UPPER SEMI-CONTINUITY OF SUBDIFFERENTIAL MAPPINGS

BY

DAVID A. GREGORY

ABSTRACT. Characterizations of the upper semi-continuity of the subdifferential mapping of a continuous convex function are given.

1. Notation. The following notation will be used throughout the paper. Let (E, τ) denote a vector space E (over the real numbers R) with a locally convex Hausdorff topology τ . We shall also use τ to denote the product topology on $E \times R$. Let E^* be the space of all continuous linear functionals x^* on E. For x in E and x^* in E^* let $\langle x, x^* \rangle \equiv x^*(x)$.

Let \mathscr{A} be a class of weakly bounded absolutely convex subsets A of E such that $E = \bigcup_{A \in \mathscr{A}} A$ and $\lambda A \in \mathscr{A}$ whenever $A \in \mathscr{A}$ and $\lambda > 0$. Let $\tau_{\mathscr{A}}$ be the locally convex topology on E^* of uniform convergence on the members of \mathscr{A} ; that is, the topology determined by the seminorms p_A , $A \in \mathscr{A}$ where $p_A(y^*) \equiv \sup\langle A, y^* \rangle$ for each y^* in E^* . Equivalently, τ_A is the vector space topology that has the sets $A^0 \equiv \{y^* \in E^* : \sup \langle A, y^* \rangle \le 1\}$, $A \in \mathscr{A}$ as a neighborhood subbase of the origin in E^* . In particular, if \mathscr{A} is the class of all balanced line segments in E, then $\tau_{\mathscr{A}}$ is the weak* topology. Let \mathscr{I} be the class of all finite closed subintervals of R and let $\mathscr{A} \times \mathscr{I} \equiv \{A \times I : A \in \mathscr{A}, I \in \mathscr{I}\}$.

If J is an index set, we say that a net y_i , $j \in J \tau_{\mathscr{A}}$ -converges to y if $p_A(y_i - y)$, $j \in J$ converges to zero for each A in \mathscr{A} . We say that the net $\tau_{\mathscr{A}}$ -approaches Y if inf $p_A(y_i - Y)$, $j \in J$ (each infimum is taken over all y in Y with j, A fixed) converges to zero for each A in \mathscr{A} . The index set J will usually be dropped in statements about convergence.

Let f be a function on E with values in $R \cup \{\infty\}$ and suppose that f is convex; that is, epi $f \equiv \{(y, r) \in E \times R: f(y) \le r\}$ is a convex subset of $E \times R$. We shall also assume that the convex function f is (finite and) continuous at a point x in (E, τ) and so continuous in some τ -neighborhood of x.

2. **Definitions.** A subgradient of f at x is any x^* in E^* such that $x^*(y-x) \le f(y) - f(x)$ for all y in E. The subdifferential of f at x is the set $\partial f(x)$ of all subgradients x^* of f at x. For $\varepsilon > 0$, the ε -approximate subdifferential of f at x is the set $\partial_{\varepsilon} f(x) = \{z^* \in E^* : z^*(y-x) \le f(y) - f(x) + \varepsilon \text{ for all } y \text{ in } E\}$. The

Received by the editors September 12, 1978.

conjugate function f^* of f is defined by

$$f^*(z^*) \equiv \sup\{z^*(y) - f(y) : y \in E\}$$
 for z^* in E^* .

The directional derivative of f at x in the direction y is

$$f'(x; y) \equiv \lim_{\lambda \to 0^+} \frac{f(x + \lambda y) - f(x)}{\lambda}$$

for each y in E. If x^* , $(x+\lambda y)^*$ are subgradients of f at x and $x+\lambda y$ respectively, then by the convexity of f, the inequalities

$$x^*(y) \le f'(x; y) \le \lambda^{-1}[f(x+\lambda y) - f(x)] \le (x+\lambda y)^*(y)$$

hold for all y in E and all sufficiently small $\lambda > 0$. In particular, the subgradients of f at x are precisely those x^* in E^* which are dominated by the continuous sublinear functional $f'(x; \cdot)$. Thus, by the Hahn-Banach theorem, for each y in E there is an x^* in $\partial f(x)$ such that $x^*(y) = f'(x; y)$. If for each A in \mathscr{A} the convergence in the limit is uniform for y in A as $\lambda \to 0^+$, we shall say that f is $\tau_{\mathscr{A}}$ -directionally differentiable at x. The limits here are one-sided; although $-f'(x; y) \leq f'(x; -y)$, equality need not hold.

