) =

{
d− 1, if n ≤ d + 1;

� 2n
n−d+2� − 1, if n ≥ d + 2.

The proof of Theorem 1.2, given in Section 4, is in fact valid in the setting of arbi-
trary oriented matroids. Note that m(n, d) ≥ 2 for all d ≥ 3, which is in agreement
with Theorem 1.1 (i).
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It is tempting to conjecture that the graph of monotone paths on a zonotope and
flips (or its oriented matroid analogue) is always m(n, d)-connected, where m(n, d)
is as in Theorem 1.2. We do not have a proof of this even in the simplest non-trivial
case of n− d = 2. We can only extend the proof of 2-connectivity from Theorem 1.1
(i) to the oriented matroid setting, improving the result of [8] mentioned earlier.

Theorem 1.3 If L is an oriented matroid of rank at least 3 and B is one of its topes
then the graph of maximal chains in the tope poset of L based at B and elementary
homotopies is 2-connected.

Our next result proves that the lower bound of Theorem 1.2 is sharp in various
special cases. In particular, this is proved for infinitely many values of n, given any
fixed value of the codimension n− d.

Theorem 1.4 If n ≥ d ≥ 2 are integers such that

• n ≤ d + 3 or
• n ≥ d + 4 and n is divisible by n− d + 2 or
• d ≤ 5

then there exists a d-zonotope Z with n generators in general position, a linear functional
f and an f -monotone path on Z which admits only m(n, d) flips.

The previous theorem has the following interesting consequence. While there are
no flip deficient monotone paths on d-zonotopes with d or d + 1 generators, �d/2�
flips can be achieved with d + 2 generators in any dimension (Theorem 5.1). Also,
three flips can be achieved with 2d − 4 generators in any dimension d ≥ 6 (Corol-
lary 5.4) and two flips are possible in the case of zonotopes of dimension 5 or less
(Theorem 5.5). We conjecture in Section 5 that the lower bound m(n, d) can be
achieved for all n and d, in particular that for all d ≥ 3 there exist monotone paths
on zonotopes with 3d− 6 generators which admit only two flips.

This paper is structured as follows. We begin with preliminaries on zonotopes
and oriented matroids in Section 2. In Section 3 we characterize monotone paths
on zonotopes and their flips in oriented matroid terms and establish some of their
elementary properties. In particular, we prove that one can always add a generator
and increase the length of a monotone path by one without altering the dimension
or number of flips. Theorems 1.2, 1.4 and 1.3 are proved in Sections 4, 5 and 6,
respectively. In Section 7 we point out an application of Theorem 1.1 to the graph of
reduced decompositions of the maximal element in a finite Coxeter group.

2 Preliminaries

Throughout the paper we use the notation [m, n] := {m,m + 1, . . . , n} for integers
m, n with m ≤ n and let [n] := [1, n].
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2.1 Sign Vectors

We denote by Λn the set {−, 0,+}[n] of sign vectors of length n and write X =
(X1,X2, . . . ,Xn) for X ∈ Λn. The set Λn is partially ordered by extending coordi-
natewise the partial order on {−, 0,+} defined by the relations 0 < − and 0 < +.
Its unique minimal element is the zero vector, denoted by 0. The sign vector −X is
obtained by negating each coordinate of X. The composition X ◦Y of two sign vectors
is defined by (X ◦Y )i = Xi or Yi if Xi �= 0 or Xi = 0, respectively and their separation
set is S(X,Y ) = {i : Xi = −Yi �= 0} = {i : (X ◦ Y )i �= (Y ◦ X)i}. Two sign vectors
X and Y are called orthogonal if S(X,Y ) and S(X,−Y ) are either both empty or both
nonempty.

2.2 Oriented matroids

A subset L of Λn is the set of covectors of an oriented matroid [5] if it satisfies the
following axioms:

(L0) 0 ∈ L,
(L1) X ∈ L implies−X ∈ L,
(L2) X,Y ∈ L implies X ◦ Y ∈ L,
(L3) if X,Y ∈ L and e ∈ S(X,Y ) then there exists a C ∈ L such that Ce = 0 and

C f = (X ◦ Y ) f = (Y ◦ X) f for f /∈ S(X,Y ).

For example, let A = (u1, . . . , un) be a configuration of n vectors in Rd. Any linear
functional f : Rd → R induces a sign vector X by Xi = sign

(
f (ui)
)

. The set L(A) of
all sign vectors induced on A by functionals forms an oriented matroid. The oriented
matroids which can be obtained in this way are called realizable or representable. We
will normally identify an oriented matroid with its set of covectors.

As a subposet of Λn, an oriented matroid L is a ranked poset whose rank (one less
than the cardinality of any maximal chain in L) we denote by r. The quantity n − r
is the corank of L. The maximal elements of L are called topes. If a coordinate is
zero in some tope then it is zero in every covector by axiom (L2). Thus, there is no
loss of generality in assuming that topes have no zeros and, hence, that the topes are
the covectors with no zeros. The subtopes of L are the elements of rank r − 1. Any
subtope is covered by exactly two topes T1, T2 and is said to join T1 and T2.

The separation set S(T,T ′) of two topes is the set of coordinates where T and B
have different signs. The tope poset T(L,B) based at a given tope B is the set of all
topes T of L, partially ordered by inclusion of their separation sets S(T,B) (see [5,
Section 4.2] for more information). Thus T(L,B) is a graded poset with B and −B
as its minimum and maximum elements, respectively. The rank of a tope T in this
poset is the cardinality d(T,B) of the separation set S(T,B), also called the distance
between T and B.

2.3 Duality

If L is the set of covectors of an oriented matroid then the set of sign vectors orthog-
onal to all elements of L is again the set of covectors of an oriented matroid, called
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the dual of L and denoted by L∗. The covectors of L∗ are called vectors of L. The
rank of L∗ equals the corank of L.

