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Abstract

Let E be an elliptic curve without complex multiplication (CM) over a number field K , and let
G E (`) be the image of the Galois representation induced by the action of the absolute Galois group
of K on the `-torsion subgroup of E . We present two probabilistic algorithms to simultaneously
determine G E (`) up to local conjugacy for all primes ` by sampling images of Frobenius elements;
one is of Las Vegas type and the other is a Monte Carlo algorithm. They determine G E (`) up
to one of at most two isomorphic conjugacy classes of subgroups of GL2(Z/`Z) that have the
same semisimplification, each of which occurs for an elliptic curve isogenous to E . Under the
GRH, their running times are polynomial in the bit-size n of an integral Weierstrass equation for E ,
and for our Monte Carlo algorithm, quasilinear in n. We have applied our algorithms to the non-
CM elliptic curves in Cremona’s tables and the Stein–Watkins database, some 140 million curves
of conductor up to 1010, thereby obtaining a conjecturally complete list of 63 exceptional Galois
images G E (`) that arise for E/Q without CM. Under this conjecture, we determine a complete
list of 160 exceptional Galois images G E (`) that arise for non-CM elliptic curves over quadratic
fields with rational j-invariants. We also give examples of exceptional Galois images that arise for
non-CM elliptic curves over quadratic fields only when the j-invariant is irrational.

2010 Mathematics Subject Classification: 11G05, 11Y16 (primary); 11F80, 11G20, 14H52, 20G40
(secondary)

1. Introduction

Let E be an elliptic curve over a number field K with algebraic closure K . For
each integer m > 1, let E[m] denote the m-torsion subgroup of E(K ), which we
recall is a free Z/mZ module of rank two. The absolute Galois group Gal(K/K )
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acts on E[m] via its action on the coordinates of its points, and this action induces
a Galois representation (a continuous homomorphism):

ρE,m : Gal(K/K )→ Aut(E[m]) ' GL2(m) := GL2(Z/mZ).

We regard the image of ρE,m as a subgroup G E(m) of GL2(m) that is determined
only up to conjugacy, since the isomorphism Aut(E[m]) ' GL2(m) depends on
a choice of basis. For fixed E and varying m, the representations ρE,m form a
compatible system, and we have the adelic Galois representation

ρE : Gal(K/K )→ GL2(Ẑ) = lim←−
m

GL2(m),

whose image we denote as G E .
By Serre’s open image theorem (see [57, Section IV.3.2] and [58]), so long

as E does not have complex multiplication (CM), the adelic image G E has
finite index in GL2(Ẑ). In particular, there is a minimal positive integer m E

for which G E is the full inverse image of G E(m E), and a finite set SE of
exceptional primes ` for which G E(`) is properly contained in GL2(`). Each such
` necessarily divides m E , but the converse is not true in general (and almost never
true for elliptic curves over Q). Nevertheless, a first step toward computing m E

and G E(m E) is to determine the set SE and the groups G E(`) for ` ∈ SE .
A related motivating question is this: for a given number field K , which

exceptional groups G E(`) can arise for a non-CM elliptic curve E/K ? Serre’s
theorem implies that for any fixed E this is a finite list, and Serre has asked
whether this is still true when only K is fixed and E/K is allowed to vary; it
is expected that the answer is yes. This can be regarded as a generalization of
Mazur’s results [46, 47], which determine the primes ` for which an elliptic curve
E/Q may admit a rational point of order `, or a rational isogeny of degree `.
Both of these properties are determined by G E(`), but the converse does not hold:
G E(`) may be exceptional when E does not admit a rational isogeny of degree `,
and even when E has a rational point of order `, many different G E(`)may occur.
Serre’s question remains open for all number fields K , but there has been some
recent progress in the case K = Q: for ` > 37 any exceptional G E(`) must lie
in the normalizer of a nonsplit Cartan group in GL2(`), as shown in [5], and for
` 6 11 the possible G E(`) have been completely determined [74]. Little is known
for number fields other than Q.

We are thus led to the problem at hand: given an elliptic curve E/K without
CM, determine the set SE of exceptional primes ` and the groups G E(`) for
each prime ` ∈ SE . Serre’s open image theorem can be made effective, and
under the generalized Riemann hypothesis (GRH) reasonably good bounds on
the exceptional primes ` are known; quasilinear in the norm of the conductor
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of E , by [42]. This leaves the problem of computing G E(`). In principle, this is
straightforward: pick a basis for E[`] and compute the action of Gal(K/K ) on
this basis. This approach can be made completely effective. The points in E[`]
are defined over the `-torsion field K (E[`]), which is an extension of the splitting
field of the `-division polynomial fE,`(x) whose roots are the x-coordinates of
the nontrivial `-torsion points. Using well-known formulas for fE,`(x) one can
explicitly construct its splitting field and take a quadratic extension if necessary
to obtain the y-coordinates of the points in E[`] (a quadratic extension always
suffices, see Lemma 5.17). One then finds generators for Gal(K (E[`])/K ) and
applies them to a basis for E[`]. Using the algorithm in [40], this computation
can be accomplished in deterministic polynomial time; a Magma [11] script that
implements this procedure is available at the author’s website [68].

Unfortunately, this is feasible only for very small `. While Gal(K (E[`])/K )
can be computed in time polynomial in `, the exponents involved are quite
large; indeed, the necessary first step of factoring fE,`(x) is already nontrivial,
even when K = Q. For ` > 2, the polynomial fE,` has degree (`2 − 1)/2 and
coefficients with bit-size O(`2), which gives an O(`12+o(1)) time for factoring
fE,` ∈ Z[x] using the best known bounds for polynomial factorization [54]. More
generally, the time to factor fE,` in K [x] given in [40] is O(`18+o(1)[K :Q]9+o(1)),
and the time to compute its splitting field may be substantially larger. By contrast,
the Monte Carlo algorithm presented in this article computes G E(`) up to local
conjugacy (as defined below) in time that is quasilinear in both ` and [K :Q];
in fact, it does this simultaneously for all primes in SE in time quasilinear in
max(SE).

Two Galois representations ρ1, ρ2 : Gal(K/K ) → GL2(m) are said to be
locally conjugate if ρ1(σ ) and ρ2(σ ) are conjugate in GL2(m) for every σ (not
necessarily by the same matrix in each case). We call two subgroups G and H of
GL2(m) locally conjugate if there is a bijection of sets that maps each g ∈ G to
an element h ∈ H that is conjugate to g in GL2(m); equivalently, (GL2(m),G,
H) is a (nontrivial) Gassmann–Sunada triple [31, 69]. Local conjugacy defines an
equivalence relation on the set of subgroups of GL2(m).

We present two probabilistic algorithms to determine the exceptional primes `
for a given elliptic curve E/K and to determine the groups G E(`) up to local
conjugacy. The algorithms work by computing the images in G E(`) of Frobenius
elements (conjugacy classes) Frobp for unramified primes p 6 | ` of K where E
has good reduction, either for all p of bounded norm, or for randomly chosen p
with norms in a bounded interval. This implies that our algorithms can only
determine G E(`) up to local conjugacy, but we show that this imposes very
strong constraints on G E(`). In particular, we prove that every local conjugacy
class of subgroups of GL2(`) consists of at most two conjugacy classes of
subgroups of GL2(`) that are isomorphic as abstract groups and have the same
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semisimplification. Moreover, we prove that whenever G E(`) is locally conjugate
to a subgroup G ′ of GL2(`), there is an isogenous elliptic curve E ′/K for
which G E ′(`) = G ′ (see Theorem 3.32). We also describe some global methods
for efficiently distinguishing pairs of locally conjugate but nonconjugate Galois
images that are applicable in most (but not all) cases, including every case that we
encountered in our computations (see Section 5.5).

To compute the conjugacy class ρE,m(Frobp) for unramified primes p of K
that do not divide m we rely on three fundamental algorithms for elliptic curves
over finite fields that we apply to the reduction Ep/Fp of E modulo p; here
Fp := OK/p is the residue field, a finite field with q := N (p) elements. The
first is Schoof’s algorithm [55, 56], which computes the trace t ∈ Z of the
Frobenius endomorphism in time polynomial in log q . The second is a Las Vegas
algorithm to compute the endomorphism ring End(Ep) when Ep is ordinary,
due to Bisson and the author [8, 9]; under the GRH its expected running time
is subexponential in log q . It follows from a theorem of Duke and Tóth [25]
that the pair (t,End(Ep)) determines an integer matrix Ap whose reduction
modulo m lies in the conjugacy class ρE,m(Frobp) for every positive integer m.
The third is Miller’s algorithm to compute the Weil pairing [49], which we use
to compute the rank of the `-torsion subgroup of Ep(Fp) in quasicubic time. This
allows us to determine the dimension of the 1-eigenspace of ρE,`(Frobp) without
computing Ap, providing an efficient method to distinguish unipotent elements
of G E(`), which are not distinguished by their characteristic polynomials.

In order to bound the norms of the primes p that we use, we rely on explicit
Chebotarev bounds that depend on the GRH. In principle, our algorithms can
be implemented so that they do not rely on this hypothesis, but the running
times would increase exponentially. The GRH also gives us bounds on the largest
exceptional prime ` that can occur for a given elliptic curve E/K ; the results of
Larson and Vaintrob [42] give bounds that are quasilinear in log NE , where NE

is the absolute value of the norm of the conductor of E . Together, these allow
us to bound the norms of the primes p that we must consider by a polynomial in
log ‖ f ‖, where ‖ f ‖ denotes the maximum of the absolute values of the norms of
the coefficients appearing in an integral Weierstrass equation y2 = f (x) for E .

We now state our two main results. The first is a Las Vegas algorithm that,
given an elliptic curve E/K specified by an integral Weierstrass equation, outputs
a complete list SE of the primes ` for which G E(`) 6= GL2(`) and for each ` ∈ SE

a subgroup of GL2(`) specified by generators that is locally conjugate to G E(`)

(see Algorithm 5). Under the GRH its expected running time is bounded by

(log ‖ f ‖)11+o(1)

in Theorem 5.7. Our second main result is a Monte Carlo algorithm that has
the same output as our Las Vegas algorithm and is correct with probability at
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least 2/3; see Algorithm 7. Its error is one-sided in the sense that each subgroup
of GL2(`) output by the algorithm is guaranteed to be locally conjugate to a
subgroup of G E(`), but it may be a proper subgroup. By running the algorithm
repeatedly the error probability can be made arbitrarily small. Under the GRH its
running time is bounded by

(log ‖ f ‖)1+o(1),

which is quasilinear in the size of the input, the equation y2 = f (x) (see
Theorem 5.15).

An essential ingredient to both of our algorithms is the ability to distinguish
and explicitly construct subgroups of GL2(`) based on a compact representation
of a subset of their element conjugacy classes. The classification of the possible
images of subgroups of GL2(`) in PGL2(`) has long been known [23], but for our
work we require a complete list of the subgroups of GL2(`) up to conjugacy, and a
precise understanding of the element conjugacy classes each contain. We address
these questions in Section 3, in which we obtain exact formulas for the number
of subgroups of GL2(`) up to conjugacy (and for subgroups of various types)
that may be of independent interest. We also give a quasilinear time algorithm to
enumerate these subgroups with explicit generators for each (see Algorithm 2).

We have applied our algorithms to various databases of elliptic curves over Q,
including all non-CM curves of conductor up to 350 000 listed in Cremona’s
tables [19], and the non-CM curves in the Stein and Watkins database [61], which
includes a large proportion of all elliptic curves over Q of conductor up to 108,
and of prime conductor up to 1010; some 140 million elliptic curves in all. We
also analyzed parameterized families of elliptic curves that are known to have
exceptional Galois images, and large families of elliptic curves of bounded height
(more than 109 curves). In each case, we were able to compute a complete list SE

of the exceptional primes ` and the subgroups G E(`) up to conjugacy (not just
local conjugacy), using the methods described in Section 5.5. This work yields
a conjecturally complete list of 63 exceptional subgroup conjugacy classes that
arise as G E(`) for some non-CM elliptic curve E/Q and prime `; these are listed
in Table 3 and of Section 6. Thanks to recent work by Zywina [74], we have
been able to independently verify our results for all the non-CM elliptic curves
in Cremona’s tables, and in every case we found that the output of our Monte
Carlo algorithm (which we executed repeatedly in order to amplify its success
probability) was correct. This motivates the following conjecture:

CONJECTURE 1.1. Let E/Q be an elliptic curve without complex multiplication
and let ` be a prime. Then G E(`) is either equal to GL2(`) or conjugate to one of
the 63 groups listed in Table 3.
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Under this conjecture, we determine a complete list of 160 exceptional Galois
images G E(`) not containing SL2(`) that arise for non-CM elliptic curves with
rational j-invariants over quadratic fields; these include the 63 groups that already
arise over Q along with 68 new groups that arise for base changes of elliptic
curves over Q, and 29 that arise for quadratic twists of these curves but not for
any base change from Q; see Theorem 6.3 and Tables 4–6. A key ingredient to
this result is an analysis of how G E F (`) varies within a family of quadratic twists
E F of a fixed elliptic curve E/K as F varies over quadratic extensions of K ; this
appears in Section 5.6. We find that for any odd prime `, up to three nonconjugate
groups G E F (`) may arise in such a family and we give an explicit method to
determine quadratic extensions F/K that realize every possibility.

We have also run our algorithms on tables of elliptic curves defined over
quadratic fields that have recently been made available in the L-functions and
modular forms database (LMFDB) [45], including the five real quadratic fields
and five imaginary quadratic fields of least absolute discriminant. Examples of
exceptional Galois images G E(`) that occur only for non-CM elliptic curves
with irrational j-invariants over these fields are listed in the tables at the end
of Section 6, as well as examples over the cubic field of discriminant −23.

In principle, our algorithms can also be used to determine G E(m) up to local
conjugacy for any positive integer m, but the situation is more complicated
when m is composite for three reasons: (1) local conjugacy imposes fewer
constraints when m is composite, for example, locally conjugate subgroups
of GL2(m) need not be isomorphic; (2) the integers m for which G E(m) is
exceptional and not the full inverse image of G E(m ′) for some m ′|m may be
exponentially larger than the largest exceptional prime `; (3) our understanding
of the subgroup structure of GL2(m) is less refined than it is for GL2(`). In spite
of these obstacles, it is entirely feasible to apply our algorithms when m is small,
and if we set the more modest goal of simply computing the index of G E(m) in
GL2(m), this can be done quite efficiently. This suggests a practical method for
computing m E and the index of G E in GL2(Ẑ) for a non-CM elliptic curve E/K
that we plan to address in a future article.

2. Notation and terminology

Throughout this article, the symbols ` and p denote rational primes, and r ,
m, and n denote positive integers. We use τ(n) to denote the number of positive
divisors of an integer n and φ(n) := #(Z/nZ)× for the Euler function. For any
prime power q , we use Fq to denote the field with q elements. For sets S and T
we write S − T for the set of elements of S that do not lie in T .

For any ring R, we use Mr (R) to denote the ring of r × r matrixes, GLr (R)
for its multiplicative subgroup of invertible matrixes, SLr (R) for the kernel of
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the determinant map det : GLr (R)→ GL1(R), and PGLr (R) for the quotient of
GLr (R) by its center. For each integer m > 1 we define the notations

Z(m) := Z/mZ,
Mr (m) :=Mr (Z/mZ),

SLr (m) := SLr (Z/mZ),
GLr (m) := GLr (Z/mZ),

PGLr (m) := PGLr (Z/mZ).

The center of GL2(m) consists of the subgroup of scalar matrixes
(z 0

0 z

)
, which we

denote Z(m); when there is no risk of ambiguity we may identify Z(m) ' Z(m)×
and use z to denote

(z 0
0 z

)
. The scalar matrixes form the kernel of the canonical

projection
π : GL2(m)� PGL2(m)

which we denote by π throughout.
In our identification of Aut(E[m]) with GL2(m), we view elements of GL2(m)

as 2 × 2 matrixes acting on column vectors by multiplication on the left, and
distinguish subgroups of GL2(m) only up to conjugacy. For an elliptic curve E
over a number field K , composing the two-dimensional representation

ρE : Gal(K/K )→ GL2(Ẑ)

with the determinant map GL2(Ẑ) → Ẑ× induces a one-dimensional
representation

det ◦ ρE : Gal(K/K )→ GL1(Ẑ) = Ẑ×.

Throughout this article, we use p to denote a prime of K , by which we mean a
nonzero prime ideal in its ring of integers OK , and we use Fp to denote the residue
field OK/p. For each prime p6 | m that is unramified in K (E[m])/K (all but finitely
many p), the value of det ◦ρE on the Frobenius element Frobp (which we recall
is defined only up to conjugacy) is N (p) := [OK : p]. The image of det ◦ρE thus
depends only on K , not on E ; in fact, it depends only on the intersection of K
with the maximal cyclotomic extension Qcyc of Q in K , and det ◦ρE,` is surjective
for all but finitely many `.