We shall say that a set valued mapping T from E to the set 2^{E^*} of all subsets of E^* is $\tau - \overline{\tau_{\mathcal{A}}}$ upper semi-continuous (respectively, lower semi-continuous) at x if for each $\tau_{\mathcal{A}}$ -neighborhood V of 0 in E^* , there is a τ -neighborhood U of x in E such that $T(y) \subset T(x) + V$ (respectively, $T(x) \subset T(y) + V$) whenever y is in U. The mapping T is $\tau - \overline{\tau_{\mathcal{A}}}$ continuous at x if it is both $\tau - \overline{\tau_{\mathcal{A}}}$ u.s.c. and l.s.c. there. (The notation $\overline{\tau_{\mathcal{A}}}$ may be considered to represent the power set uniformity on 2^{E^*} determined by $\tau_{\mathcal{A}}$). In the definitions of u.s.c. and l.s.c. in the literature, the uniform structure is usually ignored; in that case we shall say that T is $\tau - \tau_{\mathcal{A}}$ u.s.c. (respectively, l.s.c.) at x if for each $\tau_{\mathcal{A}}$ -open set G such that $T(x) \subset G$ (respectively, $T(x) \cap G \neq \emptyset$) there is a τ -neighborhood U of x such that $T(y) \subset G$ (respectively, $T(y) \cap G \neq \emptyset$) whenever y is in U. If T(x) is $\tau_{\mathcal{A}}$ -compact (in particular, if it is a singleton), the definitions agree.

A subset C of $E \times R$ is strictly above the function $f'(x, \cdot)$, where x is fixed, if there is an $\varepsilon > 0$ such that $f'(x; y) \le r - \varepsilon$ for all (y, r) in C.

3. Upper semi-continuity of the subdifferential mapping. Many of the equivalences in the following theorem can be regarded as an extension (to the case where $\partial f(x)$ is not a singleton) of results of Asplund and Rockafellar [1] on the \mathcal{A} -differentiability of convex functions. The implications $4 \Leftrightarrow 3 \Rightarrow 5 \Rightarrow 6$ in the proof are simple extensions of arguments in [1].

3.1. THEOREM. The following conditions are equivalent for a convex function f which is continuous in a neighborhood of x in (E, τ) .

1. The function f is $\tau_{\mathcal{A}}$ -directionally differentiable at x.

[March

2. Whenever a subset of a member of $\mathscr{A} \times \mathscr{I}$ is strictly above $f'(x; \cdot)$, then it is contained in λ [epi f - (x, f(x)] for some $\lambda > 0$.

3. The mapping $\lambda \to \partial_{\lambda} f(x)$ is $\overline{\tau_{\mathscr{A}}}$ u.s.c. at 0 in $[0, \infty)$; that is, for each A in \mathscr{A} , there is an $\eta > 0$ such that $\partial_{\eta} f(x) \subset \partial f(x) + A^{0}$.

4. The function $y^* \rightarrow \langle x, y^* \rangle - f^*(y^*)$ attains its supremum strictly at $\partial f(x)$ with respect to $\tau_{\mathcal{A}}$; that is, whenever y^* in E^* are such that $\langle x, y^* \rangle - f^*(y^*)$ converges to f(x), then $y^* \tau_{\mathcal{A}}$ -approaches $\partial f(x)$.

5. The approximate subdifferential mapping $(y, \lambda) \rightarrow \partial_{\lambda} f(y)$ is $\tau - \overline{\tau_{\mathcal{A}}}$ u.s.c. at (x, 0); that is for each A in \mathcal{A} , there are an $\eta > 0$ and a τ -neighborhood U of x such that $\partial_{\eta} f(y) \subset \partial f(x) + A^0$ whenever y is in U.

6. The subdifferential mapping ∂f is $\tau - \overline{\tau_{\mathscr{A}}}$ u.s.c. at x; that is, for each A in \mathscr{A} , there is a τ -neighborhood U of x such that $\partial f(y) \subset \partial f(x) + A^0$ whenever y is in U.

