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ABSTRACT. Characterizations of the upper semi-continuity of 
the subdifferential mapping of a continuous convex function are 
given. 

1. Notation. The following notation will be used throughout the paper. Let 
(E, T) denote a vector space E (over the real numbers R) with a locally convex 
Hausdorff topology r. We shall also use T to denote the product topology on 
ExR. Let E* be the space of all continuous linear functional x* on E. For x 
in E and x* in E* let <x, x*) = x*(x). 

Let si be a class of weakly bounded absolutely convex subsets A of E such 
that E = U A G ^ A and ÀA e si whenever Aesd and À > 0. Let r^ be the locally 
convex topology on E* of uniform convergence on the members of si; that is, 
the topology determined by the seminorms pA, A e i where pA(y*) = 
sup(A, y*) for each y* in E*. Equivalently, rA is the vector space topology that 
has the sets A° = {y*eE*:sup(A, y* )< l} , A e i a s a neighborhood subbase 
of the origin in E*. In particular, if si is the class of all balanced line segments 
in E, then r^ is the weak* topology. Let $ be the class of all finite closed 
subintervals of R and let si x 3 = {A x I : A e si, I e $}. 

If J is an index set, we say that a net yy, je J r ̂ -converges to y if pA(y7- — y), 
j eJ converges to zero for each A in se. We say that the net T^-approaches Y if 
inf pA(yJ —Y), je J (each infimum is taken over all y in Y with /, A fixed) 
converges to zero for each A in si. The index set / will usually be dropped in 
statements about convergence. 

Let / be a function on E with values in R U{oo} and suppose that / is convex; 
that is, e p i / = {(y, r)eExR: / (y )<r} is a convex subset of ExR. We shall 
also assume that the convex function / is (finite and) continuous at a point x in 
(E, T) and so continuous in some r-neighborhood of x. 

2. Definitions. A subgradient of / at x is any x* in E* such that x*(y - x ) < 
f(y)~fM for all y in E. The subdifferential of f at x is the set df(x) of all 
subgradients x* of / at x. For e > 0 , the s-approximate subâJJferential of f at x 
is the set d J ( x ) ^ { z * e E ^ z * ( y - x ) < / ( y ) - / ( x ) + e for all y in E}. The 
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conjugate function f* of / is defined by 

/* (z*)^sup{z*(y) - f (y ) :yeE} for z* in E*. 

The directional derivative of f at x in the direction y is 

,,, , r / (* + Ay)-/(x) / ( x ; y ) - b m 

for each y in E. If x*, (x + Ày)* are subgradients of / at x and x + Ày 
respectively, then by the convexity of /, the inequalities 

x* (y )<f (x ;y )<A- 1 [ / (x + Ày)- / (x) ]<(x + Ày)*(y) 

hold for all y in E and all sufficiently small À > 0 . In particular, the subgra
dients of / at x are precisely those x* in JE* which are dominated by the 
continuous sublinear functional f'(x\ •)• Thus, by the Hahn-Banach theorem, 
for each y in E there is an x* in d/(x) such that x*(y) = f(x; y). If for each A 
in sd the convergence in the limit is uniform for y in A as À —» 0+, we shall say 
that / is rM-directionally differentiable at x. The limits here are one-sided; 
although ~f(x; y) < / ' (* ; - y ) , equality need not hold. 

We shall say that a set valued mapping T from E to the set 2E* of all subsets 
of J5* is T —T^ upper semi-continuous (respectively, lower semi-continuous) at x 
if for each r^-neighborhood V of 0 in £*, there is a r-neighborhood U of x in 
E such that T(y)c: T(x)+ V (respectively, T(x)c: T(y)+V) whenever y is in 
U. The mapping T is T - T ^ continuous at x if it is both T - T ^ u.s.c. and l.s.c. 
there. (The notation r^ may be considered to represent the power set unifor
mity on 2E* determined by T^). In the definitions of u.s.c. and l.s.c. in the 
literature, the uniform structure is usually ignored; in that case we shall say 
that T i s T - T ^ u.s.c. (respectively, l.s.c.) at x if for each r^-open set G such 
that T(x)<^G (respectively, T ( x ) n G ^ 0 ) there is a T-neighborhood U of x 
such that T(y)c G (respectively, T(y)Pl G ^ 0 ) whenever y is in U. If T(x) is 
T^-compact (in particular, if it is a singleton), the definitions agree. 