Our complexity bounds always count bit operations. We use M(n) to denote the
time to multiply two n-bit integers, which we may bound by

M(n) = n(log n)1+o(1)

via [53]; see [34] for a more precise bound. This bound implies that arithmetic
operations in finite fields Fq can be performed in (log q)1+o(1) time, which we
assume throughout (we refer the reader to [32] for details).
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Many of the algorithms we present are probabilistic algorithms, which we recall
are typically classified as one of two types. Las Vegas algorithms produce output
that is guaranteed to be correct but have potentially unbounded running times
that may depend on probabilistic choices; for such algorithms, we bound their
expected running times, which are required to be finite. Monte Carlo algorithms,
by contrast, have bounded running times but may produce outputs that are
incorrect with probability bounded by some c < 1/2; we use c = 1/3. Assuming
the correct output is unique, by running a Monte Carlo algorithm repeatedly and
choosing the output produced most frequently, the probability of error can be
made arbitrarily close to zero at a rate exponential in the number of repetitions.

For integers n > 3, we use An and Sn to denote the alternating and symmetric
groups on n elements, respectively. For the purpose of this article we consider the
noncyclic group of order 4 (the Klein group) to be a dihedral group.

3. Subgroups of GL2(F`)

The classification of subgroups of PGL2(`) is well-known (see Proposition 3.1
below). Our algorithms require a more refined classification of the subgroups
of GL2(`), up to conjugacy in GL2(`), that allows us to distinguish subgroups
by sampling element conjugacy classes corresponding to Frobenius elements. In
this section, we obtain such a classification, as well as explicit formulas to count
subgroups of GL2(`) up to conjugacy and an efficient algorithm to enumerate
them. Many of the proofs in this section are elementary, but as our algorithms
depend crucially on these results, we give at least a sketch of each proof. Except
when the case ` = 2 is specifically noted, we assume throughout this section that
` is an odd prime.

For any g ∈ GL2(`) we define the discriminant

∆(g) := tr(g)2 − 4 det(g) ∈ Z(`),

and its quadratic character

χ(g) :=
(
∆(g)
`

)
∈ {−1, 0, 1}.

For ease of reference we list the element conjugacy classes of GL2(`) in
Table 1. Here and throughout, ε denotes a fixed nonsquare element of Z(`)×; for
the sake of concreteness, let ε be the least positive integer that generates Z(`)×.
We note that

(x 0
0 y
)

and
(y 0

0 x

)
are conjugate via

(
0 1
1 0

)
, and

(x εy
y x
)

and
( x −εy
−y x

)
are

conjugate via
(

1 0
0 −1

)
, which explains the restrictions on y in Table 1 below.
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Table 1. Element conjugacy classes in GL2(`) for primes ` > 2.

Representative Size Number det tr χ Order(x 0
0 x
)

0 < x < ` 1 `− 1 x2 2x 0 divides `− 1(x 1
0 x
)

0 < x < ` `2 − 1 `− 1 x2 2x 0 divisible by `(
x 0
0 y

)
0 < x < y < ` `2 + ` (

`−1
2

)
xy x + y +1 divides `− 1(x εy

y x
)

0 < y 6 `− 1/2 `2 − ` (
`

2

)
x2 − εy2 2x −1 divides `2 − 1

For any g ∈ GL2(`) and positive integer n, the trace of gn can be computed as
tr gn = an , where an is defined by the recurrence:

a0 := 2, a1 := tr(g), an+2 := a1an+1 − an det g. (3.1)

This implies that for elements g whose order |g| is not divisible by `, we can
derive |g| from (det g, tr g). We are also interested in the order of the image of g
in PGL2(`). For this purpose we define

u(g) := tr(g)2

det(g)
∈ Z(`).

If |g| is divisible by ` then g is conjugate to some
(

x 1
0 x

)
and u(g) = 4. Otherwise,

the order r of π(g) in PGL2(`) is prime to ` and we have

u(g) = ζr + ζ−1
r + 2, (3.2)

for some primitive r th root of unity for which ζr + ζ−1
r ∈ F×` , as explained in

[41, page 190]. Note that ζr may lie in a quadratic extension F`, but in any case r
divides either ` − 1 or ` + 1 and is uniquely determined by u(g); this allows
|π(g)| = r to be unambiguously determined from u(g), and hence from the
pair (det g, tr g) whenever |g| is prime to `. This implies, in particular, that the
elements of GL2(`) that have order 2 in PGL2(`) are precisely the elements of
trace zero.

For each odd prime ` we define the split Cartan group Cs(`) and nonsplit
Cartan group Cns(`) by

Cs(`) :=
{(

x 0
0 y

)
: xy 6= 0

}
⊆ GL2(`),

Cns(`) :=
{(

x εy
y x

)
: (x, y) 6= (0, 0)

}
⊆ GL2(`),
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and note that Cs(`) ' F×` × F×` and Cns(`) ' F×
`2 . Both Cs(`) and Cns(`) have

index 2 in their normalizers

C+s (`) := Cs(`) ∪
(

0 1
1 0

)
Cs, C+ns(`) := Cns ∪

(
1 0
0 −1

)
Cns(`).

Elements of C+s (`) that are conjugate in GL2(`) are conjugate in C+s (`), and
similarly for C+ns(`). We define Cs(2) as the trivial group, and Cns(2) as the kernel
of the sign homomorphism GL2(2) ' S3 � {±1}; both are normal in GL2(2).

We refer to the conjugates of Cs(`) and Cns(`) in GL2(`) as split and nonsplit
Cartan groups, respectively. For ` > 2, all elements in the nontrivial coset of a
Cartan group in its normalizer have trace zero, and the square of such an element g
is the scalar matrix

(z 0
0 z

)
, where z = −det g.

The Borel group B(`) ⊆ GL2(`) is the subgroup of upper triangular matrixes;
we refer to its conjugates in GL2(F`) as Borel groups. For ` > 2, the group B(`)
is nonabelian, and its commutator subgroup B(`)′ is the cyclic group of order `
generated by

(
1 1
0 1

)
. The split Cartan subgroup Cs(`) is contained in B(`), and for

` > 2 it is isomorphic to the abelian quotient B(`)/[B(`), B(`)]. We also note
that

Z(`) = Cs(`) ∩ Cns(`) ⊆ B(`).

We now recall the classification of subgroups of GL2(`) in terms of their
images in PGL2(`), originally due to Dickson [23].

PROPOSITION 3.1. Let ` be an odd prime and let G be a subgroup of GL2(`)

with image H in PGL2(`). If G contains an element of order ` then G ⊆ B(`) or
SL2(`) ⊆ G. Otherwise, one of the following holds:

(1) H is cyclic and G lies in a Cartan group;

(2) H is dihedral and G lies in the normalizer of a Cartan group, but not in any
Cartan group;

(3) H is isomorphic to A4, S4, or A5 and G is not contained in the normalizer of
any Cartan group.

Proof. See [70, Lemma 2] or [58, Section 2].

REMARK 3.2. In the exceptional case (3), if G contains an element whose
determinant is not a square, then H contains a subgroup of index 2, which rules
out H ' A4 and H ' A5. This applies when G = G E(`) arises from an elliptic
curve E over a number field K that does not contain the quadratic subfield of the
cyclotomic field Q(ζ`), which includes K = Q.
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3.1. Borel cases. In this section, we address subgroups of the Borel group
B(`) that contain an element of order ` (hence do not lie in Cs(`)), where ` is an
odd prime.

LEMMA 3.3. Let ` be an odd prime and let G be a subgroup of B(`) that contains
an element of order `. Then G contains t = (

1 1
0 1

)
and is equal to the internal

semidirect product
G = 〈t〉o (G ∩ Cs(`)),

which is a direct product if and only if G ∩ Cs(`) ⊆ Z(`).

Proof. If G contains an element g = (a b
0 d

)
of order divisible ` then g`−1 = (1 x

0 1

)
for some nonzero x , and for ex ≡ 1 (mod `) we have ge`−e = t ∈ G. For any
g = (a b

0 d

)
, the product gt e = (a ae+d

0 d

)
is diagonal if and only if e ≡−d/a (mod `).

Thus every coset of 〈t〉 in G contains a unique element of H = G ∩ Cs(`). Thus
G = 〈t〉o H , since 〈t〉 is normal in G, and the action of H on 〈t〉 is trivial if and
only if H ⊆ Z(`).

Formulas to count subgroups of a given finite abelian group are well-known;
see [6], for example. In the case of interest here, the answer is particularly simple.
The lemma below is a special case of [71, Theorem 4.1].

LEMMA 3.4. Let n be a positive integer. There is a one-to-one correspondence
between triples (a, b, i) with a, b|n and 0 6 i < gcd(a, b) given by

(a, b, i) 7→ 〈(a,−a), (ic, d − ic)〉,
where c = a/ gcd(a, b) and d = n/b. The total number of distinct subgroups of
Z(n)× Z(n) is thus

α(n) :=
∑
a,b|n

gcd(a, b).

Proof. For each subgroup of H ⊆ Z(n) × Z(n) there is a triple (a, b, i) with
a, b|n and 0 6 i < gcd(a, b) determined by the generator x = (a,−a) of the
trace-zero subgroup H0 ⊆ H , the order b of H/H0, and the least i > 0 for which
y := (ia/ gcd(a, b), n/b − ia/ gcd(a, b)) ∈ H . Conversely, each such triple
(a, b, i) determines a subgroup H = 〈x, y〉; we thus have a bijection, and α(n)
counts the triples (a, b, i).

COROLLARY 3.5. Let ` be an odd prime. The number of nonconjugate subgroups
of GL2(`) that lie in a Borel group and contain an element of order ` is α(`− 1),
the number of subgroups of Cs(`).
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Proof. It suffices to consider subgroups G ⊆ B(`) containing
(

1 1
0 1

)
up to

conjugation in B(`), since B(`) is selfnormalizing in GL2(`). Every such G
is normal in B(`): the subgroup generated by

(
1 1
0 1

)
is normal and the B(`)-

conjugates of G ∩ Cs(`) all lie in G. This gives a one-to-one correspondence
between subgroups of B(`) containing

(
1 1
0 1

)
, all of which are nonconjugate, and

subgroups of Cs(`) ' F×` × F×` ' Z(`− 1)× Z(`− 1).

LEMMA 3.6. Let ` be an odd prime. Let G and H be conjugate subgroups of
GL2(`) that lie in Cs(`) and let t = (

1 1
0 1

)
. The groups G ′ := 〈G, t〉 and H ′ :=

〈H, t〉 of B(`) are locally conjugate in GL2(`) and isomorphic.

Proof. When G = H the lemma clearly holds, so we assume G 6= H , in which
case G and H are conjugate via s = (0 1

1 0

)
. We have G ′ = 〈t〉oG and H ′ = 〈t〉oH ,

by Lemma 3.3, and the bijection from G ′ to H ′ given by swapping diagonal
entries preserves conjugacy classes (but is typically not a homomorphism); hence
G ′ and H ′ are locally conjugate. Let g ∈ G be an element with maximal
projective order e, and let z ∈ G be a generator for G ∩ Z(`) with order f ; then
ge = zd for some integer d ∈ [1, `−1]. We have gtg−1 = tn , where n ∈ (Z/`Z)×
is the ratio of the diagonal entries of g, while z commutes with t and g. Thus G ′

is isomorphic to the abstract group

G := 〈t, g, z : t` = gez−d = z f = ztz−1t−1 = zgz−1g−1 = gtg−1t−n = 1〉.
We now note that t lies in H ′, and z generates H ′ ∩ Z(`). The element h = sgs
of H has maximal projective order e, with he = zd , and hth−1 = t1/n , where 1/n
is the inverse of n and has order e in (Z/`Z)×. The action of h′ = he−1 on t is
thus identical to that of g, and there exists a z′ ∈ H ′ ∩ Z(`) of the same order f
as z for which (h′)e = (z′)d . It follows that H ′ is also isomorphic to G.

REMARK 3.7. The situation in Lemma 3.6 is the only case where nonconjugate
but locally conjugate subgroups can arise; see Corollary 3.30.

3.2. Cyclic cases. We now consider the subgroups of GL2(`) with cyclic
image in PGL2(`).

LEMMA 3.8. Let n = ∏p pep be a positive integer. The number of subgroups of
Z(n)× Z(n) that are fixed by the automorphism σ : (x, y) 7→ (y, x) is

β(n) := β2(n)
∏
p 6=2

(ep + 1)2,

where β2(n) = 2(e2
2 − e2)+ 3 if n is even and β2(n) = 1 if n is odd.
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Proof. Let G be a subgroup of Z(n) × Z(n) fixed by σ . The automorphism σ

fixes each p-Sylow subgroup of G, so it suffices to consider the case #G = pe.
The map ϕ defined by g 7→ σ(g) − g is an endomorphism of G with kernel
D := {(x, y) ∈ G : x = y} and image contained in T := {(x, y) ∈ G : x+ y = 0}.

If p is odd then ϕ(G) = T and D ∩ T is trivial, so G = D × T . Conversely,
every product of a diagonal and trace-zero subgroup of Z(n) × Z(n) is fixed by
σ , and there are (ep + 1)2 such subgroups.

For p = 2 we have β(2) = 3, and β(2n+1) = β(2n) + 4n, where the 4n new
groups all have exponent 2n+1: one is the full group, one is the even trace subgroup
of index 2, two are index 4 subgroups 〈(1, 1), (0, 4)〉 and 〈(1,−1), (0, 4)〉, and
four are subgroups of index 2i , for i from 3 to n + 1, of the form 〈(1,±1), (0,
2i)〉, 〈(1, 2i−1±1), (0, 2i)〉. The formula for β2(n) then follows by induction.

REMARK 3.9. In terms of the bijection given by Lemma 3.4, the triples (a, b, i)
that correspond to subgroups of Z(n) × Z(n) fixed by σ : (x, y) 7→ (y, x)
are those for which the congruence 2ic ≡ d (mod a) has a solution, where
d = n/b and c = a/ gcd(a, b). More generally, two triples (a, b, i) and (a, b, j)
correspond to subgroups in the same σ -orbit if and only if c(i + j) ≡ d (mod a)
has a solution.

COROLLARY 3.10. Let ` be an odd prime. The number of subgroups H of Cs(`)

that are normal in C+s (`) is β(`− 1).

Proof. The split Cartan group Cs(`) ' Z(`− 1)×Z(`− 1) is abelian of index 2
in its normalizer C+s (`) = 〈Cs(`), s〉, where s = (0 1

1 0

)
. It follows that a subgroup

H of Cs(`) is normal in C+s (`) if and only if it is fixed under conjugation by s,
which acts on H by swapping the diagonal entries of each element.

COROLLARY 3.11. Let ` be an odd prime. The number of nonconjugate
subgroups of GL2(`) that lie in a split Cartan group is

α(`− 1)+ β(`− 1)
2

.

Proof. It suffices to count GL2(`)-conjugacy classes of subgroups of Cs(`), and
it is enough to consider C+s (`) conjugacy classes, since C+s (`) is the normalizer
of Cs(`). The orbit of each subgroup G ⊆ Cs(`) under conjugation by C+s (`) has
order 1 or 2, depending on whether G is fixed by the action of

(
0 1
1 0

)
, which swaps

the diagonal entries. The counting formula then follows from Corollary 3.4 and
Lemma 3.8.

https://doi.org/10.1017/fms.2015.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.33


A. V. Sutherland 14

LEMMA 3.12. Let ` be an odd prime. The number of nonconjugate subgroups of
GL2(`) that lie in a nonsplit Cartan group is τ(`2 − 1), where τ(n) counts the
positive divisors of n.

Proof. This is clear: Cns(`) ' F×
`2 is cyclic of order `2−1 and therefore contains a

subgroup of order n for each divisor n of `2−1, none of which are conjugate.

3.3. Dihedral cases. We now address the subgroups of GL2(`) with dihedral
image in PGL2(`); as above we assume that ` is an odd prime and recall that we
consider the Klein group to be dihedral.

If G is a subgroup of GL2(`) with dihedral image in PGL2(`), then G lies in
the normalizer C+ of a Cartan group C and it contains the abelian subgroup H =
G∩C with index 2. Let Z = G∩ Z(`) ⊆ H denote the scalar subgroup of G. The
subgroup H is normal in G and in C , hence in C+ = GC , and it follows that each
nonscalar element h of H has a distinct conjugate h̄ ∈ H ; indeed, h̄ = (0 1

1 0

)
h
(

0 1
1 0

)
if C = Cs(`) and h̄ = (

1 0
0 −1

)
h
(

1 0
0 −1

)
if C = Cns(`)). To better understand the

relationship between G and H we consider the following maps:

H → Z (G − H)→ Z

h 7→ hh̄ =
(

det h 0
0 det h

)
g 7→ g2 =

(−det g 0
0 −det g

)
.

There are two possibilities, depending on whether the set det(H) and the set

−det(G − H) := {−det g : g ∈ G − H} ⊆ GL1(`)

coincide or not.

LEMMA 3.13. Let ` be an odd prime. Let G be a subgroup of GL2(`) with
dihedral image in PGL2(`) that lies in the normalizer C+ of a Cartan group
C, let H = G ∩ C, and let Z = G ∩ Z(`). Then H is normal in C+ and one of
the following holds:

(2a) det(H) and −det(G − H) coincide, in which case G = 〈H, γ 〉 for some
γ ∈ G − H with det γ = −1.