7. Whenever y converges to x in (E, τ) , then for each A in \mathcal{A} , $\inf p_A(\partial f(y) - \partial f(x))$ converges to zero.

Proof. $(1 \Rightarrow 2)$ Suppose that $C \subset A \times [a, b]$ and, for some $\varepsilon > 0$, $f'(x; y) \le r - \varepsilon$ for all (y, r) in C. Since $y \in A$ when $(y, r) \in C$, it follows from 1 that there is a $\lambda > 0$ such that for all (y, r) in C, $\lambda^{-1}[f(x + \lambda y) - f(x)] \le r$; equivalently, $f(x + \lambda y) \le f(x) + \lambda r$. Thus, $\lambda C + (x, f(x)) \subset epi f$ and condition 2 follows.

 $(2 \Rightarrow 1)$ Let $A \in \mathscr{A}$ and $\varepsilon > 0$ be given. Since f is continuous at $x, f'(x, \cdot)$ is continuous on E and is therefore bounded on A. Thus, $C \equiv \{(y, r_y): y \in A, r_y = \varepsilon + f'(x; y)\}$ is a subset of a member of $\mathscr{A} \times \mathscr{I}$. Also, C is strictly above $f'(x; \cdot)$ and so, by assumption, contained in $\lambda^{-1}[\operatorname{epi} f - (x, f(x))]$ for some $\lambda > 0$. Therefore, for y in A,

$$0 \leq \lambda^{-1}[f(x+\lambda y)-f(x)]-f'(x; y) \leq r_y - f'(x; y) = \varepsilon.$$

Since the difference quotient is monotone decreasing with λ , condition 1 follows.

 $(1 \Rightarrow 3)$ Given A in \mathscr{A} , choose $\lambda > 0$ so that $|\lambda^{-1}[f(x + \lambda y) - f(x)] - f'(x; y)| < \frac{1}{2}$ for all y in A. Let $0 < \eta \le \lambda/2$. Then for y^* in $\partial_{\eta}f(x)$, we have $f(x + \lambda y) \ge f(x) + \lambda y^*(y) - \eta$ for all y in E. Thus, for any x^* in $\partial f(x)$ we have

$$(y^*-x^*)(y) \leq \frac{f(x+\lambda y)-f(x)}{\lambda} - x^*(y) + \frac{\eta}{\lambda}$$

Now, for each y there is an x^* in $\partial f(x)$ such that $x^*(y) = f'(x; y)$. Thus $\inf\{(y^* - x^*)(y) : x^* \in \partial f(x)\} < 1$ for each y in A. From the definition, it is clear that $\partial f(x)$ is weak* closed and convex and contained in the polar of the convex body $\{y - x : f(y) - f(x) \le 1\}$. Thus $\partial f(x)$ is weak* compact and convex. It now follows by a simple contradiction argument using the separation theorem that $(y^* - \partial f(x)) \cap A^0 \neq \emptyset$; that is, $y^* \in \partial f(x) + A^0$.

 $(3 \Leftrightarrow 4)$ This follows directly from the fact that $\partial_{\eta} f(x) = \{y^* \in E^* : \langle x, y^* \rangle - f^*(y^*) \ge f(x) - \eta\}$ and $f(x) \ge \langle x, y^* \rangle - f^*(y^*)$ for all y^* in E^* .

 $(3 \Rightarrow 5)$ It is sufficient to show that if $0 < \eta < \gamma/2$ then there is a τ -neighborhood U of x such that $\partial_{\eta} f(y) \subset \partial_{\gamma} f(x)$ whenever y is in U. Let $y^* \in \partial_{\eta} f(y)$. Then $f(z) - f(y) \ge y^*(z - y) - \eta$ for all z in E. Thus, for all z in E,

$$f(z) - f(x) = f(z) - f(y) + f(y) - f(x)$$

$$\geq y^{*}(z - y) - \eta + f(y) - f(x)$$

$$\geq y^{*}(z - x) - \eta + y^{*}(x - y) + f(y) - f(x)$$

$$\geq y^{*}(z - x) - 2\eta + [f(y) - f(2y - x)] + [f(y) - f(x)].$$

Since f is continuous at x, there is an absolutely convex τ -neighborhood V of 0 such that $|f(y)-f(z)| \le \gamma/2 - \eta$ whenever y, $z \in x + 2V$. Then, for $y \in U = x + V$ we have $f(z)-f(x) \ge y^*(z-x) - \gamma$ for all z; that is, $y^* \in \partial_{\gamma} f(x)$.