A subset C of E x R is strictly above the function /'(x, •)» where x is fixed, if 
there is an e > 0 such that f(x; y ) < r - e for all (y, r) in C. 

3. Upper semi-continuity of the subdifierential mapping. Many of the equival
ences in the following theorem can be regarded as an extension (to the case 
where d/(x) is not a singleton) of results of Asplund and Rockafellar [1] on the 
^-differentiability of convex functions. The implications 4<=>3=^>5=>6 in the 
proof are simple extensions of arguments in [1]. 

3.1. THEOREM. The following conditions are equivalent for a convex function f 
which is continuous in a neighborhood of x in (E, T). 

1. The function f is r^-directionally differentiable at x. 
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2. Whenever a subset of a member of six3 is strictly above f'(x; •), then it is 
contained in A[epi/— (x, f(x)] for some A>0 . 

3. The mapping A —» dx/(x) is Y^ u.s.c. at 0 in [0, <»); that is, /or each A in si, 
there is an TJ > 0 such that d^/Cx) <= d/(x) + A0 . 

4. The function y*-^(x, y*) —/*(y*) attains its supremum strictly at df(x) 
with respect to r^; that is, whenever y* m E* are swch rhaf (x, y*)-/*(y*) 
converges to f(x), then y* r^-approaches d/(x). 

5. The approximate subdifferential mapping (y, A)->dÀ/(y) is T - T ^ U.S.C. at 
(x, 0); that is /or each A in ^ , there are an TJ > 0 and a T-neighborhood U of x 
such that d^f(y)<^df(x) + A° whenever y is in U. 

6. The subdifferential mapping df is T — T^ U.S.C. at x; that is, for each A in si, 
there is a r-neighborhood U of x such that d/(y)<= d/(x) + A 0 whenever y is in U. 

7. Whenever y converges to x in (E, T), then for each A in si, inf Pj\(df(y) — 
df(x)) converges to zero. 

Proof. (1^>2) Suppose that C<=-Ax[a,b] and, for some e > 0 , f ( x ; y ) < 
r — e for all (y, r) in C. Since y e A when (y, r)e C, it follows from 1 that there 
is a A > 0 such that for all (y, r) in C, A -1[/(x +Ay) - / (* ) ]< r ; equivalently, 
/(x + Ay)</(x) + Ar. Thus, AC + (x, /(*))<= ep i / and condition 2 follows. 

(2=^ 1) Let Aesi and e > 0 be given. Since / is continuous at x, f'(x, •) is 
continuous on E and is therefore bounded on A. Thus, C = {(y, ry): 
y G A, ry = e+f(x; y)} is a subset of a member of six 3. Also, C is strictly 
above /'(x; •) and so, by assumption, contained in A _ 1[epi /-(x, f(x))] for some 
A>0 . Therefore, for y in A, 

O^A-1[/(x + A y ) - / ( x ) ] - f ( x ; y ) < r y - / ' ( x ; y ) = e. 

Since the difference quotient is monotone decreasing with A, condition 1 
follows. 

(1 ^ 3) Given A in ^ , choose A > 0 so that |À_1[/(x + Ày)- / (x)]-- f (x; y) |< 
| for all y in A. Let 0<<n<A/2. Then for y* in dj(x), we have /(x + Ay)> 
/(x) + Ay*(y)-T] for all y in E. Thus, for any x* in d/(x) we have 

( y*-*W ( x + Af~ / ( x )-**(y)+;. 
Now, for each y there is an x* in d/(x) such that x*(y) = f'(x; y). Thus 

inf{(y*-x*)(y):x*ed/(x)}<l for each y in A. From the definition, it is clear 
that d/(x) is weak* closed and convex and contained in the polar of the convex 
body { y - x : / ( y ) - / ( x ) < l } . Thus d/(x) is weak* compact and convex. It now 
follows by a simple contradiction argument using the separation theorem that 
( y * - d / ( x ) ) H A V 0 ; that is, y*ed/(x) + A°. 