(2b) det(H) and −det(G − H) are disjoint, in which case det(H) = det(Z) and
H contains −1.

If G ′ is another subgroup of C+ with dihedral image in PGL2(`) with H = G ′∩C
and −det(G ′ − H) = −det(G − H), then G and G ′ are conjugate in C+.
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Proof. We have [G : H ] = 2, so H is normal in G, and its normalizer in C+

contains the abelian group C and is therefore equal to C+; so H is normal in C+.
If det(H) and−det(G− H) intersect then we may pick g ∈ G− H and h ∈ H

so γ = g/h ∈ G − H has det γ = −1. Then G − H = γ H and det(H) =
−det(G − H).

Otherwise, det(H) and−det(G−H) are disjoint. The image of H → Z is then
an even index subgroup of Z , and its index is at most 2, since the image of the
subgroup Z ⊆ H has index 2. It follows that det(H) = det(Z) corresponds to an
index 2 subgroup of Z , and since Z has even order, it contains −1.

Now suppose G ′ is another subgroup of C+ with dihedral image in PGL2(`)

for which H = G ′ ∩C and −det(G ′− H) = −det(G − H). In case (2a) we have
G ′ = 〈H, γ ′〉 for some γ ′ ∈ G − H with det γ ′ = −1, and then γ ′ is conjugate
to γ in C+, and therefore G ′ = 〈H, γ ′〉 is conjugate to G = 〈H, γ 〉. In case (2b)
the image of (G − H)→ Z is the nontrivial coset of im(h 7→ hh̄) in Z , thus we
may pick

(z 0
0 z

) ∈ Z that is the square of some γ ∈ G− H with det γ = −z. There
must then be a γ ′ ∈ G ′ − H with det γ ′ = −z that is conjugate to γ in C+, and
therefore G ′ = 〈H, γ ′〉 is conjugate to G = 〈H, γ 〉.

REMARK 3.14. For an elliptic curve E over a number field with a real
embedding, the group G E(`) necessarily contains an element γ with tr γ = 0 and
det γ = −1 corresponding to complex conjugation. This implies G E(`) 6⊆ Cns(`)

for ` > 2 (although G E(`) ⊆ Cs(`) is possible). Indeed, Cns(3) is the unique
subgroup G ⊆ GL2(3) with det(G) = F×3 that does not arise for any elliptic curve
E/Q; the corresponding modular curve Xns(3) has genus zero but no noncuspidal
rational points.

REMARK 3.15. For composite m and elliptic curves E over a number field with
a real embedding, the criterion that G E(m) contains an element γ with tr γ = 0
and det γ = −1 is necessary but not sufficient. A stronger criterion is that γ must
also fix an order-m element of Z(m) × Z(m). When m is prime this is already
implied by tr γ = 0 and det γ = −1, but not in general. This explains why, for
example, G E(4) 6=

〈(
1 2
2 3

)
,
(

3 0
0 3

)〉
for any elliptic curve E/Q, even though this group

contains an element γ with tr γ = 0 and det γ = −1. As in the previous remark,
the corresponding modular curve has genus 0 but no noncuspidal rational points.
More generally, the ten pointless conics noted in [52] that are models of modular
curves associated to subgroups of GL2(2n) lack rational points for this reason.

The following lemma determines the cases in which GL2(`)-conjugate
subgroups of the normalizer C+ of a Cartan group C have intersections with C
that are not GL2(`)-conjugate. This can occur only when C is a split Cartan group
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with ` ≡ 1 (mod 4) and the projective images of the subgroups are isomorphic
to the Klein group of order 4.

LEMMA 3.16. Let ` be an odd prime. Let G1 and G2 be GL2(`)-conjugate
subgroups of the normalizer C+ of a Cartan group C with dihedral images in
PGL2(`) such that H1 := G1 ∩ C and H2 := G2 ∩ C are not conjugate in
GL2(`). Then C is a split Cartan group, ` ≡ 1 (mod 4), |π(G1)| = |π(G2)| = 4,
Z := 〈(z 0

0 z

)〉 := G1 ∩ Z(`) contains −1 with z = x2 square, and

{H1, H2} =
{〈(

x 0
0 −x

)〉
,

〈(
z 0
0 z

)
,

(
1 0
0 −1

)〉}
.

Conversely, whenever ` ≡ 1 (mod 4) there is a pair of conjugate G1 and G2 as
above for each scalar subgroup

〈(z 0
0 z

)〉
that contains −1 with z square.

Proof. Let G2 = gG1g−1, let Z := 〈(z 0
0 z

)〉 = G1 ∩ Z(`) = G2 ∩ Z(`), and choose
h1 ∈ H1 so that H1 = 〈h1, Z〉. The group H1 is normal in C , and thus contains
all the GL2(`)-conjugates of h1 that lie in C , none of which lie in H2 (otherwise
H1 and H2 would coincide). Thus γ2 := gh1g−1 lies in G2 − H2, and therefore
both h1 and γ2 have trace zero, and we can similarly choose h2 ∈ H2 so that
γ1 := g−1h2g lies in G1 − H1. We then have G1 = 〈h1, γ1, Z〉 and G2 = 〈h2,

γ2, Z〉 with h1, h2, γ1, γ2 all elements of trace zero and order 2 in PGL2(`), thus
π(G1) and π(G2) are both isomorphic to the Klein group. And Z must contain
−1 = h1h̄−1

1 = h2h̄−1
2 .

Since H1 and H2 are nonconjugate we must have det h1 6= det h2 (no matter
which h1 and h2 we pick); thus, one of them is cyclic, say H1, and the other, H2, is
not. This rules out the nonsplit Cartan case, so we now assume C = Cs(`). We can
assume h2

1 generates Z , so z must be square, and we can assume h1 =
(

x 0
0 −x

)
; and

we must have h2
2 = h2 for some scalar h ∈ Z , so we can assume h2 =

(
1 0
0 −1

)
.

Since γ1 is conjugate to h2 and γ2 is conjugate to h1, we may assume that
G1 =

〈(
x 0
0 −x

)
,
(

0 1
1 0

)〉
and G2 =

〈(z 0
0 z

)
,
(

1 0
0 −1

)
,
(

0 x
x 0

)〉
; this shows whenever ` ≡ 1

(mod 4), for each square z ∈ Z(`)× of even order we can construct conjugate G1

and G2 with H1 and H2 nonconjugate as above.

COROLLARY 3.17. Let ` be an odd prime, let γ = (
1 0
0 −1

)
, and let δ generate

Cns(`). For each subgroup H ⊆ Cns(`) not in Z(`) the group G1 := 〈H, γ 〉
⊆ C+ns(`) has dihedral image in PGL2(`) and satisfies H = G1 ∩ Cns(`) with
det(H) = −det(G1 − H). If H satisfies det(H) = det(H ∩ Z(`)) and −1 ∈ H,
then for e := [Z(`) : H ∩ Z(`)], the group G2 := 〈H, γ δe〉 ⊆ C+ns(`) has dihedral
image in PGL2(`) and satisfies H = G2∩Cns(`) with det(H) and−det(G2−H)
disjoint. Up to conjugacy in GL2(`), this accounts for all subgroups that lie in
the normalizer of a nonsplit Cartan group and have dihedral image in PGL2(`),
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of which there are

τ(`2 − 1)− τ(`− 1)+ τ
(
`2 − 1

4

)
− τ

(
`− 1

2

)
.

Proof. It is clear that G1 and G2 both have dihedral image in PGL2(`) and
intersect Cns(`) in H , since γ and γ r e both lie in C+ns(`) but not Cns(`) and
their squares lie in H ∩ Z(`). For G1 it is clear that det(H) = −det(G1 − H),
and for G2 we note that (γ δe)2 generates H ∩ Z(`), by construction, and if
det(H) = det(H ∩ Z(`)) then −det(γ r e) 6∈ det(H), and by Lemma 3.13, the
sets det(H) and −det(G2 − H) must then be disjoint.

Every subgroup H ⊆ Cns(`) is normal in C+ns(`) and has no nontrivial GL2(`)-
conjugates in C+ns(`). It follows from Lemmas 3.13 and 3.16 that up to conjugacy
in GL2(`), each G1,G2 arises for exactly one H .

The first two terms in the formula count subgroups H ⊆ Cns(`) not in Z(`).
Among these, those that satisfy det(H)= det(H∩Z(`)) and−1 ∈ H are precisely
those that lie in the index 2 subgroup of Cns(`) (squares) and contain a subgroup
of order 2, which accounts for the last two terms in the formula.

The split dihedral case is slightly more complicated due to the fact that Cs(`)

contains subgroups H that are not normal in C+s (`), and Lemma 3.16 implies that
even when H is normal in C+s (`) it may have distinct GL2(`)-conjugates that also
lie in C+s (`).

COROLLARY 3.18. Let ` be an odd prime, let γ = (0 1
1 0

)
, and let δ ∈ Cs(`) be a

coset representative of a generator for Cs(`)/(Cs(`)∩SL2(`)). For each subgroup
H ⊆ Cs(`) not in Z(`) that is normal in C+s (`), the group G1 = 〈H, γ 〉 ⊆ C+s (`)
satisfies H = G1 ∩Cs(`) with det(H) = −det(G1 − H). If H satisfies det(H) =
det(H ∩ Z(`)) and −1 ∈ H, then for e := [Z(`) : H ∩ Z(`)], the group G2 :=
〈H, γ δe〉 ⊆ C+s (`) satisfies H = G2 ∩ Cs(`) with det(H) and −det(G2 − H)
disjoint. Up to conjugacy in GL2(`), this accounts for all subgroups that lie in
the normalizer of a split Cartan group and have dihedral image in PGL2(`), of
which there are

β(`− 1)− τ(`− 1)+ τ
(
`− 1

2

)2

− τ
(
`− 1

2

)
− 1

2

(
1+

(−1
`

))
τ

(
`− 1

4

)
.

Proof. The argument that G1 and G2 have the claimed properties is identical to
that in the proof of Corollary 3.17, as is the argument that they are uniquely
determined by H .

The first two terms in the formula count the normal subgroups H of Cs(`)

not in Z(`), via Corollary 3.10, each of which gives rise to a G1; these G1 are
all nonconjugate so long as we are not in the exceptional case of Lemma 3.16.
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The last term in the formula is a correction factor for double counting the
exceptional cases.

The third and fourth terms in the formula account for subgroups H that satisfy
det(H) = det(H ∩ Z(`)) and −1 ∈ H . To see this, note that in the proof of
Lemma 3.8, adding the restriction det(H) = det(H ∩ Z(`)) replaces the factor
β2(n) with (e2 + 1)2 and the modified formula for β(n) is then τ(n)2; using n =
(` − 1)/2 accounts for the constraint −1 ∈ H . Each such H gives rise to a G2,
and these are all nonconjugate.

LEMMA 3.19. Let ` be an odd prime and let G be a subgroup of GL2(`) with
dihedral image in PGL2(`). Then G is contained in both the normalizer of a split
Cartan group and the normalizer of a nonsplit Cartan group if and only if G is
conjugate to a subgroup of the form

Hz :=
〈(

0 1
z 0

)
,

(
1 0
0 −1

)〉
,

where z ∈ Z(`)× is not a square, in which case the image of G in PGL2(`) is the
Klein group of order 4. There is exactly one such Hz for each odd divisor of `−1.

Proof. Every nonscalar element of G lies in the nontrivial coset of a subgroup of
a Cartan group in its normalizer, hence has trace zero and order 2 in PGL2(`). It
follows that the image of G in PGL2(`) has order 4, and we have G = 〈g1, g2〉
with tr g1 = tr g2 = 0, and det g1 square, while det g2 is not square.

If ` ≡ 1 (mod 4), then after multiplication by a scalar, we can assume det g1 =
−1, and G is then conjugate to Hz ⊆ C+s (`) via an action that sends g1 to

(
1 0
0 −1

)
and g2 to

(
0 1
z 0

)
, with z = −det g2 not a square.

If ` ≡ 3 (mod 4), then after multiplication by a scalar we can assume det g2 =
−1 and G is then conjugate to Hz ⊆ C+ns(`) via an action that sends g2 to

(
1 0
0 −1

)
and g1 to

(
0 1
z 0

)
, with z = −det g1 not a square.

Conversely, for each nonsquare z ∈ Z(`)× the subgroup Hz lies in C+s (`) ∩
C+ns(`) and has dihedral image in PGL2(`). If we fix a generator r for Z(`)×, the
distinct groups Hz that can arise are precisely those with z = r e, where e is an
odd divisor of `− 1.

REMARK 3.20. Not every G ⊆ GL2(`) with projective image isomorphic to
the Klein group is contained in both the normalizer of a split Cartan group and
the normalizer of a nonsplit Cartan group; this occurs if and only if G contains
elements g, h with χ(g) = 1 and χ(h) = −1.

3.4. Exceptional cases. We now consider the exceptional case (3) of
Proposition 3.1. In all of these cases the group G ⊆ GL2(`) is determined up to
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conjugacy by three criteria: the isomorphism class of its image in PGL2(`), the
cardinality of its scalar subgroup Z := G∩ Z(`), and the index [det(G) : det(Z)].

LEMMA 3.21. Let ` > 5 be prime, and suppose that G is a subgroup of GL2(`)

with projective image isomorphic to H ∈ {A4,S4,A5} and scalar subgroup Z :=
G ∩ Z(`) containing −1.

(3a) If H = A4 then one of the following holds:

(i) [det(G) : det(Z)] = 1.

(ii) [det(G) : det(Z)] = 3 and ` ≡ 1 (mod 3) with [Z(`) : Z ] divisible
by 3.

(3b) If H = S4 then one of the following holds:

(i) [det(G) : det(Z)] = 1 and ` ≡ ±1 (mod 8).

(ii) [det(G) : det(Z)] = 2 and ` ≡ 1 (mod 8) with [Z(`) : Z)] divisible
by 2.

(iii) [det(G) : det(Z)] = 2 and ` ≡ 3 (mod 8).

(iv) [det(G) : det(Z)] = 2 and ` ≡ 5 (mod 8) with #Z divisible by 4.

(3c) If H = A5 then [deg(G) : det(Z)] = 1 and ` ≡ ±1 (mod 5).

Moreover, every case listed above arises for exactly one conjugacy class of
subgroups G in GL2(`).

Proof. The lemma follows from the classification in [28]; see Theorems 5.5, 5.8,
and 5.11. It can also be derived from the analysis in [1, Section 5.2].

The explicit classification of primitive subgroups of GL2(`) in [28] also
provides a method for constructing a subgroup G ⊆ GL2(`) that satisfies
Lemma 3.21 for given values of H , Z , and [det(G) : det(Z)], whenever such
a G exists (if it exists, it is unique up to conjugacy, by the previous lemma). The
complexity of this algorithm is important to what follows, so we give it in detail
and then bound its complexity. The construction given in [28] gives generators for
a subgroup G̃ of GL2(F`2) that is conjugate to our desired G ⊆ GL2(`); we then
use the algorithm of [33] to efficiently conjugate G̃ to G.

ALGORITHM 1. Given a prime ` > 5, a group H ∈ {A4,S4,A5}, a subgroup
Z ⊆ Z(`) containing−1 generated by λ, and i ∈ {1, 2, 3}, output generators for a
group G ⊆ GL2(`) with projective image isomorphic to H , and scalar subgroup
Z ⊆ Z(`) such that [det(G) : det(Z)] = i , or report that no such G exists.
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1. Let ω ∈ F`2 be a primitive fourth root of unity, let s := 1
2

(
ω−1 ω−1
ω+1 −(ω+1)

)
, and let

t := (ω 0
0 −ω

)
.

2. If H = A4 then

a. If i = 1 let G̃ := 〈s, t, λ〉.
b. If i = 3 and ` ≡ 1 (mod 3)with 3|[Z(`) : Z ] let G̃ := 〈µs, t, λ〉where
µ ∈ Z(`)− Z satisfies µ3 = λ.

c. Otherwise, report that no such G exists and terminate.

3. If H = S4 then

a. Let α ∈ F`2 be a square root of 2 and let u := (1+ω 0
0 1−ω

)
.

b. If i = 1 and ` ≡ ±1 (mod 8) let G̃ := 〈s, u
α
, λ〉.

c. If i = 2 and ` ≡ 1 (mod 8) with [Z(`) : Z ] even, let G̃ := 〈s, µ
α

u, λ〉
where µ ∈ Z(`) satisfies µ2 = λ.

d. If i = 2 and ` ≡ 3 (mod 8) let G̃ := 〈s, µ
α

u, λ〉 where µ ∈ Z(`)
satisfies µ2 = λ.

e. If i = 2 and ` ≡ 5 (mod 8) with 4|#Z , let G̃ := 〈s, µ
α

u, λ〉 where
µ

α
∈ Z(`) satisfies (µ

α
)2 = λ

2

f. Otherwise, report that no such G exists and terminate.

4. If H = A5 then

a. If i = 1 and ` ≡ ±1 (mod 5) then let v := 1
4

(
2ω 1−β−ω−βω

β−1−ω−βω −2ω

)
and let G̃ := 〈s, t, v, λ〉.

b. Otherwise, report that no such G exists and terminate.