 $(5 \Rightarrow 6 \Rightarrow 7)$ These implications are immediate.

 $(7 \Rightarrow 1)$ For all x^* in $\partial f(x)$ and $(x + \lambda y)^*$ in $\partial f(x + \lambda y)$ we have for y in A and $\lambda > 0$ that

$$0 \le \lambda^{-1} [f(x + \lambda y) - f(x)] - f'(x; y)$$

$$\le [(x + \lambda y)^* - x^*](y)$$

$$\le p_A [(x + \lambda y)^* - x^*]$$

Thus, the first difference is non-negative and less than or equal to $\inf p_A(\partial f(x + \lambda y) - \partial f(x))$. Since A is bounded, $x + \lambda y$ converges to x uniformly for y in A as $\lambda \to 0^+$. Thus, 1 follows from 7.

3.2. REMARKS. 1. By the tangent cone to epi f at (x, f(x)) we mean the smallest closed convex cone $K_{f,x}$ in $(E \times R, \tau)$ which contains epi f - (x, f(x)); that is, $K_{f,x} \equiv \bigcup_{\lambda>0} \lambda [\text{epi } f - (x, f(x))]$. It follows from the separation theorem that

 $K_{f,x} = \{(y, r) \in E \times R : x^*(y) \le r \text{ for all } x^* \in \partial f(x)\} = \operatorname{epi} f'(x; \cdot).$

Also, C is strictly above $f'(x; \cdot)$ if and only if $C - (0, \varepsilon) \subset K_{f,x}$ for some $\varepsilon > 0$; equivalently, if and only if $C + U \times [-\varepsilon, \varepsilon] \subset K_{f,x}$ for some $\varepsilon > 0$ and τ neighborhood U of the origin. If the later hold, we say that C is strictly inside the tangent cone. Condition 2 can then be replaced by the following condition on the 'rate of formation' of the tangent cone $K_{f,x}$:

"2'. Whenever a subset of a member of $\mathscr{A} \times \mathscr{I}$ is strictly inside in the tangent cone $K_{f,x}$, then it is eventually engulfed by the increasing family $\lambda[\operatorname{epi} f - (x, f(x))], \lambda > 0$ which yields $K_{f,x}$."

Each member of the family $\lambda[\text{epi} f - (x, f(x))] + (0, \varepsilon), \varepsilon > 0, \lambda > 0$ is engulfed (same λ), and each point strictly inside $K_{f,x}$ is in the interior of such a set. Therefore, the τ -compact sets strictly inside $K_{f,x}$ are always engulfed. Thus, the conditions of Theorem 3.1 all hold. When the members of \mathcal{A} are all τ -compact (in particular, if $\tau_{\mathcal{A}}$ is the weak* topology, or the topology $\tau_{\mathcal{C}}$ of 1980]

uniform convergence on the class \mathscr{C} of all τ -compact convex subsets of E). Condition 5 then gives the result of Moreau [1; p. 458] that the approximate subdifferential mapping $\partial_{\lambda} f$ is $\tau - \overline{\tau_{\mathscr{C}}}$ u.s.c. at (x, λ) for all $\lambda \ge 0$ (it is always $\tau - \overline{\tau_{\mathscr{A}}}$ continuous at (x, λ) for $\lambda > 0$ [1; p. 456]).