Let A = (u1, . . . , un) be a configuration of n vectors spanning Rd. Up to a linear
automorphism, there is a unique configuration A∗ = (u∗1 , . . . , u

∗
n) of n vectors span-

ning Rn−d such that
∑n

i=1 ui ⊗ u∗i = 0 in Rd ⊗ Rn−d. The two configurations are
said to be Gale transforms of each other [16, Section 6.4]. Their oriented matroids
are dual to one another. A vector (λ1, . . . , λn) ∈ Rn is the ordered sequence of values
of a linear functional on A if and only if it is the sequence of coefficients of a linear
dependence on A∗. Hence, the vectors of the oriented matroid realized by A are the
sequences of signs of the coefficients in a linear dependence on A.

2.4 Zonotopes

Let A = (u1, . . . , un) be a configuration of n vectors spanning Rd. Let O be the origin
in Rd and [O, ui] = {λui : 0 ≤ λ ≤ 1} for each i. The zonotope Z(A) generated by A
is the polytope Z(A) =

∑n
i=1[O, ui]. This polytope depends only on the underlying

multiset of elements of A. The map which sends a sign vector X = (X1,X2, . . . ,Xn)
to the sum

∑
Xi=+ ui +

∑
Xi=0[O, ui] induces an order reversing bijection between

the poset of covectors L(A) and the poset of (nonempty) faces of Z(A). Under this
bijection, the topes of L(A) correspond to the vertices of Z(A) and the subtopes
correspond to the edges.

3 Flips for Monotone Paths on Zonotopes

In this section we establish some elementary properties of monotone paths on zono-
topes and their flips.

Let E be a configuration of n nonzero vectors in Rd, with no two parallel, and Z(E)
be the zonotope generated by E. Let f be a linear functional which is not constant on
any edge of Z(E), in other words, which does not vanish on any element of E. Since
changing a vector of E to its negative results only in a translation of Z(E), we may
assume without loss of generality that f is positive on E.

Lemma 3.1 Under the previous assumptions on E and f :

(i) The sequence of vertices of Z(E) defining an f -monotone path on Z(E) is of the
form O, v1, v1 + v2, v1 + v2 + v3, . . . , v1 + · · ·+ vn for some permutation (v1, . . . , vn)
of the elements of E.

(ii) A permutation (v1, . . . , vn) of E corresponds to an f -monotone path on Z(E) if
and only if for every i ∈ [n] there exists a hyperplane containing vi and hav-
ing {v1, . . . , vi−1} and {vi+1, . . . , vn}, respectively, in its two complementary open
halfspaces.

Proof Both parts follow from the characterization of vertices and edges of Z(E) in
terms of the covectors of L(E).
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A sequence A = (v1, . . . , vn) of vectors satisfying the condition in Lemma 3.1 (ii)
for a given index i will be said to be valid at i. In oriented matroid terms, A is valid at
i if the sign vector which is negative on [i− 1], zero on i and positive on [i + 1, n] is a
covector of L(A). We call A a valid sequence if it is valid at every index i. The validity
at the first and last index implies that the positive span of A is a pointed cone.

Remark 3.2 Another way of seeing how monotone paths are related to permu-
tations is as follows. Let In denote the standard n-dimensional cube in Rn and let
π : Rn → Rd be the projection which bijects the standard basis to the set of vectors
E. Observe that π(In) = Z(E). Moreover, f ◦ π is a linear functional in Rn, generic
for In. Every f -monotone path on Z(E) lifts to a ( f ◦ π)-monotone path on In. As
is well-known (see [16, Example 9.8]), monotone paths in the n-cube correspond to
permutations of the n coordinates.

This setting also helps to understand the monotone path polytope of Z(E). The
monotone path polytope Σ(In, f ◦ π) of the cube is the (n− 1)-dimensional permu-
tahedron (see again [16]). Lemma 2.3 in [3] says that the monotone path polytope
of Z(E) with respect to f equals π

(
Σ(In, f ◦ π)

)
.

Corollary 3.3 If a sequence of n vectors is valid at i − 1 and i + 1, where indices are
regarded modulo n, then it is also valid at i.

Proof For i ∈ [n], let Xi be the sign vector which is negative on [i − 1], zero on i
and positive on [i + 1, n]. Let X0 = −Xn and Xn+1 = −X1. With this notation, the
elimination axiom (L3) applied to Xi−1 and Xi+1 produces exactly the sign vector Xi .
The result follows.

Lemma 3.4 Under the assumptions of Lemma 3.1 on E and f :

(i) Two valid permutations of E represent f -monotone paths on Z(E) which differ by
a flip if and only if one can be obtained from the other by swapping a subsequence
of consecutive vectors which are coplanar.

(ii) The swapping of vi, vi+1, . . . , v j on a valid permutation (v1, . . . , vn) of E corre-
sponds to a flip of monotone paths if and only if vi , vi+1, . . . , v j are coplanar and
there exists a hyperplane which contains these vectors and has {v1, . . . , vi−1} and
{v j+1, . . . , vn}, respectively, in its two complementary open halfspaces.

Proof The forward statement of part (i) is clear from the definition of a flip. Its
converse follows from the elimination axiom (L3) of oriented matroids applied to
the covectors of a pair of distinct parallel edges of the two paths and orthogonality
with the vectors provided by three-term linear relations, if any. Part (ii) follows from
the characterization of faces of Z(E) in terms of the covectors of L(E).

We say that the valid sequence A = (v1, . . . , vn) has a flip at (vi , . . . , v j) if the con-
dition in Lemma 3.4 (ii) is satisfied. If no three consecutive vectors in the sequence
are coplanar then the swapping referred to in the lemma is the transposition of two
consecutive vectors vi and vi+1. The following lemma allows us to assume without
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loss of generality that this is always the case. We denote by A \ vi the sequence ob-
tained from A by removing vi .

Lemma 3.5 Let A = (v1, v2, . . . , vn) be a valid sequence of vectors in Rd, with d ≥ 3.
If vi−1, vi and vi+1 are coplanar for some i, with indices regarded modulo n, then A \ vi

has as many flips as A.

Proof For i ∈ [n], coplanarity of (vi−1, vi, vi+1) and validity of A at i imply that vi

is a positive combination of vi−1 and vi+1, where v0 = −vn and vn+1 = −v1 if i = 1
or i = n, respectively. With this and Lemma 3.4 the proof is straightforward.