5. By solving a linear system in 4 variables and at most 16 equations, construct
a matrix C ∈ GL2(F`2) for which gC = Cgσ holds for all g ∈ G̃, where
〈σ 〉 = Gal(F`2/F`).

6. Generate random matrixes X ∈M2(F`2) until A := X + C X is invertible.

7. Output G := A−1G̃ A ⊆ GL2(`) and terminate.

The last 3 steps of Algorithm 1 implement a special case of the probabilistic
(Las Vegas) algorithm in [33] which, given a subgroup G̃ of GLr (Fpn ), finds
a conjugate subgroup G in GLr (Fpm ) with m|n minimal. The correctness of
Algorithm 1, including the fact that a subgroup G ⊆ GL2(`) conjugate to
G̃ ⊆ GL2(F`2) necessarily exists, is guaranteed by [28, Theorems 5.5, 5.8,
and 5.11]. We now analyze its complexity.
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PROPOSITION 3.22. The expected running time of Algorithm 1 is
O(M(log `) log `).

Proof. Using standard probabilistic root-finding algorithms we can find the
roots of any polynomial of bounded degree over F` or F`2 in O(M(log `) log `)
expected time [32]. Every other operation in Algorithm 1 takes O(M(log `)) time,
including the linear algebra in step 5, since the dimensions of the system are
bounded. The expected number of random matrixes needed in step 6 is at most 4;
see [33, page 1707].

3.5. Counting and enumerating subgroups. As a result of our classification
we can now count the number of subgroups of GL2(`) up to conjugacy. For
` = 2 there are four nonconjugate subgroups of GL2(2), namely, Cs(2), Cns(2),
B(2), and GL2(2) = SL2(2). For primes ` > 2, every subgroup of GL2(`) is
conjugate to at least one of the groups enumerated below. The 11 cases that
appear are disjoint except for Cs and Cns , which intersect in Z , and C+s and C+ns ,
which intersect in C+s∩ns . Other than these intersections all of the groups listed are
nonconjugate in GL2(`).

We thus obtain an explicit formula for the number of nonconjugate subgroups
of GL2(`) by summing the formulas for the 11 listed cases with the counts for Z
and Cs ∩ C+ns negated. Table 2 lists this data for odd primes ` < 200 along with
several larger primes. These formulas can easily be adapted to count subgroups
of SL2(`) instead.

SL2: τ(`− 1) subgroups that contain SL2(`);

B: α(`− 1) subgroups of B(`) that contain an element of order `;

Cs : 1
2

(
α(`− 1)+ β(`− 1)

)
subgroups of Cs(`);

Cns : τ(`2 − 1) subgroups of Cns(`);

Z : τ(`− 1) subgroups of Cs(`) ∩ Cns(`) = Z(`);

C+s : β(`− 1)− τ(`− 1)+ τ( `−1
2

)2 − τ( `−1
2

)− 1
2

(
1+ (−1

`

))
τ
(
`−1

4

)
subgroups

of C+s (`) not in Cs(`);

C+ns : τ(`
2−1)−τ(`−1)+τ( `2−1

4

)−τ( `−2
2

)
subgroups of C+ns(`) not in Cns(`);

C+s∩ns : τ
(
(`− 1)/2v2(`−1)

)
subgroups of C+s (`) ∩ C+ns(`) not in Cs(`) or Cns(`);

A4: τ
(
`−1

2

)+ 1
2 (1+ (−3

`
)τ
(
`−1

6

)
subgroups G 6⊇ SL2(`) with π(G) ' A4;

S4:
(
1− 1

4

(
1− ( 2

p

))(
1− (−1

p

)))
τ
(
`−1

2

)+ 1
2

(
1+ (−1

p

))
τ
(
`−1

4

)
subgroups G 6⊇

SL2(`) with π(G) ' S4;

A5: 1
2

(
1+ ( 5

p

)
τ
((

`−1
2

))
subgroups G 6⊇ SL2(`) with π(G) ' A5.
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Table 2. Subgroups of GL2(`) up to conjugacy. See Section 3.5 for an explanation of the
column headings.

` SL2 B Cs Cns Z C+s C+ns C+sns A4 S4 A5 GL2

3 2 5 4 4 2 1 3 1 0 0 0 16
5 3 15 11 8 3 5 7 1 2 1 0 48
7 4 30 21 10 4 10 10 2 3 2 0 84

11 4 40 26 16 4 10 18 2 2 2 2 114
13 6 90 59 16 6 32 14 2 6 2 0 217
17 5 83 55 18 5 31 21 1 4 7 0 218
19 6 115 71 24 6 27 27 3 5 3 3 272
23 4 70 41 20 4 10 26 2 2 2 0 169
29 6 150 89 32 6 32 38 2 4 2 4 349
31 8 240 144 28 8 52 36 4 6 4 4 510
37 9 345 204 24 9 81 21 3 10 3 0 685
41 8 296 178 40 8 78 50 2 6 10 6 662
43 8 300 174 32 8 52 36 4 6 4 0 600
47 4 130 71 24 4 10 34 2 2 2 0 271
53 6 240 134 32 6 32 38 2 4 2 0 480
59 4 160 86 32 4 10 42 2 2 2 2 334
61 12 720 416 32 12 152 28 4 12 4 8 1368
67 8 420 234 32 8 52 36 4 6 4 0 780
71 8 400 224 60 8 52 84 4 4 4 4 828
73 12 851 493 30 12 189 27 3 15 15 0 1617
79 8 480 264 48 8 52 68 4 6 4 4 922
83 4 220 116 32 4 10 42 2 2 2 0 422
89 8 518 289 60 8 78 82 2 6 10 6 1047
97 12 1062 617 42 12 242 50 2 15 18 0 2044

101 9 675 369 48 9 81 57 3 6 3 6 1242
103 8 600 324 40 8 52 52 4 6 4 0 1074
107 4 280 146 32 4 10 42 2 2 2 0 512
109 12 1140 626 64 12 152 76 4 14 4 8 2080
113 10 830 469 48 10 148 62 2 8 14 0 1577
127 12 1150 629 54 12 126 78 6 10 6 0 2047
131 8 640 344 64 8 52 84 4 4 4 4 1192
137 8 740 400 40 8 78 50 2 6 10 0 1322
139 8 780 414 64 8 52 84 4 6 4 4 1404
149 6 600 314 48 6 32 62 2 4 2 4 1064
151 12 1350 729 60 12 126 78 6 9 6 6 2358
157 12 1440 776 32 12 152 28 4 12 4 0 2440
163 10 1185 630 40 10 85 45 5 9 5 0 1994
167 4 430 221 40 4 10 58 2 2 2 0 761
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Table 2. Continued.

173 6 690 359 32 6 32 38 2 4 2 0 1155
179 4 460 236 48 4 10 66 2 2 2 2 824
181 18 2760 1506 96 18 360 114 6 20 6 12 4868
191 8 880 464 64 8 52 100 4 4 4 4 1568
193 14 2202 1227 32 14 360 30 2 18 22 0 3889
197 9 1125 594 72 9 81 93 3 6 3 0 1971
199 12 1610 859 90 12 126 126 6 10 6 6 2827

103 + 9 30 19090 10031 144 30 1476 186 6 40 42 24 31027
104 + 7 4 25030 12521 60 4 10 90 2 2 2 0 37713
105 + 3 16 715200 357696 128 16 232 168 8 12 8 0 1073436
106 + 3 8 5000100 2500074 96 8 52 132 4 6 4 0 7500460

REMARK 3.23. From the formulas for α(n) and β(n) 6 α(n), and the bound
τ(n) = 2O(log n/ log log n) = no(1), one may deduce that the number of subgroups of
GL2(`) is quasilinear in `. Indeed, the lower bound α(n) = Ω(n) is immediate,
and the upper bound α(n) = O(n log log log n) is easy to prove.

We now give an efficient Las Vegas algorithm to enumerate the subgroups
of GL2(`) up to conjugacy. It outputs a short list of O(1) generators for each
subgroup and has a total expected running time that is quasilinear in `, hence in
the size of its output.

ALGORITHM 2. Given a prime `, output a list of the subgroups of GL2(`) up to
conjugacy as follows:

1. (even `) If ` = 2 then output 〈〉, 〈(1 1
0 1

)〉, 〈(1 1
1 0

)〉, 〈(1 1
0 1

)
,
(

1 1
1 0

)〉 and terminate.

2. Compute a generator r for Z(`), a generator g for Cns(`), lists of the divisors
of `− 1 and `2 − 1, and a lookup table

T := {(u(g), |π(g)|) : g ∈ Cs(`) ∪ Cns(`)}
indexed by u(g) := tr(g)2/ det(g).

3. (contains SL2(`)) For each e dividing `− 1 output 〈(1 1
0 1

)
,
(

1 0
1 1

)
,
(

1 0
0 re

)〉.
4. (in B(`)) For each triple (a, b, i) with a, b|(` − 1) and 0 6 i < gcd(a, b),

output 〈(
r a 0
0 1/r a

)
,

(
r ic 0
0 r d−ic

)
,

(
1 1
0 1

)〉
where c = a/ gcd(a, b) and d = n/b.
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5. (exceptional cases) If `> 5 then call Algorithm 1 for each H ∈ {A4,S4,A5},
i ∈ {1, 2, 3}, and Z = 〈(rn 0

0 rn

)〉 with n dividing (`− 1)/2.

6. (cyclic cases)

a. (split) For each (a, b, i) with a, b|(` − 1) and 0 6 i < gcd(a, b), put
c = a/ gcd(a, b) and d = (`− 1)/b, and if there is no integer j in the
interval [1, i − 1] satisfying jc ≡ d − ic (mod a) then output

Ha,b,i :=
〈(

r a 0
0 1/r a

)
,

(
r ic 0
0 r d−ic

)〉
.

b. (nonsplit) For each n|(`2−1) not divisible by `+1 output Hn := 〈gn〉,
where Cns(`) = 〈g〉.

7. (dihedral cases)

a. (split) Let γ := (0 1
1 0

)
and δ := (1 0

0 r

)
. For each Ha,b,i as in step 6.a with

2ic ≡ d (mod a):

i. Compute Za,b,i := Ha,b,i ∩ Z(`) using the table T as described
below.

ii. Unless−1 ∈ Za,b,i , [Ha,b,i : Za,b,i ] = 2, and
(

1 0
0 −1

) ∈ Ha,b,i , output
〈Ha,b,i , γ 〉.

iii. If −1 ∈ Za,b,i and det(Ha,b,i) = det(Za,b,i) then output 〈H, γ δe〉,
where e := [Z(`) : Za,b,i ].

b. (nonsplit) Let γ = (1 0
0 −1

)
. For each Hn = 〈gn〉 as in step 6.b:

i. Compute Zn := Hn ∩ Z(`) using the table T as described below.
ii. Output 〈Hn, γ 〉.

iii. If −1 ∈ Zn and det(Hn) = det(Zn) then output 〈Hn, γ ge〉, where
e := [Z(`) : Zn].

The scalar subgroup Za,b,i := Ha,b,i ∩ Z(`) computed in step 7.a.ii is uniquely
determined by its order, which we can compute as #Ha,b,i/#π(Ha,b,i), where
π : GL2(`) � PGL(`) is the canonical projection. Since π(Ha,b,i) is cyclic, we
may compute its order as the least common multiple of the projective orders of the
generators of Ha,b,i , which may be determined using the lookup table T computed
in step 2. Similar comments apply to computing Zn := Hn ∩ Z(`) in step 7.b.ii.

The correctness of Algorithm 2 follows from Proposition 3.1, the correctness of
Algorithm 1, and the analysis in Sections 3.1 to 3.3. The constraint on i in step 6.a
ensures that we pick just one of the two possible conjugacy class representatives
of a subgroup of Cs(`), and the constraint on Ha,b,i in step 7.a.ii uses Lemma 3.16
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to pick just one of the two possible conjugacy class representatives of a subgroup
of Cs(`)

+ with projective image isomorphic to the Klein group.

PROPOSITION 3.24. The expected running time of Algorithm 2 is `1+o(1).

Proof. We first consider step 2. We can compute the generators r and g in
(log `)2+o(1) expected time using probabilistic algorithms. We can compute the
divisors of ` − 1 and ` + 1 in `1+o(1) time using a sieve, and these lists can then
be used to construct a complete list of the divisors of `2 − 1 = (`− 1)(`+ 1) in
`o(1) time (here we are using the fact that an integer n has at most no(1) divisors).
To compute the table T , we note that for Cs(`) it suffices to compute each pair
(u(ae), (`− 1)/e) using a = (1 0

0 r

)
for 1 6 e 6 `− 1, and for Cns(`) it suffices to

compute (u(ge), (` + 1)/e) using the generator g for Cns(`) for 1 6 e 6 ` + 1.
Thus step 2 takes `1+o(1) time.

Step 3 clearly takes `o(1) time. For step 4 we note that the number of triples
(a, b, i) is given by

α(`− 1) =
∑

a,b|(`−1)

gcd(a, b) =
∏

p

( ∑
06i6vp(`−1)

(2(vp(`− 1)− i)+ 1)pi

)
= `1+o(1),

and the time to compute generators for each individual subgroup of B(`) is `o(1).
There are `o(1) calls to Algorithm 1 in step 5, each of which takes `1+o(1) expected
time, by Proposition 3.22. The number of subgroups Ha,b,i in step 6.a is bounded
by α(` − 1) = `1+o(1), and each takes `o(1) time to compute, while step 6.b takes
`o(1) time. The number of groups arising in step 7 is similarly bounded by `1+o(1),
and the time for each group is (log `)2+o(1), using the table T to compute the
projective orders of Ha,b,i and Hn as described above in order to determine their
scalar subgroups.

A Magma [11] script implementing Algorithm 2 is available from the author’s
website [68]. In practical terms, it typically takes just a few seconds for ` ≈ 103

and less than an hour for ` ≈ 106, computations that would be infeasible using
the Subgroups function in Magma, or similar functionality in GAP [30].

3.6. Subgroup signatures.

DEFINITION 3.25. For each g ∈ GL2(`) we define

sig(g) := (det(g), tr(g), dim1(g)),
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where dim1(g) ∈ {0, 1, 2} is the dimension of the 1-eigenspace of g. For each
subgroup G ⊆ GL2(`) we define the signature of G to be the set

sig(G) := {sig(g) : g ∈ G}.

LEMMA 3.26. Let ` be an odd prime, and let G be a subgroup of⊆ GL2(`). Then
(1, 2, 1) ∈ sig(G) if and only if G contains an element of order `.

Proof. If G contains an element g of order ` then it is conjugate to
(

x 1
0 x

)
and

sig(g`−1) = (1, 2, 1) ∈ G. Conversely, if (1, 2, 1) ∈ sig(G) then G contains an
element conjugate to

(
1 1
0 1

)
, which has order `.

LEMMA 3.27. Suppose G and H are nonconjugate subgroups of GL2(`) for
which sig(G) = sig(H), with #G > #H. Up to conjugacy in GL2(`) exactly
one of the following holds:

(a) G = 〈C, (1 1
0 1

)〉 and H = 〈C ′, (1 1
0 1

)〉 where C,C ′ ⊆ Cs(`) are distinct C+s (`)-
conjugates.

(b) G ⊆ C+s (`) with det(G) ⊆ F×2
` and H = G ∩Cs(`) ( G; in this case ` ≡ 1

(mod 4).

(c) G ⊆ C+ns(`) with det(G) ⊆ F×2
` and H = G∩Cns(`) ( G; in this case ` ≡ 3

(mod 4).

(d) the images of G and H in PGL2(`) are isomorphic to A4 and S3, respectively.

For every subgroup G ⊆ GL2(`) there is at most one conjugacy class of
nonconjugate subgroups H that have the same signature.

Proof. The four conjugacy classes of subgroups in GL2(2) all have distinct
signatures, in which case the lemma is vacuously true, so we assume ` is odd.
The group G contains SL2(`) if and only if sig(G) contains (1, 2, 1) and a triple
(1, t, 0) with t2 − 4 not square, and in this case the conjugacy class of G is then
determined by det(G), which is also determined by sig(G). The same applies to
H , so this case cannot arise. Lemma 3.26 implies that either G and H both contain
an element of order `, or neither do, and if the former holds than we must be in
case (a), by Lemma 3.6 and its proof.

We now assume neither G nor H contain an element of order `. The scalar
subgroup G ∩ Z(`) of G and the possible orders of all g ∈ G and h ∈ π(G) are
determined by sig(G), and they must be the same as for H . The groups π(G) and
π(H) cannot both be cyclic, since Corollary 3.11 and Lemma 3.12 imply that in
this case the conjugacy classes of G and H are determined by their signatures.
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Similarly, Corollaries 3.17, 3.18, and Lemma 3.19 imply that π(G) and π(H)
cannot both be dihedral.

The group S4 (respectively A5) may be distinguished from any cyclic or
dihedral group by the fact that it contains elements of order 3 and 4 (respectively
3 and 5), but no element of order 12 (respectively 15). For the group A4, the
only cyclic or dihedral group with the same set of element orders is S3. By
Lemma 3.21, the conjugacy class of G in GL2(`) with π(G) isomorphic to A4,
S4, or A5 is determined by det(G) and G ∩ Z(`); thus, the only case that can arise
in which G or H has an exceptional projective image is case (d) of the lemma.