2. Let ϕ be a selection of ∂f near x; that is, $\phi(y) \in \partial f(y)$ for each y in a τ -neighborhood of x. Condition 7 implies that in order to have $\tau - \overline{\tau_{sd}}$ u.s.c. of ∂f at x, it is sufficient to have that for each A in \mathcal{A} there is an $\eta > 0$ and a τ -neighborhood U of 0 such that $\phi(y) \in \partial f(x) + A^0$ for y in U. In fact, a different selection ϕ may be used for each A. It follows from this that if ∂f is $\tau - \tau_{sd}$ or $\tau - \overline{\tau_{sd}}$ l.s.c. at x, then it is $\tau - \overline{\tau_{sd}}$ u.s.c. at x, and, consequently, $\tau - \overline{\tau_{sd}}$ continuous at x. Moreover, $\partial f(x)$ must then be a singleton [4; p. 67]. Consequently, ∂f is $\tau - \tau_{sd}$ or $\tau - \overline{\tau_{sd}}$ l.s.c. at x if and only if it is $\tau - \tau_{sd}$ or $\tau - \overline{\tau_{sd}}$ u.s.c. at x and $\partial f(x)$ is a singleton. It is for this reason that upper semi-continuity is examined in this paper. (For completeness, we comment without proof that this remark holds for any maximal monotone mapping; that is for any mapping $T: E \to 2^{E^*}$ which is maximal with respect to the monotone property $\langle y - x, y^* - x^* \rangle \ge 0$ for all x, y in E and $x^* \in T(x), y^* \in T(y)$.)

Most of the equivalent statements in the corollary below can be found in [1].

3.3. COROLLARY. Let f be a convex function which is continuous in a neighborhood of x in (E, τ) , and let $x^* \in E^*$. Then the following conditions are all equivalent and imply that $\partial f(x)$ is the singleton $\{x^*\}$.

1. The convex function f is $\tau_{\mathscr{A}}$ -differentiable at x with $\tau_{\mathscr{A}}$ -differential x^* ; that is, for each A in \mathscr{A} , $\lambda^{-1}[f(x+\lambda y)-f(x)]$ converges to $x^*(y)$ uniformly for y in A as $\lambda \to 0$.

2. Whenever a subset of a member of $\mathcal{A} \times \mathcal{I}$ is strictly above the functional x^* , then it is contained in $\lambda[\text{epi } f - (x, f(x))]$ for some $\lambda > 0$.

3. The conjugate function f^* is $\tau_{\mathcal{A}}$ -rotund at x^* relative to x; that is [1; p. 445] for each A in \mathcal{A} there is an $\eta > 0$ such that

$$\{y^*: f^*(x^*+y^*) - f^*(x^*) - \langle x, y^* \rangle \le \eta\} \subset A^0.$$

4. The function $y^* \rightarrow \langle x, y^* \rangle - f^*(y^*)$ attains its supremum strictly at x^* with respect to $\tau_{\mathfrak{A}}$; that is, whenever y^* in E^* are such that $\langle x, y^* \rangle - f^*(y^*)$ converges to f(x), then $y^* \tau_{\mathfrak{A}}$ -converges to x^* .

5. The approximate subdifferential mapping $\partial_{\lambda} f$ is $\tau - \overline{\tau_{\mathscr{A}}}$ continuous at (x, 0) and x^* is in $\partial f(x)$.

6. The subdifferential mapping ∂f is $\tau - \overline{\tau_{st}}$ continuous at x and x^* is in $\partial f(x)$.

7. Whenever y converges to x in (E, τ) , there is a selection $\phi(y) \in \partial f(y)$ for y near x such that $\phi(y) \tau_{\mathscr{A}}$ -converges to x^* .

Proof. The implications shown in Theorem 3.1 can also be proved here either by mimicking the proofs or by showing that the condition assumed

2

implies that $\partial f(x)$ is a singleton and appealing to Theorem 3.1. Note also that the set to be included in A^0 in condition 3 is just $\partial_n f(x) - x^*$.

4. Upper semi-continuity of support face mappings. In this section, we examine the consequences of Theorem 3.1 for a continuous convex function which is everywhere finite and non-negative and is positively homogeneous. Such a function is a continuous Minkowski functional; that is, f is specified by any of the convex bodies $U_r = \{y \in E : f(y) \le r\}, r > 0$; for example, $f(y) = \inf\{\lambda > 0 : y \in \lambda U_1\}$ or $f(y) = \sup\langle y, U_1^0 \rangle$ for y in E. Under these assumptions the equivalent statements in Theorem 3.1 all have natural geometric formulations.