(3<£>4) This follows directly from the fact that dj(x) = 
{y*eE*:<x, y*>- /* (y*)^ / (x ) - r ,} and /(x)><x, y*>-/*(y*) for all y* in E*. 
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(3=>5) It is sufficient to show that if 0<T)<y/2 then there is a T-
neighborhood U of x such that d^f(y)czdyf(x) whenever y is in U. Let 
y*ed„/(y). Then / ( z ) - / ( y ) > y * ( z - y ) - - n for all z in J5. Thus, for all z in E, 

/ ( z ) - f (x ) = / ( z ) - / ( y ) + / ( y ) - / ( x ) 

> y * ( z - y ) - T , + / ( y ) - / ( x ) 

a=y*(2-x)-T, + y* (x-y) + f (y)- / (x) 

>y * ( z -x ) -2 -n+ [ / ( y ) - / ( 2y -x ) ] + [/(y)-/(x)]. 

Since / is continuous at x, there is an absolutely convex T-neighborhood V of 0 
such that |/(y) - f(z)\ < 7/2 - 17 whenever y, z G x 4- 2 V. Then, for y e (7 = x 4- V 
we have / ( z ) - / ( x ) > y * ( z - x ) - y for all z; that is, y*ed.Y/(x). 

(5 z> 6 => 7) These implications are immediate. 
(7 => 1) For all x* in df(x) and (x + Ay)* in d/(x + Ay) we have for y in A and 

A > 0 that 

0<A- 1 [ / (x + Ay) - / (x ) ] - / ' ( x ;y ) 

<[(x + Ày)*-x*](y) 

<pA[(x + Ày)*-x*] 

Thus, the first difference is non-negative and less than or equal to inf pA(df(x + 
•̂y) — d/(x)). Since A is bounded, x + Ay converges to x uniformly for y in A as 

A -> 0+. Thus, 1 follows from 7. 

3.2. REMARKS. 1. By the tangent cone to epif at (x,/(x)) we mean the 
smallest closed convex cone Kfx in (EXR,T) which contains epif— (x, f(x)); 
that is, KftX=\JK>0\[epif — (x,f(x)y]. It follows from the separation theorem 
that 

% = { ( y , r ) e E x R : x * ( y ) < r for all x*ed/(x)} = e p i / ' (x; •)• 

Also, C is strictly above f'(x; •) if and only if C —(0, s)^Kfx for some 8 > 0 ; 
equivalently, if and only if C+ l /x [—6, e]c:KfjX for some 8 > 0 and r-
neighborhood U of the origin. If the later hold, we say that C is strictly inside 
the tangent cone. Condition 2 can then be replaced by the following condition 
on the 'rate of formation' of the tangent cone Kfx: 

"2'. Whenever a subset of a member of si x 3 is strictly inside in the tangent 
cone KftX, then it is eventually engulfed by the increasing family A[ep i / -
(x,/(x))], A > 0 which yields Kfx." 

Each member of the family A[epi / - (x , /(x))] + (0, e), £ > 0 , A > 0 is engulfed 
(same A), and each point strictly inside Kfx is in the interior of such a set. 
Therefore, the r-compact sets strictly inside Kfx are always engulfed. Thus, 
the conditions of Theorem 3.1 all hold. When the members of si are all 
T-compact (in particular, if TM is the weak* topology, or the topology T% of 
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uniform convergence on the class % of all T-compact convex subsets of E). 
Condition 5 then gives the result of Moreau [1; p. 458] that the approximate 
subdifferential mapping dj is r - ï v u.s.c. at (x, A) for all A > 0 (it is always 
T - T ^ continuous at (x, A) for A > 0 [1; p. 456]). 