In oriented matroid terms, A has a flip at the pair (vi, vi+1) if and only if the sign
vector negative on [i − 1], zero on {i, i + 1} and positive on [i + 2, n] is a covector of
L(A). The following lemma characterizes flips in terms of the vectors of L(A), i.e.,
the covectors of the dual oriented matroid L∗(A).

Lemma 3.6 Let A = (v1, . . . , vn) be a valid sequence.

(i) If X = (X1,X2, . . . ,Xn) is a nonzero vector of L(A) then there exist indices i < j
such that Xi = + and X j = −.

(ii) The sequence A has no flip at (vi , vi+1) if and only if there exists a vector of L(A)
which is nonpositive on [i− 1], nonnegative on [i + 2, n] and restricts to (+,−) on
{i, i + 1}.

Proof Part (i) follows from the fact that X is orthogonal to each of the covectors
of L(A) provided by Lemma 3.4 (ii). To prove (ii) observe that (vi, vi+1) is not a
flip of A if and only if there exists a vector X of L(A) which is not orthogonal to
(−, . . . ,−, 0, 0,+, . . . ,+), the zeros located at coordinates i and i + 1. Clearly, one of
the vectors X and −X has the first two properties claimed and is not identically zero
on [n] \ {i, i + 1}. That this sign vector restricts to (+,−) on {i, i + 1} follows from
(i).

If A has no flip at (vi , vi+1) we call any vector of L(A) having the properties in
part (ii) of the previous lemma a witness of the nonflip at this pair. An element vi

of A is in general position in A if vi is not contained in any hyperplane spanned by
vectors of A other than vi . The sequence A is in general position if all its elements are
in general position.

Proposition 3.7 For any valid sequence A = (v1, . . . , vn) of n vectors spanning Rd,
with d ≥ 3, there exists a vector v ∈ Rd such that the sequence (v1, . . . , vn, v) is valid,
has the same flips as A and has the new vector v in general position.

Proof Let v = vn−ε1v1−· · ·−εn−1vn−1 for any positive, sufficiently small and suf-
ficiently generic numbers ε1, . . . , εn−1. Genericity implies that v is in general position
in the sequence B = (v1, . . . , vn, v).
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Since v is very close to vn, validity of A at any index i ∈ [n−1] implies validity of B
at the same index. For the same reason, any flip of A not involving vn has to be a flip
of B. Validity of the first sequence at n implies that there is a hyperplane containing
vn with all other vi ’s on the same side. This hyperplane clearly has v on the other side,
so the new sequence is valid at n. Corollary 3.3 implies that B is valid. The previous
argument also implies that any flip of A involving vn has to be a flip of B.

That every flip of B other than the transposition of vn and v is also a flip of A is
trivial by Lemma 3.4 (ii). Hence, we only need to prove that the transposition of vn

and v is not a flip. This follows from the fact that vn is a positive combination of v
and the other vi ’s: any functional vanishing on vn and v must have both positive and
negative values on the rest of the vi ’s.

4 The Lower Bound

In this section we prove Theorem 1.2. We let A = (v1, v2, . . . , vn) be a valid sequence
of n vectors in Rd and L = L(A) be the corresponding oriented matroid on the
ground set [n]. A set of indices I ⊆ [n] is said to be dependent in L if the set of
vectors {vi : i ∈ I} is linearly dependent.

Lemma 4.1 Let 1 ≤ k < l ≤ n be two indices such that A has no flip at the pairs
(vi , vi+1) with k ≤ i < l and suppose that no three elements of (vk, . . . , vl), with at least
two of them consecutive, are coplanar.

(i) The sequence A \ vk has no flip at the pairs (vi , vi+1) for k < i < l.
(ii) There exist three vectors of L which are nonpositive on [k − 1], nonnegative on

[l + 1, n] and whose restrictions on [k, l] are the sign vectors (0, . . . , 0,+,−),
(+,−, 0, . . . , 0, ) and (+, 0, . . . , 0,−), respectively.

Proof We prove (i) and (ii) by induction on l− k. The result reduces to Lemma 3.6
(ii) for l−k = 1, so let l−k ≥ 2. Let X be the set of vectors of L which are nonpositive
on [k−1] and nonnegative on [l+1, n]. To prove (i) it suffices to show that for k < i <
l, there exists a vector in X which is zero on k, nonpositive on [k+1, i−1], nonnegative
on [i + 2, n] and restricts to (+,−) on {i, i + 1}. By the inductive hypothesis for
(ii), there exists a vector X ∈ X which restricts to (+, 0, . . . , 0,−) on [k, i] and is
nonnegative on [i + 1, n]. Let Y = (Y1, . . . ,Yn) be a witness of the nonflip of A
at (vi, vi+1), so that Y ∈ X. If Yk = 0 then there is nothing to prove. Otherwise
Yk = − and we can eliminate k between X and Y . Since S(X,Y ) ⊆ {k, i, i + 1} is
not dependent in L, the vector produced by this elimination is nonzero. Lemma 3.6
(i) implies that this vector has the desired properties. To prove (ii) note that, by (i),
A\vk satisfies the hypotheses of the lemma for (vk+1, . . . , vl). By induction, there exist
two vectors in X which restrict to (0, . . . , 0,+,−) and (0,+, 0, . . . , 0,−) on [k, l],
respectively. By a symmetric argument, there exists a vector in X which restricts to
(+,−, 0, . . . , 0) on [k, l]. Elimination of k + 1 between the last two vectors produces
a vector in X restricting to (+, 0, . . . , 0,−) and completes the induction.

Lemma 4.2 Let 1 ≤ k < l ≤ n be two indices such that A has no flip at the pairs
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(vi, vi+1) with k ≤ i < l and suppose that (vk, . . . , vl) contains three coplanar elements,
two of which are consecutive, but no three consecutive coplanar elements. There exists
an index j with k < j < l such that:

(i) no three consecutive elements of (vk, . . . , vl) \ v j are coplanar,
(ii) A \ v j has no flip at (v j−1, v j+1) and
(iii) A \ v j has no flip at any pair (vi , vi+1) at which A has no flip.