Let $M = M(U_1^0, x) \equiv \sup\langle x, U_1^0 \rangle = f(x)$. The subgradients of f at x are the (normalized) support functionals to U_M at x; that is, the x^* in E^* such that $x^*(y) \leq x^*(x) = M$ for all y in U_M . Dually, the subdifferential mapping ∂f associates to x in E the set $F(U_1^0, x) \equiv \{x^* \in U_1^0 : x^*(x) = M\}$; that is, the (weak* compact convex non-empty) face of U_1^0 supported by x.

The conjugate function f^* is zero on U_1^0 and ∞ elsewhere on *E*. Consequently, the ε -approximate subdifferential of f at x, $\partial_{\varepsilon}f(x)$, is the set $S(U_1^0, x, \varepsilon) \equiv$ $\{y^* \in U_1^0: y^*(x) \ge M(U_1^0, x) - \varepsilon\}$; this set is called a (closed) *x*-slice of U_1^0 if $0 < \varepsilon < M$.

Suppose that M = f(x) > 0. Because of the positive homogeneity of f, just as epi f is determined by U_M , so is the tangent cone $K_{f,x}$ to epi f at (x, f(x)) determined by the tangent cone K_x to U_M at x, where

$$K_{\mathbf{x}} \equiv \bigcup_{\lambda > 0} \lambda(U_{\mathbf{M}} - \mathbf{x}) = \{ \mathbf{y} \in E : \mathbf{x}^*(\mathbf{y}) \le 0 \text{ for all } \mathbf{x}^* \in \partial f(\mathbf{x}) \}.$$

It turns out that the 'engulfing' condition 2 of Theorem 3.1 can be replaced by a condition on K_x if we make an additional assumption on the class \mathcal{A} :

"Whenever $A \in \mathcal{A}$ and $I \in \mathcal{I}$ there is an $A' \in \mathcal{A}$ such that $A + Ix \subset A'$."

We say that a subset C of E is strictly inside K_x if $C + \varepsilon x \subset K_x$ (or $C + \varepsilon U_M \subset K_x$) for some $\varepsilon > 0$; equivalently, if $C + U \subset K_x$ for some τ -neighborhood U of zero.

4.1. THEOREM. Let f be a continuous Minkowski functional on (E, τ) , let f(x) = M > 0 and suppose that \mathcal{A} satisfies the additional assumption above. Then the following are equivalent.

1. The Minkowski functional f is $\tau_{\mathcal{A}}$ -directionally differentiable at x.

2. If a subset of a member of \mathcal{A} is strictly inside K_x , then it is contained in $\lambda(U_M - x)$ for some $\lambda > 0$.

3. The face $F(U_1^0, x)$ is weak* $\tau_{\mathscr{A}}$ -exposed in U_1^0 by x; that is, for each A in \mathscr{A} , $F(U_1^0, x) + A^0$ contains an x-slice of U_1^0 .

4. The linear functional x on E^* attains its supremum strictly on U_1^0 at $F(U_1^0, x)$ with respect to $\tau_{\mathscr{A}}$; that is, whenever y^* in U_1^0 are such that $\langle x, y^* \rangle$ converges to \mathcal{M} , then $y^* \tau_{\mathscr{A}}$ -approaches $F(U_1^0, x)$.

5. The slice mapping $(y, \lambda) \rightarrow S(U_1^0, y, \lambda)$ is $\tau - \overline{\tau_{sd}}$ u.s.c. at (x, 0).

6. The support face mapping $F(U_1^0, \cdot)$ is $\tau - \overline{\tau_{\mathscr{A}}}$ u.s.c. at x.

7. If y converges to x in (E, τ) , then for each A in \mathcal{A} , $\inf p_A(F(U_1^0, y) - F(U_1^0, x))$ converges to zero.

Proof. All of the conditions except 2 are simple restatements of the corresponding conditions in Theorem 3.1. Let $\pi: E \times R \to E$ be defined by $\pi(y, r) = y - rx/M$. The extra assumption on \mathscr{A} ensures that if $C \subset A \times [a, b]$ for some A in \mathscr{A} and a, b in R, then $\pi(C) \subset A'$ for some A' in \mathscr{A} . The equivalence of 2 with the corresponding condition in Theorem 3.1 follows immediately from the following relations, all of which can be verified directly. Let $C \subset A \times [a, b]$, $B \subset E$, and $\lambda, \varepsilon > 0$. Then

 $C - (0, \varepsilon) \subset K_{f,x}$ if and only if $\pi(C) + \frac{\varepsilon x}{M} \subset K_x;$

 $\pi(C) \subset \lambda(U_M - x)$ implies

$$C \subset \left(\lambda + \frac{b-a}{M}\right) [\operatorname{epi} f - (x, f(x))];$$

and

$$B \times \{0\} \subset \lambda [\operatorname{epi} f - (x, f(x))]$$

implies $B \subset \lambda(U_M - x)$.