2. Let (f) be a selection of df near x; that is, 4>(y)edf(y) for each y in a 
T-neighborhood of x. Condition 7 implies that in order to have r — T^ U.S.C. of 
df at x, it is sufficient to have that for each A in si there is an 17 > 0 and a 
r-neighborhood (7 of 0 such that <f>(y)edf(x) + A° for y in U. In fact, a 
different selection <fr may be used for each A. It follows from this that if df is 
r — T^ or T — T^ l.s.c. at x, then it is r — T^ U.S.C. at x, and, consequently, r — T^ 

continuous at x. Moreover, d/(x) must then be a singleton [4; p. 67]. Conse
quently, df is T - T ^ or T - T ^ l.s.c. at x if and only if it is T - T ^ or T - T ^ U.S.C. 

at x and d/(x) is a singleton. It is for this reason that upper semi-continuity is 
examined in this paper. (For completeness, we comment without proof that this 
remark holds for any maximal monotone mapping; that is for any mapping 
T : E —» 2E* which is maximal with respect to the monotone property (y — 
x, y * - x * > > 0 for all x, y in E and x*eT(x), y*eT(y).) 

Most of the equivalent statements in the corollary below can be found in [1]. 

3.3. COROLLARY. Let f be a convex function which is continuous in a neigh
borhood of x in (E, r), and let x*eE* . Then the following conditions are all 
equivalent and imply that df(x) is the singleton {x*}. 

1. The convex function f is r^-differentiate at x with r^-differential x*; that 
is, for each A in si, A_1[/(x + Ay)-/(x)] converges to x*(y) uniformly for y in A 
as A —> 0. 

2. Whenever a subset of a member of six $ is strictly above the functional x*, 
then it is contained in A[epi/ —(x,/(x))] for some A>0 . 

3. The conjugate function f* is r^-rotund at x* relative to x; that is [1; p. 
445] for each A in si there is an y\ > 0 such that 

{ y * : f V + y * ) - / V ) - < x , y ^ r , } c A ° . 

4. The function y*—»(x, y*)—/*(y*) attains its supremum strictly at x* with 
respect to r^; that is, whenever y* in E* are such that (x, y*) —/*(y*) converges 
to f(x), then y* r^-converges to x*. 

5. The approximate subdifferential mapping dA/ is T — T^ continuous at (x, 0) 
and x* is in df(x). 

6. The subdifferential mapping df is T - r^ continuous at x and x* is in df(x). 
7. Whenever y converges to x in (E, r), there is a selection <t>(y)£df(y) for y 

near x such that <My) T^-converges to x*. 

Proof. The implications shown in Theorem 3.1 can also be proved here 
either by mimicking the proofs or by showing that the condition assumed 

2 
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implies that df(x) is a singleton and appealing to Theorem 3.1. Note also that 
the set to be included in A 0 in condition 3 is just dy]f(x)-x*. 

4. Upper semi-continuity of support face mappings. In this section, we 
examine the consequences of Theorem 3.1 for a continuous convex function 
which is everywhere finite and non-negative and is positively homogeneous. 
Such a function is a continuous Minkowski functional; that is, / is specified by 
any of the convex bodies Ur ={y e E : / ( y ) < r } , r > 0 ; for example, /(y) = 
inf{À > 0 : y G ÀL^} or /(y) — sup(y, £7?) for y in JE. Under these assumptions the 
equivalent statements in Theorem 3.1 all have natural geometric formulations. 

Let M = M(17?, x) = sup(x, U?) = /(x). The subgradients of / at x are the 
(normalized) support functional to UM at x; that is, the x* in JE* such that 
x*(y)<x*(x) = M for all y in UM. Dually, the subdifferential mapping df 
associates to x in E the set F(17?, x) = {x* G 17? : x*(x) = M}; that is, the (weak* 
compact convex non-empty) face of U? supported by x. 

The conjugate function /* is zero on (7? and oo elsewhere on E. Consequently, 
the e-approximate subdifferential of / at x, de/(x), is the set S(£7?, x, e) = 
{y*G(7?:y*(x)>M(Lr?, x)-e}; this set is called a (closed) x-slice of £7? if 
0 < 8 < M . 

Suppose that M = / ( x ) > 0 . Because of the positive homogeneity of /, just as 
e p i / is determined by UM, so is the tangent cone Kfx to e p i / at (x,/(x)) 
determined by the tangent cone Kx to t/M at x, where 

Kx^ U A(l7M-x) = {yGJE:x*(y)<0for all x*Gd/(x)}. 