Proof We choose a triple (v j1 , v j , v j2 ) of coplanar vectors, satisfying k ≤ j1 < j <
j2 ≤ l and j = j1+1 or j2−1, with j2− j1 as small as possible. We assume with no loss
of generality that j = j1 + 1. Since (v j , . . . , v j2 ) contains no three coplanar elements,
with at least two consecutive, we can apply Lemma 4.1 to A on this subsequence.

If j2 − j1 ≥ 4 then (i) holds automatically. Otherwise j2 − j1 = 3, by our
assumptions, and we can guarantee (i) by further choosing j1 and j2 to be as small as
possible. Observe as in Lemma 3.5 that v j is a positive combination of v j−1 and v j2 .
Let X be the vector of L(A) which is positive on j − 1 and j2, negative on j and zero
elsewhere and let Y be a witness of the nonflip of A at (v j , v j+1). In view of Lemma 3.6
(i), elimination of j between X and Y produces a vector of L(A) which witnesses the
nonflip claimed in (ii). Finally, (iii) follows from Lemma 4.1 (i) if j < i < j ′ and is
straightforward otherwise.

Lemma 4.3 Let 1 ≤ k < m < m + 1 < l ≤ n be indices such that A has a flip at
(vm, vm+1) but no flip at other pairs (vi , vi+1) with k ≤ i < l. If no three consecutive
elements of (vk, . . . , vl) are coplanar then the corank of L is at least l− k− 1.

Proof By Lemma 4.2 we may assume that none of the subsequences (vk, . . . , vm) or
(vm+1, . . . , vl) contains three coplanar elements, with at least two of them consecutive.
Hence we can apply Lemma 4.1 on these subsequences. Let X be the set of vectors of
L which are nonpositive on [k− 1] and nonnegative on [l + 1, n]. We first claim that
there exist two vectors in X which are zero on [k, l] \ {k,m,m + 1, l} and have the
following additional properties:

(i) The first vector is nonnegative on {m + 1, l} and restricts to (+,−) on {k,m}.
(ii) The second vector is nonpositive on {k,m} and restricts to (+,−) on {m+1, l}.

We establish the existence of the vector claimed in (i) by induction on l−k. If l = m+2
then this follows from Lemma 4.1 (ii), so let l ≥ m + 3. By induction, there exist two
vectors of X which are zero on [k, l] \ {k,m,m + 1, l − 1, l} and have the following
additional properties:

(i ′) The first vector is nonnegative on {m + 1, l − 1, l} and restricts to (+,−) on
{k,m}. We may assume that it is positive on l − 1 since otherwise it has the
properties claimed in (i).

(ii ′) The second vector is nonpositive on {k,m}, nonnegative on l and restricts to
(+,−) on {m + 1, l− 1}.
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In view of Lemma 3.6(i), elimination of l − 1 between the two vectors produces
a vector of L with the desired properties. The case of the vector claimed in (ii) is
analogous.

Given the claim, we complete the proof as follows. One can further choose the
vector in (i) to be zero on l by eliminating l between the vectors in (i) and (ii), if
needed. By successively composing the vectors (i) and (ii) for different subintervals
of [k, l] we can find a chain of nonzero vectors of L of cardinality l − k − 1. This
implies that the corank of L is at least l − k− 1.

Proof of Theorem 1.2 Let A = (v1, v2, . . . , vn) be the valid permutation of the set
of generators of Z representing a given f -monotone path on Z and L = L(A) be the
corresponding oriented matroid of rank d. The case d = 2 is trivial so we assume that
d ≥ 3. Lemma 3.5 and the fact that m(n, d) ≤ m(n−1, d) allow us to assume further
that A does not contain three coplanar vectors vi−1, vi , vi+1, with indices regarded
modulo n.

The case n = d is trivial. If n = d + 1 then L has only two nonzero vectors,
one being the negative of the other. Two such vectors cannot be witnesses of distinct
nonflips unless these are at consecutive pairs (vi−1, vi) and (vi , vi+1) and i− 1, i, i + 1
are the only nonzero coordinates of the vectors. Since this would imply that vi−1,
vi and vi+1 are coplanar, contrary to our assumption, it follows that A has at least
d − 1 flips. Finally, suppose that n ≥ d + 2. We say that A has a flip at the pair
(vn, v1) if there exists a hyperplane which contains v1 and vn and has the rest of the vi

in the same open halfspace. With this extension the notion of flip becomes cyclic, in
the sense that for all i, the sequence (vi+1, . . . , vn,−v1, . . . ,−vi) is valid and has flips
which biject to those of A under shifting by i. Lemma 4.3 implies that any n− d + 2
consecutive pairs (vi, vi+1) include at least two flips. This implies a lower bound of
�2n/(n− d + 2)� = m(n, d) + 1 on the number of flips of A, in the cyclic sense, and
of m(n, d) if the pair (vn, v1) is not considered as a possible flip.

5 Monotone Paths with Few Flips

In this section we use the technique of Gale transforms to construct valid sequences
with the number of flips claimed in Theorem 1.4.

We will tacitly use the fact that if A = (v1, . . . , vn) is a sequence of vectors spanning
Rd, X = (X1, . . . ,Xn) is a vector of L(A) such that {vi : Xi �= 0} spans Rd and X < Y
for a sign vector Y then Y is a vector of L(A).

Theorem 5.1 For any d ≥ 2 there exists a valid sequence of d + 2 vectors in general
position in Rd which has only �d/2� flips.

Proof We may assume that d ≥ 4, since the cases d = 2 and d = 3 are trivial. We
will construct explicitly a Gale transform of a sequence with the desired properties.