The only remaining possibility is that π(G) is dihedral and π(H) is cyclic
(since we assume #G > #H ), and π(H) cannot be trivial, so H is contained
in either a split Cartan group or a nonsplit Cartan group, but not both. We have
G∩Z(`)= H∩Z(`)with G distinguished up to conjugacy among subgroups with
dihedral projective image by its signature and H distinguished up to conjugacy
among subgroups with cyclic projective image by its signature, and this implies
that G must contain an index 2 subgroup conjugate to H . So without loss of
generality we assume H = G ∩C , where C is either Cs(`) or Cns(`), and let γ H
be the nontrivial coset of H in G, for some γ ∈ G − H . Now π(H) contains
an element of order 2, since π(G) does and their signatures coincide, so H
contains a trace-zero element h, and every trace-zero element of H is a scalar
multiple of h. It follows that either all or none of the trace-zero elements in H
(and hence in G) have square determinants, depending on whether det h is square
or not.

Suppose det h is not a square. The same must be true of every element of γ H
(since they all have trace zero), including γ , so every element of γ γ H = H has
square determinant; but this includes h, which is a contradiction. So h and every
element of γ H has a square determinant, including γ , and the same holds for
γ γ H = H and hence for G; thus det(G) ⊆ F×2

` , as claimed.
If H ⊆ Cs(`) then h = (x 0

0 −x

)
for some x ∈ Z(`)×; thus det h = −x2 is square

only if −1 is square in Z(`)×, in which case ` ≡ 1 (mod 4). If H ⊆ Cns(`) then
h = (0 0

0 εy
)
y0 for some y ∈ Z(`)× with ε not square; thus det h = −εy2 is square

only if −1 is not square in Z(`)×, in which case ` ≡ 3 (mod 4).

We note that when det(G) is not contained in the subgroup of squares in Z(`)×
only case (a) of Lemma 3.27 can arise, and in this case G and H are isomorphic,
by Lemma 3.6. This yields the following corollary.

COROLLARY 3.28. Let E be an elliptic curve over a number field K and let `
be a prime for which K ∩ Q(ζ`) = Q (any prime if K = Q). Then G E(`) is
determined up to isomorphism by its signature.
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To address cases (b) to (d) of Lemma 3.27 that may arise when we have
det(G) ⊆ F×2

` we need an additional datum. For any subgroup G ⊆ GL2(`),
let

z(G) := #{g : g ∈ G, tr g = 0}
#G

denote the proportion of trace-zero elements in G.

LEMMA 3.29. Let G and H be as in Lemma 3.27 and suppose case (a) does not
apply. Then

|z(G)− z(H)| > 1
4 .

Proof. If we are in case (b) or (c) of Lemma 3.27, then H lies in a Cartan group C
and has index 2 in G, and the nontrivial coset gH of H in G does not intersect C .
In this case every element of gH has trace zero, while at most half the elements
of H can have trace zero, thus

z(G)− z(H) = 1+ z(H)
2

− z(H) = 1− z(H)
2

>
1
4
.

In case (d) we have z(G) = 1/4 and z(H) = 1/2, thus z(H)− z(G) = 1/4.

COROLLARY 3.30. If G and H are subgroups of GL2(`) with sig(G) = sig(H)
and z(G) = z(H) then either G and H are conjugate or case (a) of Lemma 3.27
applies. In particular, G and H are locally conjugate and isomorphic.

Proof. This follows from the previous lemma and Lemma 3.6.

We now give an efficient algorithm to determine a set of generators for a
subgroup G of GL2(`) that satisfies sig(G) = s and z(G) = z, given the signature
s = sig(G ′) and trace-zero ratio z = z(G ′) of some subgroup G ′ of GL2(`). By
Corollary 3.30, the group G must be locally conjugate to G ′. In order to do this
more efficiently, we note that each signature s is uniquely determined by a small
subset of its triples. It suffices to retain a subset s of s of signatures sig(g) for
g ∈ G ′ that includes

• the triple (1, 2, 1) if #G ′ is divisible by `;

• a triple sig(g) for which 〈det(g)〉 = det(G ′) =: det(s);

• a triple sig(g) for which 〈g〉 = Z(G ′) =: Z(s);

• a triple sig(g) for which |π(g)| = max{|π(h)| : h ∈ G ′} =: m(s);
• triples sig(gi) for which lcm|π(gi)| = lcm{|π(h) : h ∈ G ′} =: λ(s);
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• triples sig(gi) for which {χ(gi)} = {χ(h) : h ∈ G ′} =: χ(s);
• if π(G ′) is not cyclic, triples sig(g1) and sig(g2) with |π(g1)| = |π(g2)| = 2

but π(g1) 6= π(g2).

Given any signature s = sig(G ′)we can always reduce s to a subset s of at most
11 elements that satisfy all of the criteria above. Alternatively, as we shall do in
Section 5, we can construct s by randomly sampling a sufficiently large subset of
s, without ever needing to store more than O(log `) triples, which requires just
O(log2 `) bits of space, as opposed to O(`2 log `) for the entire signature. More
importantly, with the algorithm below we can obtain generators for a subgroup
G locally conjugated to G ′ in expected time polynomial in log ` rather than `,
an exponential improvement. For any subgroup G of GL2(`) let Z(G) denote the
subgroup of scalar elements, and similarly let Z(s) denote the subset of signatures
of scalar elements (d, t, n) with n ∈ {0, 2} and t2 − 4d = 0.

ALGORITHM 3. Given a subset s of the signature s of a subgroup G ′ of
GL2(`) satisfying the requirements above and a rational number z ∈ [0, 1] with
denominator at most #GL2(`) satisfying |z(G ′)−z|< 1

8 , output a set of generators
for a subgroup G of GL2(`) that is locally conjugate to G ′ as follows:

1. (even `) If ` = 2 then output G = 〈(1 0
0 1

)〉
,
〈(

0 1
1 0

)〉
, 〈(1 1

1 0

)〉
, or

〈(
0 1
1 0

)
,
(

1 1
1 0

)〉
when

s is equal to {(1, 0, 2)}, {(1, 0, 2), (1, 0, 1)}, {(1, 0, 2), (1, 1, 0)}, or {(1, 0,
2), (1, 0, 1), (1, 1, 0)}, respectively, then terminate.

2. (cases with order divisible by `) If s contains the triple (1, 2, 1) then:

a. (contains SL2(`)) If −1 ∈ χ(s) output G = 〈(
1 1
0 1

)
,
(

1 0
1 1

)
,
(

1 0
0 d

)〉
with

〈d〉 = det(s) and terminate.
b. (in B(`)) Output G = 〈(1 1

0 1

)
, g, c

〉 ⊆ B(`), with g ∈ Cs(`) satisfying
|π(g)| = m(s) and 〈c〉 = Z(s), and terminate.

3. (exceptional cases) Check for projective image A4,S4,A5 as follows:

a. (A4) If z < 3/8, m(s)= 3 and λ(s)= 6, use Algorithm 1 to construct G
with π(G) ' A4, Z(G) = Z(s), and [det(G) : det(Z(G))] = [det(s) =
det(Z(s))]. Output G and terminate.

b. (S4) If m(s) = 4 and λ(s) = 12 use Algorithm 1 to construct G with
π(G) ' S4, Z(G) = Z(s), and [det(G) : det(Z(G))] = [det(s) =
det(Z(s))]. Output G and terminate.

c. (A5) If m(s) = 5 and λ(s) = 30 use Algorithm 1 to construct G with
π(G) ' A5, Z(G) = Z(s), and [det(G) : det(Z(G))] = [det(s) =
det(Z(s))]. Output G and terminate.
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4. (trivial cases) If χ(s) = {0} output Z(s) and terminate.

5. (cyclic cases) Construct a maximal H ⊂ Cs(`) ∪ Cns(`) with π(H) cyclic
such that sig(H) ⊆ s:

a. Let 〈c〉 = Z(s) let g ∈ Cs(`) ∪ Cns(`) satisfy |π(g)| = m(s) and
sig(g) ∈ s, and set H = 〈g, c〉.

b. If s ⊆ sig(H) and |z(H)− z| < 1/8 then output G = H and terminate.

6. (dihedral cases) Determine the unique G ⊇ H with π(G) dihedral such that
sig(G) = s:

a. Let e = [Z(`) : H ∩ Z(`)], where H is as in step 5.
b. If χ(g) = 1 let γ = (0 1

1 0

)
and r = (1 0

0 ε

)
, otherwise let γ = (1 0

0 −1

)
and

let r be a generator for Cns(`).
c. Output whichever of G = 〈H, γ 〉 or G = 〈H, γ r e〉 satisfies s ⊆ sig(G).

The correctness of Algorithm 3 follows from Proposition 3.1, Lemma 3.26,
and Corollaries 3.17, 3.18, and 3.30. Note that in the dihedral case s is guaranteed
to contain the signature of some h ∈ G − H , since we retain two projectively
distinct elements of order 2 in this case, and det h will determine whether
det(G) = −det(G − H) or not, which determines which of the two possible
subgroups G to output in step 6c, by Corollaries 3.17 and 3.18.

PROPOSITION 3.31. The expected running time of Algorithm 3 is
O(M(log `) log `).

Proof. All the individual arithmetic operations in the algorithm involve O(log `)-
bit integers, including the numerator and denominator of z, and can be
accomplished using O(M(log `) log log `) bit operations (including any field
inversions). The subset s contains just O(1) elements, there are O(1) steps in
the algorithm, and each can be completed in O(M(log `) log `) expected time,
including the calls to Algorithm 1, by Proposition 3.22, and the time to obtain a
generator ε for Z(`)× and r for Cns(`) using a Las Vegas algorithm.

3.7. Locally conjugate subgroups. We conclude this section with a theorem
that precisely characterizes the circumstances in which we may have an elliptic
curve E/K for which G E(`) is locally conjugate but not conjugate to another
subgroup of GL2(`).

THEOREM 3.32. Let ` be a prime and let E be an elliptic curve over a number
field K for which there exists a subgroup G ′ of GL2(`) that is locally conjugate
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to G E(`) but not conjugate to G E(`). Then G ′ arises as G E ′(`) for an elliptic
curve E ′/K that is related to E by a cyclic isogeny whose degree is a power of `;
the curve E ′ is unique up to isomorphism.

Proof. It follows from the classification of Section 3 that up to conjugacy, G =
G E(`) and G ′ are of the form G = H o 〈t〉 and G ′ = H ′ o 〈t〉, where t = (1 1

0 1

)
and H and H ′ are distinct subgroups of Cs(`) that are conjugate in GL2(`) via(

0 1
1 0

)
. This implies that neither H nor H ′ lie in Z(`).

The group G lies in B(`) but not Cs(`), so E admits a rational isogeny ϕ1 of
degree ` that is unique up to isomorphism. Let E1 = ϕ1(E) and let G1 = G E1(`).
The isogeny ϕ1 induces a homomorphism G→ G1 with kernel 〈t〉. The existence
of the dual isogeny implies that the order of G1 is either equal to that of G or
smaller by a factor of ` (it cannot be larger because `2 does not divide #GL2(`)).
In the latter case, G1 lies in a split Cartan group but is not contained in Z(`) (since
H is not), and E1 admits exactly two distinct rational `-isogenies, one of which
is the dual of ϕ1.

If we let ϕ2 : E1 → E2 be the rational `-isogeny that is not dual to ϕ1 and put
G2 = G E2(`), then either G2 also lies in a split Cartan group but not Z(`) and
we can repeat the same argument, or G2 has the same order as G. The isogeny
class of E is finite, so by following a chain of `-isogenies whose composition ϕ
has a cyclic kernel of `-power order, we must eventually reach an elliptic curve
En = ϕn(E) for which Gn := G En (`) has the same order as G. We may thus
assume that Gn lies in B(`) but not Cs(`), and therefore has the form Hn o 〈t〉,
where Hn is a subgroup of Cs(`). The isogeny ϕn induces a group homomorphism
φn : G → Gn with kernel 〈t〉. We can pick bases (P, Q) and (P ′, Q ′) for E[`]
and En[`] (respectively) so that ϕn(P) = 0 and ϕn(Q) = Q ′, while for the dual
isogeny ϕ̂n we have ϕ̂n(Q ′) = 0 and ϕ̂n(P ′) = P . It follows that φn restricts to an
isomorphism from H to Hn that corresponds to conjugation by

(
0 1
1 0

)
(swapping

the diagonal elements). We therefore have Hn = H ′ and Gn = G ′. The curve
E ′ := En is determined up to isomorphism by the kernel of the separable isogeny
ϕn , which is in turn determined up to isomorphism by E .

REMARK 3.33. The theorem allows for the possibility that E/K has CM, but
rarely applies in this case. When E/K has CM the hypothesis of the theorem is
satisfied only when ` is ramified in the CM field and the ideal above ` in the CM
field is nonprincipal (and thus has order 2 in the class group). This corresponds to
an `-volcano that consists of a single edge; see [66].

EXAMPLE 3.34. Consider the chain of 5 isogenies E ←→ E1 ←→ E ′, where
E , E1, and E ′ are the elliptic curves over Q with Cremona labels 11a3, 11a1,
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and 11a2, respectively. In this example, the groups G = 〈(1 0
0 2

)〉
and H = 〈(2 0

0 1

)〉
are both conjugate to G E1(5), while the groups G E(5) = 〈G, t〉 and G E ′(5) =
〈H, t〉 are nonconjugate but locally conjugate and isomorphic (as required by
Lemma 3.6). As can be seen from the groups G E(5) and G E ′(5), the elliptic curve
E has a rational 5-torsion point, but E ′ does not.

4. GRH bounds

By the generalized Riemann hypothesis (GRH) we refer to the assumption that
the nontrivial zeros of the Dedekind zeta function of a number field all lie on
the critical line {s ∈ C : Re(s) = 1/2}. We also recall the logarithmic integral
Li(x) := ∫ x

2 dt/ log t .

PROPOSITION 4.1 (Lagarias–Odlyzko, Serre). Assume the GRH. Let L be a finite
Galois extension of a number field K with Galois group G = Gal(L/K ), let
nL := [L : Q], and dL := |disc(L)|. For each nonempty subset C of G stable
under conjugation define

πC(x) := #
{
p :
(

L/K
p

)
⊆ C, N (p) 6 x

}
,

where p ranges over the primes of K that are unramified in L, N (p) is its absolute
norm, and ( L/K· ) is the Artin symbol. There are absolute effective constants c1 and
c2 such that ∣∣∣∣πC(x)− #C

#G
Li(x)

∣∣∣∣ 6 c1
#C
#G
√

x(log dL + nL log x)

holds for all x > 2, and πC(x) > 1 for all x > c2 log2 dL .

Proof. The first bound is [59, Theorem 4], which sharpens [38]. The second is
[59, Theorem 5], which is also sketched in [38]. For the third bound, see the
remark regarding an improvement to Corollary 1.2 in [38].

REMARK 4.2. As noted in [59], Oesterlé announced the explicit values c1 = 2
and c2 = 70 in [51]. Proofs of these values have not been published, but in [72]
one can find proofs that use somewhat larger constants (one can take c1 = 185 via
[72, Theorem 1.2]; if one assumes dL is sufficiently large one can take c1 ≈ 32).

PROPOSITION 4.3 (Larson–Vaintrob). Assume the GRH. Let E be an elliptic
curve without CM defined over a number field K , and let NE be the absolute
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value of the norm of its conductor. There is an effective constant cK depending
only on K such that G E(`) 6= GL2(`) only occurs for primes

` 6 cK log NE(log log NE)
3.

Proof. See [42, Theorem 2].

REMARK 4.4. Without the GRH the best known bounds on ` are exponentially
worse. Even in the case K = Q the best unconditional bound known is quasilinear
in NE [18]. For elliptic curves over Q with no primes of multiplicative reduction,
an O(

√
NE) bound is given in [73], which also gives much stronger bounds

(logarithmic in the discriminant) for elliptic curves with nonintegral j-invariants.

PROPOSITION 4.5. Let E be an elliptic curve defined over a number field K , and
let NE be the absolute value of the norm of the conductor of E. Let m > 1 be an
integer, let L := K (E[m]) be the m-torsion field of E, and let dL := |disc(L)|,
dK := |disc(K )|, and nK := [K : Q], Then

log dL 6 m4dK (4nK log2 m + dK + 1) log(m NE).

Proof. We have
dL = d [L:K ]K |NK/Q(dL/K )|,

where dL/K denotes the relative discriminant of L/K . The extension L/K has
degree at most #GL2(m)which is less than m4, and is unramified at all primes p of
K that do not divide m and for which E has good reduction; see [25, Theorem 1].
The ramification index e of any prime q|p cannot exceed [L : K ] < m4; therefore,
the multiplicity of any prime q in the relative different DL/K cannot exceed

e − 1+ vp(e)e < e(nK log2 e + 1) < m4(4nK log2 m + 1) =: B.