It turns out that the 'engulfing' condition 2 of Theorem 3.1 can be replaced by 
a condition on Kx if we make an additional assumption on the class si: 

"Whenever Aesi and Ie$> there is an A'esi such that A + I x c : A' ." 
We say that a subset C of E is strictly inside Kx if C + ex c: Kx (or C + 

sUM^Kx) for some e > 0 ; equivalents, if C+U<^KX for some r-neigh-
borhood U of zero. 

4.1. THEOREM. Let f be a continuous Minkowski functional on (JE, T), fef 
/(x) = M > 0 and suppose that si satisfies the additional assumption above. Then 
the following are equivalent. 

1. The Minkowski functional f is r^-directionally differentiate at x. 
2. If a subset of a member of si is strictly inside Kx, then it is contained in 

k(UM-x) for some A>0 . 
3. The face F(U?, x) is weak* r^-exposed in 17? by x; that is, for each A in 

si, F(17?, x) + A 0 contains an x-slice of 17?. 
4. The linear functional x on E* attains its supremum strictly on 17? at 

F(17?, x) with respect to r^; that is, whenever y* in 17? are such that (x, y*) 
converges to M, then y* T^-approaches F((7?, x). 
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5. The slice mapping (y, A)—» S(Ui, y, À) is T - T ^ U.S.C. at (x, 0). 
6. The support face mapping F(l/?, •) is T - T ^ U.S.C. at x. 
1. If y converges to x in (JE, T), then for each A in si, inf pA(F( I/?, y ) -

F(lfl,x)) converges to zero. 

Proof. All of the conditions except 2 are simple restatements of the corres
ponding conditions in Theorem 3.1. Let IT : E x R —» E be defined by ir(y, r) = 
y -rx/M. The extra assumption on si ensures that if C<^Ax[a, b~\ for some A 
in si and a, b in R, then 7r(C)c: A' for some A ' in si. The equivalence of 2 
with the corresponding condition in Theorem 3.1 follows immediately from the 
following relations, all of which can be verified directly. Let C<^Ax[a,b], 
B c E , and À, e > 0 . Then 

ex 
C - ( 0 , e ) c K f x if and only if T T ( C ) + — c j f ^ ; 

M 
7r(C)c: A(jyM-x) implies 

C < = ( A + ~ ) [ e p i / - ( x , / ( x ) ) ] ; 

and 

Bx{0}eA[epi/-(%,/(*))] 

implies B c A ( [ / M - x ) . 

4.2. REMARKS. 1. It is important to use subsets of members of si in condi
tion 2 rather than say, translates, for the engulfing depends very much on the 
shape of the set used. In particular, points strictly inside Kx are always engulfed 
and so any translated Ur. that is strictly inside Kx is always engulfed too (z + Ur 

will be contained in \(UM-x) if z + rx/M is). 
2. If / is a seminorm (that is, if / also satisfies the condition f(—y) = ~f(y) for 

all y in JE), then df(x) = 17? whenever f(x) = 0. Thus, for seminorms, the 
support mapping is always T - T ^ U.S.C. at those x for which f(x) = 0. 

As in the previous section we have a 'single-valued' form of Theorem 4.1. 

4.3. COROLLARY. Under the same assumptions as in Theorem 4.1, the fol
lowing conditions are equivalent and imply that F(L/?, x) = {x*}. 

1. The Minkowski functional f is r^-dijferentiable at x with r^-differential x*. 
2. If a subset of a member of si is strictly inside the half space {y : x*(y) < 0}, 

then it is contained in \(UM-x) for some A>0 . Also, (x, x*) = M. 
3. The point x* is weak* r^-exposed in t/? by x; that is, each r^-

neighborhood of x* contains an x-slice of I/?. 
4. The linear functional x on E* attains its supremum strictly on U? at x* with 

respect to r^; that is, whenever y* in £J? are such that (x, y*) converges to M 
then y* r^-converges to x*. 
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5. The slice mapping (y, À)-» S(l/?, y, À) is r-r^ continuous at (x, 0) and 
x*eF(L/?,x). 