Suppose first that d is even. Let v∗2 := (1,−2), v∗4 := (1, 0), v∗d−1 := (0, 1) and
v∗d+1 := (−2, 1). Let the other d− 2 vectors be any vectors in general position which,
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together with v∗4 and v∗d−1, form the sequence

v∗4 , v
∗
1 , v
∗
6 , v
∗
3 , v
∗
8 , v
∗
5 , . . . , v

∗
d , v
∗
d−3, v

∗
d+2, v

∗
d−1

when taken in anti-clockwise order. This sequence alternates even and odd indices
and both the even and the odd appear monotonically. The configuration is shown in
Figure 1 for d = 6. We claim that the Gale transform (v1, . . . , vd+2) of (v∗1 , . . . , v

∗
d+2)

is valid and has only d/2 flips. Indeed, the fact that v∗2 , v∗d+1 and any other v∗i are
positively dependent implies that the sequence is valid at 1 and d + 2. The fact that
v∗i−1 is a positive combination of v∗i+2 and v∗i+3 for even i < d and v∗d+2 is a posi-
tive combination of v∗d−2 and v∗d−1 implies validity at all other indices and that the
d/2 pairs (vi , vi+1) for even i ≤ d are flips. On the other hand there is no flip at
(v1, v2) or (vd+1, vd+2), since the positive spans of {v∗3 , . . . , v

∗
d+2} and {v∗1 , . . . , v

∗
d} are

pointed cones, and no flip at (vi−1, vi) for even i ∈ [4, d], since the positive spans of
{v∗1 , . . . , v

∗
i−2} and {v∗i+1, . . . , v

∗
d+2} intersect only at the zero vector. This completes

the proof in the even case.

v∗7 v∗5
v∗8

v∗3

v∗6 v∗1

v∗4

v∗2

Figure 1: Few flips in corank 2.

For the case that d is odd, let v∗1 , . . . , v
∗
d+1 be as before and let v∗0 be any generic

positive combination of v∗2 and v∗4 . The sequence (v0, . . . , vd+1) dual to (v∗0 , . . . , v
∗
d+1)

is valid and the only new flip is at the pair (v0, v1).

The construction in Theorem 5.1 generalizes the following example of P. Edelman
and V. Reiner [11], referred to (but not explicitly described) in Remark 3.4 of [1]. Let
(v1, v3, v4, v6) be a linear basis of R4, v2 = v1 +3v3+v4 +2v6 and v5 = 2v1 +v3+3v4 +v6.
The sequence (v1, v2, v3, v4, v5, v6) is valid and has only two flips, namely at (v2, v3)
and (v4, v5).

In the following constructions we will use the fact that the validity of a vector
sequence A, as well as witnesses of nonflips having no zero coordinate, are preserved
under any sufficiently small perturbation of the elements of A.

https://doi.org/10.4153/CJM-2001-042-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-042-3


1132 Christos A. Athanasiadis and Francisco Santos

Theorem 5.2 For any d ≥ 2 there exists a valid sequence of n = d + 3 vectors in
general position in Rd which has only �2n/5� − 1 flips.

Proof Since the claimed number of flips is equal to �d/2� for n ≤ 9, we may assume
that n ≥ 10. Suppose first that n is divisible by 5. Let v∗1 = (2, 1, 1), v∗2 = (0,−2, 1),
v∗3 = (−2, 1, 1), v∗4 = (5, 0, 1), v∗5 = (1, 0, 1), v∗n−1 = −(−1, 0, 1) and v∗i = v∗i−5 +
(6, 0, 0) for all i ∈ {6, . . . , n−2, n}. Figure 2 (a) shows the vector configuration in the
affine plane x3 = 1 in R3 for n = 15. The white dot represents the vector −v∗14. We
leave it to the reader to verify that the Gale transform (v1, . . . , vn) of (v∗1 , . . . , v

∗
n ) is a

valid sequence and has exactly 2n
5 − 1 flips, namely at the pairs (vi , vi+1) for i = n− 2

and i = 5 j − 2, 5 j, where 1 ≤ j ≤ n
5 − 1. To help with this task, two points i and

i + 1 in Figure 2 are joined by a segment if and only if the pair (vi , vi+1) is not a flip
(the segment joining v∗15 and−v∗14 is meant to go through infinity). As an example, a
witness for the nonflip at (v7, v8) is produced by any line in Figure 2 (a) passing below
v∗2 , v∗4 and v∗6 and above v∗10 and v∗13. If n is not divisible by 5, the last few vectors can
be modified as in Figure 2 (b) in order to get the desired number of flips.

Since lines witnessing the nonflips can be chosen not passing through any point
v∗i , the dual sequence can be perturbed to general position without affecting its va-
lidity or number of flips.

Theorem 5.3 If n ≥ d + 2 ≥ 4 and n = p (n− d + 2), with p ∈ Z, then there exists
a valid sequence of n vectors in general position in Rd which has only 2p − 1 flips.

Proof We may assume that d ≥ 3, in other words that p ≥ 2. The following
construction generalizes the main ideas in the proofs of Theorems 5.1 and 5.2. Let
k = n− d and

(u−1, u1, . . . , uk, uk+2,w)

be a configuration of vectors in Rk whose oriented matroid contains the k + 2 vectors
(1) and k + 1 covectors (2) listed below.

(1)

(−, +, . . . ,+,+,+, 0, 0)
(−, 0,+, . . . ,+,+, +, 0)
(−, −, 0,+, . . . ,+, +, 0)

...
(−, −, . . . ,−,−, 0, +, 0)
(0, −,−, . . . ,−,−, +, 0)

(2)

(−, +,−,+,+, . . . , +, +)
(−, −,+,−,+, . . . , +, +)

...
(−, . . . ,−,−,+,−, +, +)
(−, −,−, . . . ,−,−, −, +)

(+, +,+, . . . ,+,+, +, 0)

For instance, take a Gale transform of the rank 3 vector configuration whose affine
picture appears in Figure 3. We assume further that there exists a functional g : Rk →
R with g(ui) = 1 for all i and g(w) = 0. This is possible since we can choose g as any
functional which produces the last covector listed in (2) and then scale each vector ui

appropriately.
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v∗3

−v∗14

v∗2

v∗5

v∗1 v∗8

v∗4

v∗7

v∗10

v∗6 v∗13

v∗9

v∗12

v∗15

v∗11

(a)

v∗5p−2

v∗5p−6

v∗5p−3

v∗5p+1

v∗5p−4

v∗5p−1

n = 5p + 1

v∗5p−2

v∗5p−6

v∗5p−3

v∗5p

v∗5p−4

v∗5p+2 v∗5p−1

n = 5p + 2

v∗5p−2

v∗5p−6

v∗5p−3

v∗5p+1

v∗5p−4

v∗5p+3 v∗5p

v∗5p−1

n = 5p + 3

v∗5p−2

v∗5p−6

v∗5p−3

v∗5p

v∗5p−4

v∗5p+2 v∗5p−1

v∗5p+4
v∗5p+1

n = 5p + 4

(b)

Figure 2: Few flips in corank 3.