The multiplicity of any prime p in the relative discriminant dL/K = NL/K (DL/K )

is also bounded by B, and since every ramified prime divides m NE , we have

|NK/Q(dL/K )| 6 m NE .

Thus

log dL 6 m4dK + B log(m NE) = m4(4nK log2 m + dK + 1) log(m NE).

REMARK 4.6. The conductor norm NE can be replaced by its square-free part in
the proposition above.

COROLLARY 4.7. Assume the GRH. Let E be an elliptic curve defined over a
number field K and let NE be the absolute value of the norm of its conductor. Let `
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be a prime and let L = K (E[`]). There is an effective constant c′K depending only
on K such that every conjugacy class in G E(`) arises as the image of a Frobenius
element of Gal(L/K ) for a prime p 6 | ` of good reduction for E with absolute
norm N (p) 6 x, provided that

x > c′K`
8(log ` log(`NE))

2.

For ` 6 cK log NE(log log NE)
3 as in Proposition 4.3, it suffices to have

x > c′K (log NE)
10(log log NE)

4(log log log NE)
24.

Moreover, if a good prime p 6 | ` is chosen uniformly at random from the set

{p : N (p) ∈ [P, 2P]}
with P > x log log x and x as above, then for any nonempty subset C of G E(`)

stable under conjugation the probability that Frobp lies in C is

(1+ o(1))
#C
#G

,

where the implied constant in o(1) is effective.

Proof. Applying Proposition 4.5 with n = ` yields log dL = O(`4 log ` log(`NE)),
where the implied constant is effective and depends only on K . We then apply the
last part of Proposition 4.1 to get the first lower bound on x . The second bound on
x follows immediately, and the last statement follows from the upper and lower
bounds on πC(x) given by Proposition 4.5 (we just need P to grow strictly faster
than x).

REMARK 4.8. Analogous results that do not depend on the GRH are known
(see, e.g., [38, 39]), but the bounds are typically polynomial in the absolute
discriminant dL , rather than its logarithm.

5. Algorithms and applications

All the fields k that we shall consider are either number fields K or finite
fields Fq of odd characteristic p; in both cases k is a finite extension of its prime
field k0 and can be explicitly represented as k0[α]/(F(α)) for some fixed monic
polynomial F ∈ Z[α] of degree [k : k0] whose image in k0[α] is irreducible. For
the purpose of explicit computation, we assume that elements of k are uniquely
represented as integer polynomials of degree less than [k : k0], with coefficients
in the interval [0, p − 1] in the case that k0 is the finite field Fp.

For number fields K = Q[α]/(F(α)), we assume that the polynomial F is fixed
in advance, and that elliptic curves E/K are specified by an integral Weierstrass
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equation y2 = f (x), where f ∈ Z[α][x] is a cubic polynomial whose coefficients
in Z[α] represent elements of K as described above. For each prime p of K/Q
that does not divide disc(F), we may represent the residue field Fp of p as
Fp[α]/(G(α)), where p = p ∩ Z and G divides the image of F in Fp[α]; such
a G can be efficiently obtained by factoring F over Fp (indeed, this is how the
p | p are typically determined; see [17, Section 4.8.2], for example). If p is a
prime of good reduction for E , we may compute Ep := E (mod p) by reducing
the Z[α]-coefficients of f (x) modulo (p,G(α)) to obtain elements of Fp.

REMARK 5.1. We do not assume OK = Z[α] (which is possible only when OK

is monogenic), so disc(F) may be divisible by primes that do not divide disc(K ).
Such primes p are finite in number and there is no harm in ignoring them for the
purpose of computing G E(`). More generally, as we are only interested in primes
p of bounded norm, there is no loss of generality in assuming that N (p) = p
is prime, so that we have deg G = 1 and Fp ' Fp; this accounts for all but a
negligible proportion of the primes p with N (p) 6 B for any sufficiently large
bound B. Doing so simplifies the practical implementation of our algorithms.

5.1. Computing Frobenius triples. Our strategy is to determine the signature
of G E(`) by computing the images of Frobenius elements Frobp under ρE,` for
primes p of good reduction for E that do not divide ` or disc(F) (such primes
are unramified in both K (E[`])/K and K/Q). This requires us to compute the
determinant, trace, and 1-eigenspace dimension of ρE,`(Frobp). If we put q :=
N (p), then for any prime ` not divisible by p, the Frobenius triple

(det ρE,`(Frobp), tr ρE,`(Frobp), dim1(ρE,`(Frobp)) (5.1)

of E/K at p is given by

(q mod `, trπEp mod `, log` #Ep[`](Fp)),

where trπEp := q + 1 − #Ep(Fp) is the trace of the Frobenius endomorphism
πEp of Ep. We can efficiently compute trπEp using Schoof’s algorithm [55, 56],
which runs in time (log q)5+o(1) (see [60, Corollary 11] for a sharp bound when q
is prime; up to factors of log log q , the nonprime case is the same). To compute
#Ep[`](Fp) we rely on Miller’s algorithm [49] for computing the Weil pairing.
Recall that for an elliptic curve E over any field k any prime ` 6= char(k), the
Weil pairing

ω` : E[`] × E[`] → µ`

is a nondegenerate alternating bilinear pairing. For P, Q ∈ E[`] ' Z(`) × Z(`)
we have E[`] = 〈P, Q〉 if and only if ω`(P, Q) 6= 1. In [49], Miller gives an
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efficient algorithm to compute ω`; when k = Fq is a finite field and P, Q lie in
E(Fq) it runs in time (log q)3+o(1).

We now give a Las Vegas algorithm to compute Frobenius triples for a set S of
primes ` for a given reduction Ep of E/K at an unramified prime p of norm q .
The algorithm can be applied to any elliptic curve over a finite field, but in order
to keep the context clear we denote the curve Ep/Fp, since we have in mind a
reduction of our fixed elliptic curve E/K .

ALGORITHM 4. Given an elliptic curve Ep over a finite field Fp of characteristic
p and cardinality q , and a finite set S of primes ` 6= p, compute the set of triples
T = {(`, q mod `, trπE mod `, log` #Ep[`](Fp)) : ` ∈ S} as follows:

1. Use Schoof’s algorithm to compute t = q + 1 − #Ep(Fp) and put N :=
q + 1− t .

2. Initialize T to { } and for each prime ` ∈ S:

a. Put e := v`(N ).
b. If e = 0 then add (`, q mod `, t mod `, 0) to T and proceed to the next

prime ` ∈ S.
c. If e = 1 or q 6≡ 1 (mod `) then add (`, q mod `, t mod `, 1) to T and

proceed to the next prime ` ∈ S.
d. Repeat the following:

i. Generate random points P1, P2 ∈ Ep(Fp) and compute Q1 :=
(N/`e)P1 and Q2 := (N/`e)P2.

ii. For i = 1, 2, determine the least ei ∈ [0, e] such that `ei Qi = 0.
iii. If max(e1, e2) = e then add (`, q mod `, t mod `, 1) to T and

proceed to the next prime ` ∈ S.
iv. Use Miller’s algorithm to compute ζ := ω`(`e1−1 Q1, `

e2−1 Q2).
v. If ζ 6= 1 then add (`, q mod `, t mod `, 2) to T and proceed to the

next prime ` ∈ S.

3. Output T and terminate.

Steps 2.b and 2.c of the algorithm allow us to quickly treat cases where we
can immediately determine the `-rank r := log` #Ep[`](Fp): if ` does not divide
N = #Ep(Fp) (so e = 0), then clearly r = 0; if ` divides N then r > 1, and we
can have r > 1 only if `2 divides #Ep(Fp) (so e > 1) and q ≡ 1 (mod `).

PROPOSITION 5.2. The expected running time of Algorithm 4 is

O
(
(log q)5+o(1) + #S · (log q)3+o(1)).
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Proof. As noted above, the complexity of step 1 is bounded by (log q)5+o(1).
Generating uniformly random nontrivial points P ∈ Ep(Fp) in step 2.d.i can be
accomplished by repeatedly choosing uniformly random x0 ∈ Fp and attempting
to find a root y0 of y2 − f (x0) ∈ Fp[y]; to obtain a uniform distribution over
Ep(Fp)− {0} one picks the sign of y0 at random and discards points with y0 = 0
with probability 1/2. The expected time per random point (x0, y0) is (log q)1+o(1),
which matches the cost of step 2.d.ii. The time for step 2.d.iv is (log q)3+o(1), and
this dominates the total cost of step 2.d, which we expect to execute less than
twice, on average, for each ` ∈ S. If Ep(Fp)[`] has order `, then with probability
at least 1− 1/`2 one of Q1 or Q2 will be a generator and the algorithm will then
proceed to the next ` ∈ S in step 2.d.iii; otherwise we have Ep[`] ⊆ Ep(Fp),
and with probability at least 1 − 1/` the points Q1 and Q2 generate Ep[`] and
the algorithm proceeds to the next ` ∈ S in step 2.d.v. The expected time for
step 2.d is thus (log q)3+o(1) for each prime `, and the total time for step 2 is
#S · (log q)3+o(1).

REMARK 5.3. By using the Schoof–Elkies–Atkin (SEA) algorithm in step 2 of
Algorithm 4, under the GRH one obtains a tighter bound on its average running
time for reductions of a fixed elliptic curve E/K modulo primes p of K with norm
contained in any dyadic interval [x, 2x]. An extension of [60, Corollary 3] yields
an average expected time of

O
(
(log x)4+o(1) + #S · (log x)3+o(1))

per prime. This also applies if we restrict to degree-1 primes, or to primes in an
arithmetic progression with a sufficiently small modulus.

5.2. Computing Frobenius conjugacy classes. We now give an
asymptotically slower algorithm that instead of computing Frobenius triples
for a given set of primes computes a single integer matrix

Ap :=
(
(ap + bpδp)/2 bp

bp(∆p − δp)/4 (ap − bpδp)/2

)
∈M2(Z)

whose reduction modulo m lies in the conjugacy class ρE,m(Frobp) for all integers
m > 1 prime to p (including all primes ` not divisible by p). The quantities ap, bp,

∆p, δp appearing in Ap are defined as follows. Let Rp be the subring of End(Ep)

generated by πEp ; if πEp ∈ Z then Rp = Z and otherwise Rp is an order in an
imaginary quadratic field. We then define the quantities

∆p := disc(Rp), δp := 0, 1 as ∆p ≡ 0, 1 (mod 4),

ap := trπEp, bp :=
√
(a2

p − 4N (p))/∆p.
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Note that bp = 0 if Rp = Z (and in this case Ap is a scalar matrix), otherwise bp

is the index of Z[πEp] in Rp. In either case, we always have

4N (p) = a2
p − b2

p∆p,

with tr Ap = ap and det Ap = N (p) 6= 0.

THEOREM 5.4 (Duke–Tóth). Let E be an elliptic curve over a number field K
and let p be a prime of good reduction for E. For any integer m for which p 6 | m is
unramified in K (E[m]) the reduction of Ap modulo m lies in the conjugacy class
of ρE,m(Frobp) in GL2(m).

Proof. See [25, Theorem 2.1].

When Ep is supersingular, the matrix Ap is determined by N (p) and ap.
This follows from the fact that in this case End(Ep) is a maximal order in the
quaternion algebra End(E)⊗Q, by [22], hence either Rp = Z or Rp is the maximal
order of Q(

√−p), where p | p. In the former case bp = 0 and in the latter case
∆p = disc(Q(

√−p)) and bp = (a2
p − 4N (p))/∆p.

To treat the ordinary case, we rely on the algorithm in [8], which gives a GRH-
based Las Vegas algorithm to compute the index up of End(Ep) in the maximal
order of the imaginary quadratic field End(Ep)⊗Q with expected running time

L(N (p))1+o(1),

where
L(x) := exp

√
log x log log x .

The first step of this algorithm is to compute ap via Schoof’s algorithm and factor
a2
p−4N (p) in order to determine the discriminant D := disc(Q((a2

p−4N (p))1/2).
Once the index up has been determined we compute bp = (a2

p − 4N (p))/(u2
pD).

This yields the following theorem.

THEOREM 5.5. Let E be an elliptic curve over a number field K and let p be a
prime of good reduction for E. Under the GRH there is a Las Vegas algorithm to
compute Ap in L(N (p))1+o(1) expected time.

REMARK 5.6. An exponential-time algorithm for computing Ap using Hilbert
class polynomials HD whose discriminants D divide a2

p− 4N (p) is given in [15];
the running time is not explicitly analyzed in [15], but we note that there are
several algorithms to compute Hilbert class polynomials whose running times
are quasilinear in |D|, which is close to the bit-size of HD [7]. The fastest of
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these relies on the GRH [64], but the algorithm in [27] does not, and as noted
in [62, Remark 1.1], the heuristics used in [27] can be removed. This gives an
unconditional deterministic algorithm to compute Ap in time N (p)1+o(1), but this
is too slow to be useful to us here (and we require the GRH in any case).

In terms of its complexity in q = N (p), the subexponential-time algorithm to
compute Ap is much slower than Algorithm 4, which computes the Frobenius
triples (det Ap mod `, tr Ap mod `, dim1(Ap mod `)) for primes ` ∈ S in time
polynomial in log q . However, when S is large (say on the order of (log NE)

1+o(1))
and q is relatively small (say log q is polynomial in log NE ), the running times are
essentially the same, and computing Ap gives us more information; in particular,
it allows us to distinguish the conjugacy classes of

(
x 0
0 x

)
and

(
x 1
0 x

)
in GL2(`) even

when x 6= 1, which is not possible with just the Frobenius triple. We shall make
use of this in Section 5.4.

5.3. A Las Vegas algorithm. We now give a Las Vegas algorithm to compute
G E(`) up to local conjugacy for all primes ` up to a given bound L by computing
images of Frobenius elements Frobp with N (p) up to a given bound P . Using
the GRH-based bounds of Section 4 to determine L and P yields an algorithm
whose expected running time is polynomial in log ‖ f ‖, where y2 = f (x) is an
integral defining equation for E/K with f ∈ Z[α][x] and ‖ f ‖ is the maximum
of the absolute values of the norms of the Z[α]-coefficients of f (which may
also be defined in terms of the integer coefficients of f and disc(F), where K =
Q[α]/(F(α))).

ALGORITHM 5. Given an elliptic curve E : y2 = f (x) over K = Q[α]/(F(α))
with integral coefficients and bounds L and P , compute for each prime ` 6 L a
group G` ⊆ GL2(`) that is locally conjugate to a subgroup of G E(`) and contains
a representative of ρE,`(Frobp) for all primes p of K prime to ` disc(F) and of
good reduction for E with N (p) 6 P as follows:

1. Let S be the set of primes ` 6 L , and for each ` ∈ S initialize the quantities
s`← {}, c`← 0, z`← 0.

2. Compute the norm ∆E ∈ Z of the discriminant of E and the discriminant
dF ∈ Z of the polynomial F .

3. For each rational prime p 6 P that does not divide ∆E or dF :

a. Factor F(α) mod p into irreducible G1(α), . . . ,Gr (α) ∈ Fp[α].
b. For each G i with deg G i 6 log P/ log p:
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i. Use Algorithm 4 to compute the Frobenius triples

τ`,p :=
(
det ρE,`(Frobp), tr ρE,`(Frobp), dim1 ρE,`(Frobp)

)
for the prime p of K with residue field Fp[α]/G i(α) and each
prime ` ∈ S − {p}.

ii. For each prime ` ∈ S−{p} update s`← s`∪{τ`,p} and c`← c`+1.
iii. If tr ρE,`(Frobp) = 0 then update z`← z` + 1.

4. For each prime ` ∈ S, use Algorithm 3 to construct generators for a subgroup
G` of GL2(`) with sig(G`) = s` and |z(G`)− z`/c`| < 1/8 (if Algorithm 3
fails, report that P is too small and terminate).

5. Output the groups G` (specified by generators) and terminate.

Failure in step 4 can conceivably occur if s` and z`/c` do not actually
correspond to a subgroup of GL2(`), in which case the input to Algorithm 3 is
invalid and this may cause it to fail (an event that can be easily detected), even
though it is guaranteed to operate correctly on all valid inputs. This could happen
if P is too small for every conjugacy class in G E(`) to be realized as the image
of Frobp with N (p) 6 P . The bounds in Section 4 allow us to choose P so that
such a failure would disprove the GRH.

THEOREM 5.7. Assume the GRH and let K = Q[α]/(F(α)) be a fixed number
field. There is a Las Vegas algorithm that, given an elliptic curve E/K in integral
form y2 = f (x) with f ∈ Z[α][x] that does not have complex multiplication,
determines for every prime ` a subgroup G` ⊆ GL2(`) locally conjugate to
G E(`). The algorithm outputs a bound L for which G E(`) = GL2(`) for all
primes ` > L, and a list of generators for G` for each prime ` 6 L. The expected
running time of the algorithm is bounded by

(log ‖ f ‖)11+o(1).

Proof. Under the GRH, Proposition 4.3 guarantees that we have G E(`) = GL2(`)

for all primes ` larger than cK (log NE)(log log NE)
3, where the constant cK is

effective and NE is the absolute value of the norm of the conductor of E . By
Ogg’s formula [50], NE is bounded by the norm of the discriminant of E , which
can be expressed as a polynomial of bounded degree in terms of the coefficients
of f . It follows that log NE = O(log ‖ f ‖), where the implied constant is effective
and depends only on K . We may thus take L = (log ‖ f ‖)1+o(1) as a bound on the
primes ` that we need to consider.