6. The support face mapping F(£/?, •) is T - T ^ continuous at x and X*G 
F(UÏ,x). 

7. 1/ y converges to x in (E, r), then there is a selection <t>(y)edf(y) such that 

<f>(y) T*rconverges to x*. 

If / = || • || is the norm on a normed linear space E = X, it is customary to call 
df the duality mapping D and denote a typical member of the support face 
D(x) by /x. The unit ball Ux is denoted by B(X), the dual ball [/? by B(X*). 
The norm topology on the dual X* is the topology r^ where sd is the class of 
all weakly (or norm) bounded absolutely convex subsets of X; that is, it is the 
strong topology on X*. In this special case we get the following corollary of 
Theorem 4.1. Most of the equivalences have already been shown in [2] under 
the additional assumption that X is a Banach space. 

4.4. COROLLARY. Let X be a normed linear space and let \\x\\= 1. Then the 
following conditions are equivalent. 

1. The norm is strongly directionally differentiable at x. 
2. Each bounded set strictly inside Kx is contained in A(B(X)-x) for 

some A > 0 
3. The support face D(x) is weak* strongly exposed in B(X*) by x; that is, for 

each e > 0 , D(x) + eB(X*) contains an x-slice of B(X*). 
4. The linear functional x on E* attains its supremum strictly on (7? at D(x) 

with respect to the strong ( = norm) topology. 
5. The slice mapping (y, A)—> S((7?, y, A) is norm-norm u.s.c. at (x, 0). 
6. The duality mapping D is norm-norm u.s.c. at x. 
7. Whenever y strongly converges to x, there is a selection fy eD(y) such that 

fy strongly approaches D(x). 

In the special case that D(x) is a singleton, we get the following corollary. 
Some of the equivalences are classical [5]. The equivalence of conditions 1 and 
2 has been shown by J. R. Giles [6]. 

4.5. COROLLARY. Let X be a normed linear space, let fx be an element of X* 
and let | |x | |=l . Then the following conditions are equivalent and imply that 
D(x) = {fx}. 

1. The norm is strongly ( = Fréchet) differentiable at x with strong differential 

/,. 
2. Each bounded set strictly inside the half space {y: /x(y)<0} is con

tained in A(B(X)-x) for some A > 0 . 
3. The point fx is weak* strongly exposed in B(X*) by x; that is, each norm 

neighborhood of fx contains an x-slice of B(X*). Also fx(x)= 1. 
4. The linear functional x on X* attains its supremum strictly on B(X*) at fx 

with respect to the strong ( = norm) topology. 
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5. The slice mapping (y, À)-» S(B(X*), y, À) is norm-norm continuous at 
(x,0) andfxeD(x). 

6. The duality mapping D is norm-norm continuous at x and fxeD(x). 
7. Whenever y strongly converges to x, there is a selection fy eD(y) such that 

fy strongly converges to fx. 

4.5 REMARKS. 1. We have observed that all of the theorems and corollaries 
hold if r^ is the weak* topology. If the weak* rather than the strong topology 
is used for T^ in Corollary 4.5, we get equivalent conditions for the weak* 
( = Gateau or weak) differentiability of the norm at x. In condition 3, it is then 
customary to say simply that /x is weak* exposed (rather than weak* weak* 
exposed). 

2. It is well-known that the set of points of strong differentiability of the 
norm 

n i ||x + Ay| |+| |x-Ay| |-2 ||x|| 1 1 
(I Ï x : sup < — tor some A > u \ 
n I yeB(x) A n J 

is a Gs subset of X. This is not the case for the set G of points at which the 
duality mapping is norm-norm upper semi-continuous. For example, let X be 
the Banach space m of bounded sequences x = (xn) with the supremum norm. 
Then from condition 2 of Corollary 4.4 it is clear that G is the set of points x 
for which ||x|| is not an accumulation point of {|xn|:|xn|^|[x||}. The set G is 
dense and its complement is a dense Gs subset. Since the intersection of two 
dense Gs subsets of a Baire space must be dense, G cannot be a Gs subset. 
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