Let un−1 = −u−1 and ui = ui−k−2 + t for all i ∈ [k + 1, n] \ {k + 2, n − 1},
where t = λw for some positive λ ∈ R. Let A∗ = (u1, . . . , un) and A = (v1, . . . , vn)
be a Gale transform of A∗. We claim that A is valid for any value of λ and that it
has exactly 2p − 1 flips if λ is sufficiently large, namely at the pairs (vq−2, vq−1) and
(vq, vq+1) for indices q divisible by k + 2.

Indeed, let q = a(k + 2) with a ∈ [0, p − 1]. By our choice of g, the sum of
the coefficients in any linear dependence on (u−1, u1, . . . , uk, uk+2) is zero and hence
such a dependence is preserved under translation of all vectors by t . As a result,
the sign vectors (1) are vectors of the sequence (uq−1, uq+1, . . . , uq+k, uq+k+2), with
u−1 = −un−1 if q = 0. Since any k +1 elements of this sequence span Rk, this implies
that A is valid at the indices q, . . . , q + k + 1. For the second claim let f1, . . . , fk be
functionals on Rk which induce the first k covectors listed in (2) and choose λ so that
fi(t) > | fi(u j)| for all i and j = −1, 1, . . . , k, k+2. A simple computation shows that,
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−w∗

−u∗k+2

u∗1 u∗2 u∗k−1 u∗k

−u∗−1

Figure 3: A vector configuration of rank 3.

under this assumption, the functional fi − a fi(t)g induces a witness for a nonflip at
(vq+i, vq+i+1) if 1 ≤ i < k and at (vq+k+1, vq+k+2) if i = k. The other n−1−kp = 2p−1
pairs are flips by Theorem 1.2.

Since the witnesses of the nonflips have no zero coordinates, they are preserved
under any sufficiently small perturbation of A into general position.

Corollary 5.4 For any d ≥ 6 and any n ≥ 2d − 4 there exists a valid sequence of n
vectors in general position in Rd which has only three flips.

Proof For the case n = 2d − 4 take p = 2 in the previous theorem. The general
case follows from Proposition 3.7.

Theorem 5.5 For any n ≥ 9 there exists a valid sequence of n vectors in general
position in R5 which has only two flips.

Proof In view of Proposition 3.7 it suffices to treat the case n = 9. Let A∗ =
(v∗1 , . . . , v

∗
9 ) be the sequence of columns of the following matrix, which we denote

again by A∗:

A∗ :=




6 0 −6 14 8 2 2 5 10
1 −5 1 −1 5 −1 1 −2 1
1 −5 1 1 −5 1 0 0 0
1 1 1 1 1 1 −1 0 1


 .

Note that v∗1 , v
∗
2 , . . . , v

∗
6 ,−v∗7 and v∗9 lie in the affine hyperplane x4 = 1 in R4 while

v∗8 is parallel to it. Part (a) of Figure 4 shows a two-dimensional projection of this
hyperplane along the direction of the third coordinate x3. The white dot represents
−v∗7 and v∗8 is drawn as lying at infinity. The linking of the triangles {v∗1 , v

∗
2 , v
∗
3},

{v∗4 , v
∗
5 , v
∗
6} and {v∗7 , v

∗
8 , v
∗
9} shown should help the reader to understand the con-

struction.
Let A = (v1, . . . , v9) be a Gale transform of A∗. We claim that A is valid and has

only two flips, namely at the pairs (v3, v4) and (v6, v7). To see the latter we consider
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−v∗8
v∗3

v∗7
v∗6

v∗2

v∗1

v∗5

v∗9

v∗4 v∗8

(a)

−v∗14

v∗3
−v∗13 v∗6

v∗2

v∗1

v∗5

v∗9
v∗4 v∗12

v∗8

v∗7
v∗15

v∗11

v∗10
v∗14

(b)

Figure 4: Two vector configurations of rank 4.

the matrix

W :=




1 2 + e 1 + e 3− e
1 −2− e −1− e −3 + e
1 −2− e 1 + e −5− e
1 2 + e −1− e −11 + e
2 8 6 −27
−2 −8 6 −11




where e is any positive constant smaller than 1/2. The six rows of W represent linear
functionals over R4 which witness, respectively, nonflips at the pairs (1, 2), (2, 3),
(4, 5), (5, 6), (7, 8) and (8, 9). This is shown by the following matrix multiplication:

W · A∗ =




12+ε −12−11ε ε 16−ε 16−ε 4−ε 1+2ε 1−2ε 15
−ε 12+11ε −12−ε 12+ε ε ε 3−2ε 9+2ε 5
−ε −ε −12−ε 12+ε −12−11ε ε 5 9+2ε 3−2e
−4+ε −16+ε −16+ε −ε 12+11ε −12−ε 15 1−2ε 1+2e
−1 −97 −25 −1 −1 −25 39 −6 1
−25 −1 −1 −25 −97 −1 −1 6 −39


 .

To see that the sequence is valid consider the following matrix.