Since K is fixed, we have deg F = O(1) and log q = O(log p), and all the
integers and finite field elements that arise in the algorithm have O(log p) bits.
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Using fast arithmetic, we can assume the cost of each arithmetic operation
in Z, Fp, Fp is (log p)1+o(1); see [32], for example. Using the Cantor–
Zassenhaus algorithm [14], step 3a takes O((log p)2+o(1)) expected time, by
[32, Theorem 14.14], and the time to reduce E to Ep is (log ‖ f ‖)1+o(1). The time
for step 3b is O((log p)5+o(1)); this follows from [60, Corollary 11], which also
applies to the constant degree extension Fp/Fp.

For the bound P , Corollary 4.7 implies that we can take P = (log ‖ f ‖)10+o(1),
where the implied constants are again effective. Note that by Lemma 3.29, we
only need to determine z(G(E)) to within ε < 1/8. The running time of step 3 of
Algorithm 5 is then bounded by

(log ‖ f ‖)10+o(1)((log ‖ f ‖)1+o(1) + (log P)5+o(1)) = (log ‖ f ‖)11+o(1),

which dominates the cost of the other steps, including the time to determine the
primes ` 6 L and p 6 P .

5.4. A Monte Carlo algorithm. We now give a more efficient Monte Carlo
algorithm to solve the same problem. Although it has a negligible impact on the
worst-case asymptotic complexity that we can prove under the GRH, for practical
purposes it is better to split the problem into two stages: (1) determine the primes `
for which G E(`) 6= GL2(`), and (2) compute G E(`) up to local conjugacy for
each of these primes. If one assumes that Serre’s question has an affirmative
answer, meaning that the largest ` for which G E(`) 6= GL2(`) is bounded by a
constant depending only on K , then the exceptional primes ` are bounded by O(1)
for any fixed K , but we do not want the correctness of the algorithm to depend
on this, so we will typically consider many more primes ` in stage (1) (up to the
GRH bound given by Corollary 4.3) than in stage (2). The key difference is that if
G E(`) = GL2(`), we can unequivocally determine this after computing the image
of just O(1) random Frobenius elements, whereas computing G E(`) ( GL2(`)

up to local conjugacy requires us to compute the image of O(`) random Frobenius
elements in the worst case.

PROPOSITION 5.8. Let ` > 7 be prime. A subgroup G of GL2(F`) contains
SL2(F`) if and only if it contains elements g1, g2, g3 with nonzero trace such that

(1) χ(g1) = +1;

(2) χ(g2) = −1;

(3) u(g3) 6∈ {1, 2, 4} and u(g3)
2 − 3u(g3) + 1 6= 0 (equiv., ge

3 6∈ Z(`) for
e 6 5);

where χ(g) = ( tr(g)2−4 det(g)
`

) ∈ {0,±1} and u(g) = tr(g)2/ det(g) ∈ F`.
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Proof. The reverse implication appears in [58, Proposition 19] and follows
from Proposition 3.1; (1) and (2) together imply that no conjugate of G lies
in C+s (`),C+ns(`), or B(`), and (3) rules out the exceptional cases. Conversely,
for ` > 7 there exist g1, g2, g3 ∈ SL2(F`) satisfying conditions (1), (2), (3),
respectively.

Up to constant factors the following proposition is implied by [37, Theorem
5.1] (and its proof), but here we give a slightly more precise statement.

PROPOSITION 5.9. Let ` > 7 be prime and let G be subgroup of GL2(F`)
containing SL2(F`). Let X1, X2, . . . be a sequence of independent random
variables uniformly distributed over G. Let X be the integer random variable
for which the event X = r occurs if r is the least integer for which {X1, . . . , Xr }
include g1, g2, g3 of nonzero trace that satisfy the three criteria of Proposition 5.8.
The expected value E[X ] of X satisfies E[X ] < 8, and E[X ] → 3 as `→∞.

Proof. We consider the waiting times for each of the conditions (1) to (3) in
Proposition 5.8 to be satisfied. From Table 1, we see that SL2(F`) contains
(` − 1)(`2 + `)/2 elements g1 for which χ(g1) = +1, of which at most `2 + `
have trace zero. The same is true of every coset of SL2(F`) in G; applying
#SL2(F`) = `3 − ` yields

#{g ∈ G : χ(g) = 1, tr(g) 6= 0}
#G

>
`− 3
2`− 2

−→ 1
2

as `→∞,

and we note that the LHS is never less than 2/5 for ` > 11. A similar argument
shows that

#{g ∈ G : χ(g) = −1, tr(g) 6= 0}
#G

>
`− 3
2`+ 2

−→ 1
2

as `→∞,

and the LHS is at least 1/3 for ` > 11. The events represented by these ratios are
disjoint, so with probability approaching 1 as `→∞, one of them occurs for X1,
and the expected waiting time for both to occur approaches 3 as `→∞.

The images of Cs(`) ∩ SL2(F`) and Cns(`) ∩ SL2(F`) in PSL2(F`) are cyclic
groups of order (` − 1)/2 and (` + 1)/2, respectively, and the same applies to
their conjugates. In each of these groups there are only 10 elements of order at
most 5, hence these occur with probability approaching 0 as `→∞. Switching
to a coset of SL2(F`) and considering images in PGL2(F`) can only decrease
the probability of getting an element of order at most 5. On the other hand, every
g ∈ G with χ(g) = ±1 lies in a conjugate of Cs(`) or Cns(`), and we have already
noted that the probability that X1 is such an element approaches 1 as ` → ∞.
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Thus with probability approaching 1 as `→ ∞, condition (3) is satisfied by X1

and this implies E[X ] → 3.
A direct calculation shows that for ` > 7 the probability that X1 satisfies both

conditions (2) and (3) is never less than 1/6, and since (1) and (2) are disjoint, the
expected waiting time for either (1) or both (2) and (3) to be satisfied is bounded
by 30/17 < 2, and this implies E[X ] < 2+ 6 = 8.

For ` 6 7 we rely on the following proposition.

PROPOSITION 5.10. Let G be a subgroup of GL2(`). For ` = 2 the group G
contains SL2(2) if and only if it contains g1, g2 with tr(g1) = 1 and dim1(g2) = 1.
For ` > 2 the group G contains SL2(`) if and only if it contains g1, g2 with
χ(g1) = −1, χ(g2) = 0 and dim1(g2) = 1.

Proof. The case ` = 2 is easily checked, so we assume ` > 2. For the ‘if’
direction, we note that the criteria for g1 ensure that G is not contained in a
Borel group or in the normalizer of a split Cartan. For ` > 5 the fact that g2 has
projective order divisible by ` rules out exceptional subgroups, and for ` = 3, 5
every exceptional subgroup containing an element of order ` also contains SL2(`).
For the ‘only if’ direction, we note that SL2(`) ∩ Cns(`) has order ` + 1 and
thus contains a nonscalar element g1 with χ(g1) = −1, and SL2(`) ∩ B(`) has
order divisible by ` and contains a nonscalar element g2 with χ(g2) = 0 and
dim1(g2) = 1.

If one defines the integer random variable X as in Proposition 5.9 using the
criterion that {X1, . . . , Xr } contains g1, g2 as in Proposition 5.10, it is easy to
show that E[X ] < `+ 2. In particular, E[X ] < 9 for ` 6 7.

With these results in hand we now give a Monte Carlo algorithm for
determining the set of primes ` for which G E(`) does not contain SL2(`).
Note that when G E(`) contains SL2(`) we can determine G E(`) exactly by
computing the intersection of K with the cyclotomic field Q(ζ`), a computation
that does not depend on E and takes negligible time for any fixed number field K .

ALGORITHM 6. Given an elliptic curve E : y2 = f (x) over K = Q[α]/(F(α))
with integral coefficients and bounds P > L > 5, attempt to determine the set of
primes ` 6 L for which SL2(`) 6⊆ G E(`) as follows:

1. Initialize S← {` 6 L prime} and create a table T with Boolean entries T`,1,,
T`,2, T`,3 set to 0 for each ` ∈ S, then set T`,3 ← 1 for ` 6 7.

2. Compute the norm ∆E ∈ Z of the discriminant of E and the discriminant
dF ∈ Z of the polynomial F .
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3. Repeat the following 27d1+ log3 Me times, where M = #{` 6 L prime}:
a. Pick a random prime p ∈ [P, 2P] that does not divide ∆E or dF and a

random prime p of K lying above p and use Algorithm 4 to compute
Frobenius triples

τ`,p := (det ρE,`(Frobp), tr ρE,`(Frobp), dim1 ρE,`(Frobp))

for each prime ` ∈ S.

b. For each prime ` ∈ S, set T`,i ← 1 if τ`,p matches the conjugacy class
of some gi ∈ GL2(`) satisfying (i) of Proposition 5.8 (for ` > 7) or
Proposition 5.10 (for ` 6 7); if T`,1, T`,2, T`,3 = 1, remove ` from S.

4. Output the set S and terminate.

REMARK 5.11. As written, this is not (strictly speaking) a Monte Carlo
algorithm, since it uses Algorithm 4, which is a Las Vegas algorithm (meaning
that is running time is potentially unbounded, even though its expected running
is bounded by Proposition 5.2). This distinction has no practical relevance,
but for the sake of staying consistent with our terminology, let us assume that
Algorithm 6 automatically terminates Algorithm 4 if its actual running time
exceeds its expected running time by an unreasonable factor, and terminates with
failure in this case. Doing so decreases the probability of success only negligibly
and we can easily keep it above 2/3.

THEOREM 5.12. Assume the GRH and let K = Q[α]/(F(α)) be a fixed number
field. There is a Monte Carlo algorithm with one-sided error that, given a non-
CM elliptic curve E/K in integral form y2 = f (x) with f ∈ Z[α][x], determines
the set SE of primes ` for which G E(`) does not contain SL2(`) with probability
greater than 2/3. The running time of the algorithm is bounded by

(log ‖ f ‖)1+o(1),

and the set S it outputs always contains SE .

Proof. We use Algorithm 6 with the modification indicated in Remark 5.11.
Under the GRH we may take L = (log ‖ f ‖)1+o(1), by Proposition 4.3, and we
may choose P so that log P = O(log L). It is clear from Propositions 5.8 and 5.10
that the set S output by Algorithm 6 always contains SE . Each call to Algorithm 4
in step 3a then takes O((log ‖ f ‖)1+o(1)) time, and these calls dominate the total
running time. After 27 iterations in step 3, for each prime ` 6 L not in SE , the
probability that ` remains in S is less than 1/3 (this follows from Proposition 5.9
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and the remark following Proposition 5.10, since we always have E[X ] < 9).
After all 27d1 + log3 Me iterations, this probability is less than 1/(3M), and a
union bound shows that the probability that any prime ` 6 L not in SE (of which
there at most M) remains in S is less than 1/3.

REMARK 5.13. To amplify the success probability of Algorithm 6 we run it
repeatedly and take the intersection of all the sets S output by the algorithm as
our final result.

We now give a Monte Carlo algorithm to compute G E(`) up to local conjugacy
for a given set of primes `. Rather than attempting to compute the full signature
s of each G E(`), we rely on the fact that s can be compactly represented by a
subset s containing at most 11 triples, as explained in Section 3.6. Since we are
sampling elements of s randomly, we have no way of knowing a priori whether
a given triple necessarily belongs to s. Instead, we dynamically construct an
approximation to s that we update whenever we find a triple that does belong to
the minimal signature compatible with our current approximation; for example,
whenever we find a triple whose projective order exceeds m(s) = max{|π(g)| :
g ∈ G E(`)} or does not divide λ(s) = lcm{|π(g)| : g ∈ G E(`)}. When doing
so we simultaneously remove any triples that are no longer necessary. Depending
on the order in which we find elements, it may happen that the cardinality of our
approximation to s temporarily exceeds 11, but its cardinality is always bounded
by O(log `) and will eventually be no greater than 11.

ALGORITHM 7. Given an elliptic curve E : y2 = f (x) over K = Q[α]/(F(α))
with integral coefficients, a bound P , and a nonempty set S of primes less than P ,
attempt to compute G E(`) up to local conjugacy for each prime ` ∈ S as follows:

1. Initialize variables s`← {}, c` = 0, z`← 0 for each ` ∈ S.

2. Compute the norm ∆E ∈ Z of the discriminant of E and the discriminant
dF ∈ Z of the polynomial F .

3. Repeat the following 9 max(S)d1+ log #Se times:

a. Pick a random prime p ∈ [P, 2P] that does not divide ∆E or dF ,
a random prime p of K above p, and compute the matrix Ap as in
Theorem 5.5.

b. For each prime ` ∈ S dividing (tr Ap)
2−4N (p), determine whether the

order of Ap (mod `) is divisible by ` and if so, add the triple (1, 2, 1)
to s`.

4. Repeat the following 9d60+ 2d1+ log log(1+max(S))ed1+ log #Se times:
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a. Pick a random prime p ∈ [P, 2P] not in S, a random prime p of K
above p, and compute the integer matrix Ap as in Theorem 5.5.

b. For each prime ` ∈ S:

i. Compute A = Ap (mod `) ∈ GL2(`), set A← A`, and update s`
to reflect the triple (det A, tr A, dim1 A).

ii. Increment c`, and if tr A = 0 then increment z`.
iii. Set A ← A|π(A)| and update s` to reflect the triple (det A, tr A,

dim1 A).

5. If the cardinality of any of the sets s` exceeds 11, return to step 3.

6. For each prime ` ∈ S, use Algorithm 3 to construct generators for a subgroup
G` of GL2(`) for which s := sig(G`) satisfies s = s` and |z(G`)− z`/c`| <
1/8 (if this fails for any reason, return to step 2).

7. Output the groups G` (specified by generators) and terminate.

REMARK 5.14. The constants in steps 3 and 4 are larger than necessary, and for
practical implementation we note that steps 3 and 4 can be combined; we have
written the algorithm this way in order to simplify the complexity analysis below.
We also assume that Algorithm 7 is modified as in Remark 5.11 to terminate the
Las Vegas algorithm used to compute Ap if its running time exceeds its expected
running time by an unreasonable factor; this ensures that the running time of
Algorithm 7 is bounded.

THEOREM 5.15. Assume the GRH. Let K = Q[α]/(F(α)) be a fixed number
field, let E/K be an elliptic curve in integral form y2 = f (x) with f ∈ Z[α][x],
let S be a set of primes ` 6 L that contains SE , with L = (log NE)

1+o(1) as in
Proposition 4.3, and let P = (log NE)

10+o(1) be as in Corollary 4.7. Given inputs
E, P, and S, Algorithm 7 correctly determines G E(`) up to local conjugacy for
all ` ∈ SE with probability greater than 2/3, and its running time is bounded by

(log ‖ f ‖)1+o(1).

Proof. As argued in the proof of Theorem 5.7, we have log NE = O(log ‖ f ‖),
and this implies log P = O(log log ‖ f ‖). It follows from Theorem 5.5 that
the time to compute Ap for any prime p with N (p) ∈ [P, 2P] is bounded by
(log ‖ f ‖)o(1). The number of primes dividing (tr Ap)

2 − 4N (p) is bounded by
log P = O(log log ‖ f ‖), and it follows that the total time for step 3 is bounded
by O((log ‖ f ‖)1+o(1)), and this also applies to step 4. The cost of updating s`
is negligible because the cardinality of s` is bounded by a constant factor of
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log ` 6 log P = (log log ‖ f ‖), and computing A` can be accomplished in time
O(M(log `) log `), which is also polynomial in log log ‖ f ‖. The time for the
check in step 5 is quasilinear in #S = O((log ‖ f ‖)1+o(1)), the time for step 6 is
bounded by O(#S(log P)1+o(1)) = O((log ‖ f ‖)1+o(1)), by Proposition 3.22, and
this also bounds the time for step 7. This addresses the bound on the running time
of Algorithm 7, it remains only to show that its output is correct with probability
greater than 2/3.

Let ` ∈ S be a prime greater than 5 for which G E(`) has order divisible by `.
The proportion of elements of G E(`) of order divisible by ` is at least 1/`, since
G E(`) does not contain SL2(`) and must therefore either lie in a Borel group or
be an exceptional group whose image in PGL2(`) has order divisible by ` = 3, 5
(the claim holds in either case). After 3 max S iterations of step 3 the probability
that (1, 2, 1) 6∈ s` is less than 1/10, and after 9 max Sd1 + log #Se iterations the
probability that (1, 2, 1) 6∈ s` for any ` ∈ S for which G E(`) has order divisible
by ` is less than 1/10.

The fact that step 4.b.iii is executed at least 18d1 + log #Se times ensures that
the probability that for some ` ∈ S the set s` does not contain the triple of a
generator for the scalar subgroup of G E(`) is very small, say less than 1/1000.
The same comment applies to the probability that s` does not contain a triple
whose determinant generates det(G E(`)) for some ` ∈ S.

