ON A THEOREM OF CUTLER

Charles K. Megibben*

In [1] Cutler proved the following theorem.
THEOREM. If G and K are abelian groups such that $n G \cong n K$ for some positive integer n, then there are abelian groups U and V such that $U \oplus G \cong V \oplus K$ and $n U=0=n V$.

Cutler's proof is long and fairly involved. Walker [3] obtains the theorem rather elegantly as corollary of his results on n-extensions. We give here a proof that is extremely simple both in conception and execution. Our proof relies on the notion of p-basic subgroups introduced by Fuchs in [2]. Therefore we shall first recall certain pertinent facts from [2].

Let p be a fixed prime. A subgroup B of an abelian group G is said to be a p-basic subgroup of G if:
(1) B is a direct sum of cyclic groups of infinite and p-power orders;
(2) B is p-pure in G (that is, $p^{n} G \cap B=p^{n} B$ for all positive integers n);
(3) G / B is p-divisible (that is, $p(G / B)=G / B$).

Fuchs [2] calls a family $\left\{\mathrm{x}_{\lambda}\right\}_{\lambda \in \wedge}$ of elements of G p-pure independent if (i) the family is independent, (ii) the subgroup generated by the family is p-pure, and (iii) each x_{λ} has either infinite or p-power order. He then shows (a) that every p-pure-independent family can be expanded to a maximal p-pure-independent family, (b) that the generators of a p-basic subgroup form a maximal p-pure-independent family and, conversely, (c) that the subgroup generated by a maximal p-pure-independent family is a p-basic subgroup. Although we do not require the fact, we mention that any two p-basic subgroups of G are isomorphic. We need two very simple lemmas about p-basic subgroups.

LEMMA 1. If B is a p-basic subgroup of G, then $p B$ is a p-basic subgroup of pG .

Proof. pB surely satisfies condition (1). $\mathrm{pG} / \mathrm{pB}$ is p -divisible since

[^0]$\mathrm{pG} / \mathrm{pB}=\mathrm{pG} / \mathrm{pG} \cap \mathrm{B} \cong \mathrm{pG}+\mathrm{B} / \mathrm{B}=\mathrm{p}(\mathrm{G} / \mathrm{B})=\mathrm{G} / \mathrm{B}$. Finally, pB
is p-pure in $p G$ since
$$
p^{n}(p G) \cap p B \subseteq p^{n+1} G \cap B=p^{n+1} B=p^{n}(p B)
$$
for all positive integers n.
LEMMA 2. Suppose C is a subgroup of the abelian group G and that C is a direct sum of cyclic groups of infinite and p-power orders. If $p C$ is a p-basic subgroup of $p G$, then there is a subgroup A of G such that $p A=0$ and A is a p-basic subgroup of G.

Proof. To insure the existence of an A such that $A \oplus C$ is a p-basic subgroup of G, it suffices by (a) and (c) to show that C is a p-pure subgroup of G. Let $C=\Theta_{\mu \in M}\left\langle c_{\mu}\right\rangle$ and suppose $t_{1} c_{\mu_{1}}+\ldots+t_{n} c_{\mu} \in p G$. Since pC is a p -basic subgroup of $\mathrm{pG}, \mathrm{p}\left(\mathrm{t}_{1} \mathrm{c}_{\mu_{1}}+\ldots+\mathrm{t}_{\mathrm{n}} \mathrm{c}_{\mu_{\mathrm{n}}}\right) \in \mathrm{p}^{2} \mathrm{G} \cap \mathrm{pC}=\mathrm{p}^{2} \mathrm{C}$. Therefore each t_{i} is divisible by p and $t_{1} c_{\mu_{1}}+\ldots+t_{n} c_{\mu_{n}} \in p C$. For $\mathrm{n}>1$ we have

$$
p^{n} G \cap C \subseteq p^{n-1}(p G) \cap p C=p^{n-1}(p C)=p^{n} C
$$

since $p C$ is p-pure in $p G$. Now $A \oplus C$ is a p-basic subgroup of G, and $\mathrm{pA} \oplus \mathrm{pC}$ is a p-basic subgroup of pG by Lemma 1. But then (b) implies that $\mathrm{pA}=0$.

We now turn to the proof of Cutler's theorem. First, we observe, by iteration, that it suffices to prove the theorem in the case n is an arbitrary prime p. Let B be a p-basic subgroup of G and let ϕ be an isomorphism of pG onto pK . Choose C_{1} to be a direct sum of cyclic groups of infinite and p-power orders without a p-bounded summand and such that $p C_{1}=\phi(p B)$. Then clearly pC_{1} is a p -basic subgroup of pK and, by Lemma 2, there is a subgroup A such that $p A=0$ and $C=A \oplus C_{1}$ is a p-basic subgroup of K. We can write $B=D \oplus B_{1}$, where $p D=0$ and B_{1} contains no p -bounded direct summand. Then $\mathrm{pB} \mathrm{B}_{1}=\mathrm{pB}$ and there is obviously an isomorphism ψ of B_{1} onto C_{1} that extends $\phi \mid p B$. Clearly then there exist p-bounded abelian groups U and V (one of which can be chosen to be 0) such that $U \oplus B \cong V \oplus C$ under an extension $\bar{\psi}$ of ψ. Then $U \oplus B$ and $V \oplus C$ are p-basic subgroups of $U \oplus G$ and $V \oplus K$ respectively. Since $U \Theta G=(U \Theta B)+p G$ and $V \oplus K=(V \Theta C)+p K$ and since $\bar{\psi}$ and ϕ agree on $(\mathrm{U} \oplus \mathrm{B}) \cap \mathrm{pG}=\mathrm{pB}$, there is an obvious isomorphism $\bar{\phi}$ of $U \oplus G$ onto $V \oplus K$ that extends both $\bar{\psi}$ and ϕ.

REFERENCES

1. D.O. Cutler, Quasi-isomorphism for infinite abelian p-groups. Pacific J. Math. 16 (1966) 25-45.
2. L. Fuchs, Notes on abelian groups II. Acta. Math. Acad. Sci. Hungar. 11 (1960) 117-125.
3. E.A. Walker, On n-extensions of abelian groups. Annales Univ. Sci. Budapest 8 (1965) 71-74.

Vanderbilt University
Nashville
Tennessee

[^0]: * This work was supported in part by the National Science Foundation Research Grant GP-7252.