4.2. REMARKS. 1. It is important to use subsets of members of \mathcal{A} in condition 2 rather than say, translates, for the engulfing depends very much on the shape of the set used. In particular, points strictly inside K_x are always engulfed and so any translated U_r that is strictly inside K_x is always engulfed too $(z + U_r)$ will be contained in $\lambda (U_M - x)$ if z + rx/M is).

2. If f is a seminorm (that is, if f also satisfies the condition f(-y) = -f(y) for all y in E), then $\partial f(x) = U_1^0$ whenever f(x) = 0. Thus, for seminorms, the support mapping is always $\tau - \overline{\tau_{ss}}$ u.s.c. at those x for which f(x) = 0.

As in the previous section we have a 'single-valued' form of Theorem 4.1.

4.3. COROLLARY. Under the same assumptions as in Theorem 4.1, the following conditions are equivalent and imply that $F(U_1^0, x) = \{x^*\}$.

1. The Minkowski functional f is τ_{a} -differentiable at x with τ_{a} -differential x*.

2. If a subset of a member of \mathcal{A} is strictly inside the half space $\{y: x^*(y) \leq 0\}$, then it is contained in $\lambda(U_M - x)$ for some $\lambda > 0$. Also, $\langle x, x^* \rangle = M$.

3. The point x^* is weak^{*} τ_{sf} -exposed in U_1^0 by x; that is, each τ_{sf} -neighborhood of x^* contains an x-slice of U_1^0 .

4. The linear functional x on E^* attains its supremum strictly on U_1^0 at x^* with respect to $\tau_{\mathscr{A}}$; that is, whenever y^* in U_1^0 are such that $\langle x, y^* \rangle$ converges to M then $y^* \tau_{\mathscr{A}}$ -converges to x^* .

1980]

D. A. GREGORY

5. The slice mapping $(y, \lambda) \rightarrow S(U_1^0, y, \lambda)$ is $\tau - \overline{\tau_{\mathscr{A}}}$ continuous at (x, 0) and $x^* \in F(U_1^0, x)$.

6. The support face mapping $F(U_1^0, \cdot)$ is $\tau - \overline{\tau_{\mathscr{A}}}$ continuous at x and $x^* \in F(U_1^0, x)$.

7. If y converges to x in (E, τ) , then there is a selection $\phi(y) \in \partial f(y)$ such that $\phi(y) \tau_{\mathscr{A}}$ -converges to x^* .

If $f = \|\cdot\|$ is the norm on a normed linear space E = X, it is customary to call ∂f the duality mapping D and denote a typical member of the support face D(x) by f_x . The unit ball U_1 is denoted by B(X), the dual ball U_1^0 by $B(X^*)$. The norm topology on the dual X^* is the topology $\tau_{\mathcal{A}}$ where \mathcal{A} is the class of all weakly (or norm) bounded absolutely convex subsets of X; that is, it is the strong topology on X^* . In this special case we get the following corollary of Theorem 4.1. Most of the equivalences have already been shown in [2] under the additional assumption that X is a Banach space.

4.4. COROLLARY. Let X be a normed linear space and let ||x|| = 1. Then the following conditions are equivalent.

1. The norm is strongly directionally differentiable at x.

2. Each bounded set strictly inside K_x is contained in $\lambda(B(X)-x)$ for some $\lambda > 0$

3. The support face D(x) is weak* strongly exposed in $B(X^*)$ by x; that is, for each $\varepsilon > 0$, $D(x) + \varepsilon B(X^*)$ contains an x-slice of $B(X^*)$.

4. The linear functional x on E^* attains its supremum strictly on U_1^0 at D(x) with respect to the strong (= norm) topology.