V :=


 0 1 4 0 0 1 6 2 0
−85 −17 0 0 17 85 12 12 12
−1 0 0 −4 −1 0 0 2 6



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The rows of V are orthogonal to those of A∗, hence they represent linear depen-
dences among the vectors v∗i . Since det(v∗2 , v

∗
6 , v
∗
7 , v
∗
8 ) = det(v∗1 , v

∗
5 , v
∗
8 , v
∗
9 ) = 24,

in each dependence the vectors in A∗ with nonzero coefficients span R4. Hence, the
three dependences can be perturbed keeping the signs of the nonzero coefficients and
producing arbitrary signs in the zero ones, to get dependences which show validity of
A at 1 and 9 (first row of V ), 3 and 4 (second row) and 6 and 7 (third row). Validity
at the other three indices follows from Corollary 3.3.

As in the previous constructions, nonflips are preserved under any sufficiently
small perturbation of A into general position.

Remark 5.6 The construction in the proof of Theorem 5.5 can be generalized to
show that for any p ∈ N and for d = 6p−1, there exists a valid sequence of n = d + 4
vectors in general position in Rd which has only n

3 − 1 flips. This again matches
the lower bound of Theorem 1.2. More precisely, if (v∗1 , . . . , v

∗
6 ) is as in that proof,

v∗n−2 = −(−2,−1, 0, 1), v∗n−1 = (5,−2, 0, 0), v∗n = (16p − 6, 1, 0, 1) and v∗i =
v∗i−6 + (16, 0, 0, 0) for all i with 7 ≤ i ≤ n − 3 then the Gale transform (v1, . . . , vn)
of (v∗1 , . . . , v

∗
n ) is valid and has flips only at the pairs (vq, vq+1) for indices q divisible

by 3. Part (b) of Figure 4 shows A∗ in the case p = 2, with the same conventions
adopted for part (a) in the proof of Theorem 5.5.

Proof of Theorem 1.4 Combine Theorems 5.1, 5.2, 5.3 and 5.5.

In a special case, part (ii) of the following conjecture claims that two flips can be
achieved in the case of zonotopes with 3d− 6 generators in any dimension d ≥ 3.

Conjecture 5.7 For integers n ≥ d ≥ 2, let h(n, d) denote the minimum number of
flips among all monotone paths on d-zonotopes with n generators.

(i) h(n, d) is a nondecreasing function of n in each fixed corank n− d.
(ii) h(n, d) = m(n, d) for all n and d and the minimum can be achieved in general

position.

Clearly, part (ii) of the conjecture implies part (i). Conversely, Theorem 5.3 and
part (i) imply that

h(n, d) ≤ 2

⌈
n

n− d + 2

⌉
− 1 ≤ m(n, d) + 1

for n ≥ d + 2, hence that the lower bound m(n, d) can be off by at most one. Theo-
rem 5.3 implies that part (i) of the conjecture is true in a weak asymptotic sense.

6 Oriented Matroids and Chains of Topes

In this section we adapt the ideas of [1, Section 4] to the setting of oriented matroids
and prove Theorem 1.3.

Let L be an oriented matroid of rank r on the ground set [n], T be the set of
topes of L and B ∈ T. We assume without loss of generality that L has no loops or
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parallel elements. We first define carefully the graph which appears in the statement
of Theorem 1.3. Two maximal chains B = T0 < T1 < · · · < Tn = −B and
B = T ′0 < T ′1 < · · · < T ′n = −B in the tope poset T(L,B) are said to differ by
an elementary homotopy or deformation [5, Section 4.4], or flip if there exist indices
0 ≤ i < j ≤ n such that Tk = T ′k for all k with either k ≤ i or k ≥ j and

{Ti ,Ti+1, . . . ,T j ,T
′
j−1, . . . ,T

′
i+1} = star(X)

for some X ∈ L of rank r − 2, where star(X) = {T ∈ T : T ≥ X}. We denote by
G(L,B) the graph with vertices the maximal chains of T(L,B) and edges defined by
the flips. If L is the realizable oriented matroid associated to the zonotope Z and f is
a linear functional on Z taking its minimum at the vertex of Z which corresponds to
the tope B then G(L,B) is naturally isomorphic to the graph G(Z, f ) of f -monotone
paths on Z and polygon moves.

For any closed interval I = [T,T ′] in T(L,B) we can define similarly the graph
G(L, I) with vertices the maximal chains of I and edges the flips among them. To be
more precise, if C and C ′ are any maximal chains in the intervals [B,T] and [T ′,−B],
respectively, then two maximal chains in I are connected by an edge in G(L, I) if their
extensions by C and C ′ are connected by an edge in G(L,B). In the special case that
I = T(L,B), the following result of Cordovil and Moreira [8] states that the graph
G(L,B) is connected.

Proposition 6.1 ([8], [5, Proposition 4.4.7]) For any closed interval I of T(L,B), the
graph G(L, I) is connected.

Let us recall the construction of pullbacks from [1, Section 4]. We will think of
graphs as finite one-dimensional simplicial complexes, so that a simplicial map of
graphs sends vertices to vertices and edges to either edges or vertices. Furthermore,
such a map is surjective if it is surjective both on vertices and edges. Given simplicial
maps of graphs α : G1 → H and β : G2 → H, we define a graph G as follows. The
vertices of G are the ordered pairs (a, b) of vertices of G1 and G2, respectively, such
that α(a) = β(b). Two vertices (a, b) and (a ′, b ′) are connected by an edge in G if
either

(i) a = a ′ and {b, b ′} is an edge of G2,
(ii) b = b ′ and {a, a ′} is an edge of G1 or
(iii) {a, a ′} and {b, b ′} are edges of G1 and G2, respectively, which both map home-

omorphically onto the same edge of H.

Note that G is the cartesian product of G1 and G2 if H has a single vertex. The
diagram

G −−−−→ G2� β

�
G1

α
−−−−→ H,

(1)
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where the unlabeled arrows denote projections to the first and second coordinate, is
called a pullback diagram.

The following lemma will be needed, as in [1, Section 4].

Lemma 6.2 ([1, Proposition 4.8]) Let (1) be a pullback diagram. If

(i) G1 and G2 are 2-connected,
(ii) α and β are surjective and
(iii) the fibers α−1(v), β−1(v) are connected for every vertex v of H

then G is 2-connected.