5. The slice mapping $(y, \lambda) \rightarrow S(U_1^0, y, \lambda)$ is norm-norm u.s.c. at (x, 0).

6. The duality mapping D is norm- \overline{norm} u.s.c. at x.

7. Whenever y strongly converges to x, there is a selection $f_y \in D(y)$ such that f_y strongly approaches D(x).

In the special case that D(x) is a singleton, we get the following corollary. Some of the equivalences are classical [5]. The equivalence of conditions 1 and 2 has been shown by J. R. Giles [6].

4.5. COROLLARY. Let X be a normed linear space, let f_x be an element of X^* and let ||x|| = 1. Then the following conditions are equivalent and imply that $D(x) = \{f_x\}$.

1. The norm is strongly (= Fréchet) differentiable at x with strong differential f_{x} .

2. Each bounded set strictly inside the half space $\{y: f_x(y) \le 0\}$ is contained in $\lambda(B(X)-x)$ for some $\lambda > 0$.

3. The point f_x is weak* strongly exposed in $B(X^*)$ by x; that is, each norm neighborhood of f_x contains an x-slice of $B(X^*)$. Also $f_x(x) = 1$.

4. The linear functional x on X^* attains its supremum strictly on $B(X^*)$ at f_x with respect to the strong (= norm) topology.

5. The slice mapping $(y, \lambda) \rightarrow S(B(X^*), y, \lambda)$ is norm-norm continuous at (x, 0) and $f_x \in D(x)$.

6. The duality mapping D is norm-norm continuous at x and $f_x \in D(x)$.

7. Whenever y strongly converges to x, there is a selection $f_y \in D(y)$ such that f_y strongly converges to f_x .

4.5 REMARKS. 1. We have observed that all of the theorems and corollaries hold if $\tau_{\mathcal{A}}$ is the weak* topology. If the weak* rather than the strong topology is used for $\tau_{\mathcal{A}}$ in Corollary 4.5, we get equivalent conditions for the weak* (=Gateau or weak) differentiability of the norm at x. In condition 3, it is then customary to say simply that f_x is weak* exposed (rather than weak* weak* exposed).

2. It is well-known that the set of points of strong differentiability of the norm

$$\bigcap_{n} \left\{ x : \sup_{y \in B(X)} \frac{\|x + \lambda y\| + \|x - \lambda y\| - 2\|x\|}{\lambda} < \frac{1}{n} \text{ for some } \lambda > 0 \right\}$$

is a G_{δ} subset of X. This is not the case for the set G of points at which the duality mapping is norm-norm upper semi-continuous. For example, let X be the Banach space *m* of bounded sequences $x = (x_n)$ with the supremum norm. Then from condition 2 of Corollary 4.4 it is clear that G is the set of points x for which ||x|| is not an accumulation point of $\{|x_n|:|x_n| \neq ||x||\}$. The set G is dense and its complement is a dense G_{δ} subset. Since the intersection of two dense G_{δ} subsets of a Baire space must be dense, G cannot be a G_{δ} subset.

ACKNOWLEDGEMENTS. These results were originally stated only for the duality mapping on a Banach space [2]. I would like to thank J. Borwein for his helpful suggestions which led to Theorem 3.1 in its present general form. I would also like to thank J. R. Giles for some interesting discussions, and R. T. Rockafellar for a series of lectures (Queen's University, November, 1977) that refined my appreciation of convex functions.

REFERENCES

1. E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. A.M.S., 139 (1969), 443-467.

2. J. R. Giles, D. A. Gregory, and Brailey Sims, Geometrical implications of upper semicontinuity of the duality mapping on a Banach space, to appear in Pacific J. Math.

3. R. B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, New York (1975).

4. P. Kenderov, Semi-continuity of set-valued monotone mappings, Fund. Math. 88 (1975), 61-69.

5. V. L. Smulian, Sur la derivabilité de la norme dans l'espace de Banach, Dokl. Akad. Nauk. SSSR., 27 (1940), 643-648.

6. J. R. Giles, Strong differentiability of the norm and rotundity of the dual, to appear.

DEPARTMENT OF MATHEMATICS AND STATISTICS QUEEN'S UNIVERSITY KINGSTON, ONTARIO K7L 3N6

https://doi.org/10.4153/CMB-1980-002-9 Published online by Cambridge University Press