Remember that in Section 2.2 we defined the distance d(B,T) between B and an-
other tope T as the number of coordinates at which the signs of B and T differ. Given
L and B as before, we define graphs Hi , for 0 ≤ i ≤ n, and Hi−1,i , for 1 ≤ i ≤ n, as
follows. The vertices of Hi are the topes T of L with d(B,T) = i and those of Hi−1,i

are the subtopes of L which join a vertex of Hi−1 to a vertex of Hi . In either case, two
vertices X1 and X2 are connected by an edge of the graph if there exists a covector X
of rank r − 2 with X < X1 and X < X2 in L. Note that there is a natural surjective
simplicial map βi−1 : Hi−1,i → Hi−1.

We postpone the proof of the following lemma until the end of this section.

Lemma 6.3 The graph Hi−1,i is (r − 1)-connected for all 1 ≤ i ≤ n.

Proof of Theorem 1.3 For 1 ≤ i ≤ n we define a graph Gi of partial chains in
T(L,B) as follows. The vertices of Gi are the chains T0 < T1 < · · · < Ti of T(L,B)
with d(B,T j) = j for all j, where T0 = B is implied. Two such vertices are connected
by an edge in Gi if they can be extended to maximal chains of T(L,B) which are
connected by an edge in G(L,B). Note that Gi = G(L,B) for i = n, so it suffices to
prove that Gi is 2-connected for all i by induction on i.

At the basis of the induction, G1 is 2-connected by Lemma 6.3, since it is isomor-
phic to H0,1 and r ≥ 3. Let 1 ≤ i < n and note that projection to the last coordinate
defines a surjective simplicial map αi : Gi → Hi . The maps α = αi and β = βi give
rise to the pullback diagram

Gi+1 −−−−→ Hi,i+1� β

�
Gi

α
−−−−→ Hi .

(2)

The graph Gi is 2-connected by induction and Hi,i+1 is 2-connected by Lemma 6.3
and the assumption r ≥ 3. The fibers α−1(v) are connected by Proposition 6.1 while
connectivity of the fibers β−1(v) is the content of [5, Lemma 4.4.4]. Lemma 6.2 then
implies that Gi+1 is 2-connected. This completes the inductive step and the proof of
the theorem.

The next corollary follows also from the proof of Theorem 1.2 in Section 4.
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Corollary 6.4 If L is an oriented matroid of rank r ≥ 3 and B is one if its topes then
any maximal chain in the tope poset T(L,B) admits at least two flips.

We now come back to the proof of Lemma 6.3. For the background on regular
cell complexes needed we refer to [5, Section 4.7]. We will use in particular the fact
that the augmented face poset of a regular cell decomposition of a PL d-sphere is a
combinatorial d-manifold, in the sense of [7] (i.e., a finite lattice L of height d + 2
such that each nonempty open interval in L is either an antichain of two elements or
connected with at least two comparable elements). This follows easily from the fact
that the class of (regular cell decompositions of) PL spheres is closed under taking
links [5, Theorem 4.7.21 (iv)].

Proof of Lemma 6.3 Let Li−1 and Li−1,i be the order ideals in L generated by the
set Ri−1 of topes at distance at most i − 1 from B and the vertex set of Hi−1,i , re-
spectively. Since Ri−1 is an order ideal in the tope poset T(L,B), it follows from [5,
Theorem 4.3.3] and [5, Proposition 4.7.26 (ii)] that Li−1 − 0̂ is the face poset of a
shellable, regular cell decomposition of a PL (r−1)-ball. The boundary of this ball is
a regular cell decomposition of a PL (r−2)-sphere whose face poset is isomorphic to
Li−1,i − 0̂. It follows that Li−1,i ∪ 1̂ is a combinatorial (r − 2)-manifold. A theorem
of Barnette [2] (see also [7]) then implies that the graph formed by the top two levels
of Li−1,i is (r − 1)-connected. This graph coincides with Hi−1,i by definition.

7 Simple Zonotopes and Coxeter Arrangements

In this section we point out an application of the result of [1] on simple polytopes to
finite Coxeter groups.

A d-dimensional polytope P is simple if every vertex of P is incident to exactly d
edges. If P is a zonotope, this is equivalent to the statement that the polar arrange-
ment of linear hyperplanes is simplicial. An important class of simplicial arrange-
ments of hyperplanes is the class of Coxeter arrangements [5, Section 2.3] [13, Chap-
ter 6]. Let W be a finite Coxeter group, i.e., a finite group presented by a finite set of
generators S and the relations

(i) s2 = 1, s ∈ S and
(ii) (ss ′)m(s,s ′) = 1, s �= s ′, s, s ′ ∈ S

for some integers m(s, s ′) ≥ 2. The minimum size of such a set S is called the rank
of W . Relations (i) and (ii) are known as the Coxeter relations. The class of finite
Coxeter groups coincides with that of finite reflection groups. The associated reflec-
tion arrangement, or Coxeter arrangement AW , is known to be simplicial and hence
its polar zonotope is simple. Its dimension is the rank of W . The regions of AW

are naturally in bijection with the elements of W . Moreover, if B is the region cor-
responding to the identity element then the maximal chains in the poset of regions
of AW are in bijection with the reduced decompositions of the highest element w0 of
W , i.e., expressions of minimal length of the form w0 = s1s2 · · · s�, with si ∈ S for
all i. The flips correspond to moves which replace m successive entries s, s ′, s, s ′, . . .
with s ′, s, s ′, s, . . . , where s �= s ′ and m = m(s, s ′), known as Coxeter moves.
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The following corollary of Theorem 1.1 (iii) strengthens the well known fact (cf.
[6], [12]) that any two reduced decompositions of w0 can be obtained from each
other by a sequence of Coxeter moves.

Corollary 7.1 If W is a finite Coxeter group of rank r and w0 is its highest element
then the graph of reduced decompositions of w0 and Coxeter moves is (r− 1)-connected.

Acknowledgement The authors thank Günter Ziegler for a helpful conversation re-
lated to the proof of Lemma 6.3.
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