For each ` ∈ S, after 3 ·60 · d1+ log #Se iterations of step 4 the probability that
we have not encountered representative A in step 4.b.i for the projective image of
every element of G E(`) in the case that G(`) is an exceptional subgroup is less
than 1/10, and after the completion of step 4 the probability that this is true for any
` ∈ S is less than 1/10. Similarly, for each ` ∈ S, after 6d1+log log(1+max(S))e
iterations of step 4 the probability that we have not encountered an A in step 4.b.i
that has maximal projective order in the image of G E(`) under the `-power map
is less than 1/10, and after the completion of step 4 the probability that this is true
for any ` ∈ S is less than 1/10.

In addition, after the completion of step 4 the probability that for some ` ∈ S
for which G E(`) has dihedral projective image the set s` does not contain the
signature of some h ∈ G E(`) whose projective image is not contained in the
subgroup generated by some g ∈ G E(`) of maximal projective order whose
signature lies in s` is negligible, say less than 1/1000. Finally, we note that the
probability that |z(G E(`)) − z`/c`| > 1/8 for any ` ∈ S after the completion of
step 3 is also negligible, say less than 1/1000.

Taking a union bound, it follows that the probability that at the end of step 3
any of the sets s` does not satisfy all the criteria listed in Section 3.6 for a suitable
representative subset of s = sig(G E(`)) is less than 0.304 < 1/3, and this also
bounds the probability that any s` has cardinality greater than 11. Thus we expect
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to return to step 4 in step 5 just O(1) times, and when we reach step 6 we will
compute subgroups G` that are locally conjugate to G E(`) for all ` ∈ S with
probability greater than 2/3.

Unlike the Las Vegas algorithm given in Section 5.3, our Monte Carlo
algorithm explicitly relies on the use of a compact representation s` of the
signature of G E(`) that contains only a bounded number of triples (at most 11, as
noted in Section 3.6), and on the fact that we can compute Ap in subexponential
time; both are crucial to obtaining a quasilinear running time.

5.5. Distinguishing locally conjugate subgroups. As written, our algorithms
cannot distinguish nonconjugate subgroups G and G ′ of GL2(`) that are locally
conjugate. However, as noted in Remark 3.7, up to conjugacy the only case
in which this can occur is when G and G ′ are of the form G = 〈H, t〉 and
G ′ = 〈H ′, t〉, where t = (

1 1
0 1

)
and H and H ′ are subgroups of the split Cartan

group Cs(`) that are conjugate via s = (0 1
1 0

)
(so H ′ is H with the diagonal entries

swapped). As proved in Theorem 3.32, if G = G E(`) for some elliptic curve
E/K , then G ′ = G E ′(`) for an elliptic curve E ′/K isogenous to E that we can
obtain by following a uniquely determined path of `-isogenies with E and E ′ as
endpoints. In most cases the curves E and E ′ are distinguished by the degrees of
the minimal extensions of K over which they acquire a rational point of order `. In
terms of the groups G := G E(`) and G ′ := G E ′(`), these are precisely the indices
d1(G) and d1(G ′) of the largest subgroups of G and G ′ that stabilize a nonzero
vector; these indices necessarily divide `− 1, and in most cases they are distinct.
In this section, we give a Monte Carlo algorithm to compute d1(G) that runs in
quasicubic time, using the fact that E admits a unique rational isogeny of degree `.

REMARK 5.16. Even when d1(G) = d1(G ′), after twisting E and E ′

appropriately (as described in Section 5.6), we may obtain a pair of elliptic
curves Ẽ and Ẽ ′ for which G̃ := G Ẽ(`) and G̃ ′ := G Ẽ ′(`) are again locally
conjugate, but with d1(G̃) 6= d1(G̃ ′). We are then able to distinguish G and G ′

by computing d1(G̃) and d1(G̃ ′). This technique allowed us to distinguish every
pair of locally conjugate groups that we encountered in our computations (see
Section 6), but we note that there are subgroups G and G ′ of GL2(`) to which
it cannot be applied (the smallest example with surjective determinants occurs
when ` = 29).

We begin with a general result that was mentioned in the introduction. Recall
that for each elliptic curve E : y2 = x3 + Ax + B and integer m there is a
square-free polynomial fE,m(x) with coefficients in Z[A, B] whose roots are
the x-coordinates x(P) of the nonzero points P ∈ E[m], called the m-division
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polynomial of E . For even integers m the factor x3 + Ax + B is typically
removed from fE,m(x), in which case its roots are the x-coordinates of the points
P ∈ E[m] − E[2]. More generally, one can remove the factor fE,m′(x) for each
maximal proper divisor m ′ of m. We refer to the resulting polynomial gE,m(x) as
the primitive m-division polynomial of E , which we note has the same splitting
field as fE,m(x); the roots of gE,m(x) are the x-coordinates of the points in E[m]
of order m. The polynomials fE,m and gE,m can be efficiently computed using
well-known recursive formulas [48].

LEMMA 5.17. Let E be an elliptic curve over a number field K , let m > 2 be
an integer, and let L be the splitting field of the m-division polynomial fE,m(x)
over K . If G E(m) contains −1 then K (E[m]) is a quadratic extension of L, and
otherwise K (E[m]) = L.

Proof. Note that ρE,m induces an isomorphism Gal(K (E[m])/K ) ' G E(m) by
restricting each σ ∈ Gal(K/K ) to K (E[m]) ⊆ K . Let {P, Q} be a basis for E[m]
as a Z/mZ-module and consider the subgroup H ⊆ G E(m) corresponding to the
inclusion of Galois groups

Gal(K (E[m])/L) ⊆ Gal(K (E[m])/K ).

For each σ ∈ H we have σ(P) ∈ E[m] and x(σ (P)) = x(P), and similarly for Q
and P+Q. This implies σ(P) = ±P , σ(Q) = ±Q, and σ(P)+σ(Q) = σ(P+
Q) = ±(P + Q), and therefore ρE,m(σ ) = ±1; so H ⊆ {±1}. If −1 ∈ G E(m)
then H = {±1}, since ρ−1

E,m(−1) fixes L , and otherwise H is trivial.

COROLLARY 5.18. Let E be an elliptic curve over a number field K , let m > 2
be an integer, let gE,m(x) be the primitive m-division polynomial of E, and let d
be the minimal degree of a factor of gE,m(x) in K [x]. If G E(m) contains −1 then
d1(G E(m)) = 2d.

Proof. We assume E : y2 = x3 + Ax + B is in short Weierstrass form. Let
P ∈ E[m] be a point of order m whose x-coordinate x(P) is a root of a minimal
degree factor of gE,m(x). Then [K (x(P)) : K ] = d , and [K (P) : K (x(P))] 6 2
since y(P)2 ∈ K (x(P)). If −1 ∈ G E(m) then [K (P) : K (x(P))] = 2, since
σρ−1

E,m fixes K (x(P)) but acts nontrivially on K (P) (indeed, σ(y(P))= y(−P)=
−y(P) 6= y(P) for m > 2).

EXAMPLE 5.19. The converse of Corollary 5.18 is false; the curve 14a3 gives a
counterexample with m = 3.

Locally conjugate subgroups of GL2(`) necessarily have the same scalar
subgroups, so having determined G E(`) up to local conjugacy, we know whether
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or not it contains −1. As noted above, we are specifically interested in the case
where G E(`) is a Borel subgroup (so E admits a rational isogeny of degree `).

In what follows, the degree of a point P ∈ E[m] is the degree of the extension
K (P)/K obtained by adjoining the coordinates of P to K ; equivalently, it is
the degree of the minimal extension L/K for which P ∈ E[m](L). In terms of
G E(m) ⊆ Aut(E[m]), the degree of P is the index of its stabilizer in G E(m). The
quantity d1(G E(m)) is simply the minimal degree of a point of order m.

LEMMA 5.20. Let E be an elliptic curve over a number field K that admits
a unique rational isogeny ϕ of prime degree `. The points in E[`] of degree
d1(G E(`)) all lie in the kernel of ϕ.

Proof. We may assume that G E(`) lies in the Borel group B(`) and contains
(

1 1
0 1

)
;

it cannot lie in the split Cartan Cs(`) because E admits only one rational isogeny
of degree ` (up to composition with an isomorphism). The kernel of ϕ consists
of the points P ∈ E[`] whose stabilizer in G E(`) contains

(
1 1
0 1

)
. The orbit of any

P ∈ kerϕ under the action of G E(`) has cardinality at most ` − 1, since kerϕ is
Galois stable and contains only `− 1 nonzero points; the stabilizer of P therefore
has index at most ` − 1, and it follows that d1(G) 6 ` − 1, since kerϕ contains
points of order `. The stabilizer of any P ∈ E[`] of degree less than `must contain(

1 1
0 1

)
, otherwise its index would be at least `, so every point of degree d1(G) is in

kerϕ.

For a rational isogeny ϕ of prime degree ` > 2, let hϕ ∈ K [x] denote the
kernel polynomial whose roots are the distinct x-coordinates x(P) of the points
P ∈ kerϕ ⊆ E[`]; it is a divisor of the `-division polynomial fE,`(x). The kernel
polynomials hϕ play a key role in Elkies’ improvement to Schoof’s algorithm
[26, 56]; the degree of hϕ(x) is just (`−1)/2, compared to (`2−1)/2 for fE,`(x).

COROLLARY 5.21. Let E be an elliptic curve over a number field K that admits a
unique rational isogeny ϕ of prime degree ` > 2, and let d be the minimal degree
appearing of a factor of hϕ(x) in K [x]. Then d1(G E(`)) ∈ {d, 2d}, and if G E(`)

contains −1 then d1(G E(`)) = 2d.

Proof. The kernel of ϕ has prime order `, hence it is generated by any nonzero
P ∈ kerϕ. By the previous lemma, these P all have degree d1(G E(`)); let us pick
one. The cyclic group 〈P〉 is invariant under the action of Gal(K (E[`])/K ), so
K (P)/K is a cyclic Galois extension, and it contains the splitting field of hϕ(x)
over K , which must be equal to K (x(P)), an extension of degree d . Thus

d1(G E(`)) = [K (P) :K ] = [K (P) :K (x(P))] · [K (x(P)) :K ]
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is either d or 2d , depending on whether y(P) lies in K (x(P)), or a quadratic
extension of K (x(P)). If G E(`) contains −1 then the latter must hold, by
Corollary 5.18.

The kernel polynomial hϕ(x) can be computed using Elkies’ algorithm (see
[29, Alg. 27]), which uses the classical modular polynomial Φ` ∈ Z[X, Y ] that is
a canonical model for the modular curve X0(`). Under the GRH the polynomial
Φ`(X, Y ) can be computed in `3+o(1) expected time [12]. By Proposition 4.3,
for elliptic curves E without complex multiplication, we may assume that ` is
bounded by (log ‖ f ‖)1+o(1), where y2 = f (x) is an integral equation for E/K .
This yields a reasonably efficient algorithm to compute hϕ(x), but factoring hϕ(x)
in K [x] may be much more time consuming; the complexity bounds in [40] for
factoring polynomial in OK [x] give a running time of (log ‖ f ‖)11+o(1).

We can do much better than this by instead working modulo random primes
p of K . As noted in the proof of Corollary 5.21, the Galois group Gal(L/K )
of the splitting field L of hϕ(x) over K is cyclic, and this implies that we can
compute the degree L/K by computing hϕ(x) modulo several random primes p
and factoring the result over Fp (and we can restrict to degree-1 primes p); taking
the least common multiple of the degrees of the factors will yield the degree of
L/K with high probability (by the Chebotarev density theorem). Under the GRH
it suffices to use p with log N (p) on the order of log ‖ f ‖1+o(1); with probability
greater than 1/2 just two primes p are already enough to determine [L :K ].

The algorithm in [67] gives an efficient method to directly compute instantiated
modular polynomials Φ`( j (E), Y ) modulo p, as well as instantiated derivatives
of Φ`(X, Y ) that are required by Elkies’ algorithm, allowing us to perform all our
computations in finite fields Fp. The expected time to compute the reduction of hϕ
in Fp[x] is then bounded by (log ‖ f ‖)3+o(1), which also bounds the expected time
to factor it in Fp[x] using probabilistic algorithms (see [32, Theorem 14.14]).

Having computed d = [L :K ], it remains only to determine whether d1(G E(`))

is equal to d or 2d . If −1 ∈ G E(`) then Corollary 5.21 immediately implies the
latter, and otherwise it suffices to determine whether the algebraic integer f (α) is
a square in OL , where α is a root of the monic polynomial hϕ(x); this computation
can be efficiently accomplished via Hensel lifting and is dominated by the time to
compute hϕ(x). The following proposition summarizes our discussion.

PROPOSITION 5.22. Let E : y2 = f (x) be a non-CM elliptic curve over a number
field, and suppose that E admits a unique rational isogeny of degree `. Under the
GRH there is a Monte Carlo algorithm to compute d1(G E(`)) whose running time
is bounded by (log ‖ f ‖)3+o(1).
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REMARK 5.23. We can easily determine ahead of time whether or not computing
d1(G E(`))will distinguish two locally conjugate possibilities G and G ′ for G E(`).
As noted above, we may assume that G and G ′ lie in the Borel group B(`) and are
thus upper triangular, in which case d1(G) can be computed as the least common
multiple of the orders in Z(`)× of the upper left entries of a set of generators
for G, which takes just (log `)1+o(1) time (and similarly for G ′).

5.6. Quadratic twists. Recall that if E/K is an elliptic curve and F is a
quadratic extension of K , an elliptic curve E ′/K whose base change to F is
isomorphic to that of E is a quadratic twist of E . Up to K -isomorphism, for
each quadratic extension F/K there is a unique elliptic curve E F that is not K -
isomorphic to E . Concretely, if E is defined by the equation y2 = f (x) and
F = K (

√
d), then dy2 = f (x) is an equation for E F ; we assume throughout this

section that E and E F are defined by equations of this form.
We wish to consider the relationship between the Galois images G E(`) and

G E F (`). For ` = 2 we always have G E(`) = G E F (`), since E[2] = E F [2], so
we assume ` > 2. Most of our results in fact apply to any integer m > 2, so we
will work in this generality. The m-torsion points of E and E F differ only in their
y-coordinates, thus the splitting fields of the m-division polynomials fE,m(x) and
fE F ,m(x) are identical; let L denote this field. It follows from Lemma 5.17 that
either the m-torsion fields K (E[m]) and K (E F [m]) are both quadratic extensions
of L (the generic case), one is equal to L and the other is a quadratic extension, or
both are equal to L . Which case occurs depends on whether both, one, or neither
of the groups G E(m) and G E F (m) contain −1.

LEMMA 5.24. Let E be an elliptic curve over a number field K , let F be a
quadratic extension of K , let m > 2 be an integer, and let L be the splitting field
of the m-division polynomial of E. Then −1 6∈ G E F (m) if and only if K (E[m]) is
the compositum of F and L.

Proof. Let F = K (
√

d), E : y2 = f (x), and E F : dy2 = f (x), and let ϕ denote
the isomorphism (x0, y0) 7→ (x0, y0/

√
d) between the base changes of E and E F

to F . We first suppose that K (E[m]) is the compositum of F and L and show
that −1 6∈ G E F (m). If F ⊆ L then K (E[m]) = L and the base changes of E and
E F to L are isomorphic, hence K (E F [m]) = L and G E F (m) does not contain
−1, by Lemma 5.17. If F 6⊆ L , then K (E[m]) = L(

√
d) and K (E F [m]) ⊆

L(
√

d), and we claim that in fact K (E F [m]) = L . Let σ be the nontrivial element
of Gal(L(

√
d)/L), corresponding to −1 ∈ G E(m). Then σ(

√
d) = −√d and

σ(y0) = −y0 for any nonzero P = (x0, y0) ∈ E[m]; it follows that σ fixes ϕ(P),
thus K (E F [m]) = L and −1 6∈ G E F (m).
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We now suppose that K (E[m]) is not the compositum of F and L and show that
−1 ∈ G E F (m). If F ⊆ L then K (E[m]) is a quadratic extension of L and the base
changes of E and E F to L are isomorphic; we cannot have K (E F [m]) = L , since
this would imply K (E[m]) = L . If F 6⊆ L then F 6⊆ K (E[m]) and we cannot
have K (E F [m]) = L , since this would imply

√
d and therefore F is contained in

K (E[m]). Thus in either case K (E F [m]) 6= L , and this implies −1 ∈ G E F (m),
by Lemma 5.17.

COROLLARY 5.25. Let E be an elliptic curve over a number field K , let F be a
quadratic extension of K , let m > 2 be an integer, let L be the splitting field of
the m-division polynomial of E, and let G := 〈G E(m),−1〉.
(a) If−1 ∈ G E(m) then G E F (m) is conjugate in GL2(m) to either G or an index

2 subgroup of G that does not contain −1; the latter occurs precisely when
F is a subfield of K (E[m]) not contained in L.

(b) If−1 6∈ G E(m) then G E F (m) is conjugate in GL2(m) to either G or an index
2 subgroup of G that does not contain −1; the latter occurs precisely when
F is a subfield of L.

Proof. Let F , E , E F , and ϕ be as in the previous lemma, and let us fix bases for
E[m] and E F [m] as Z/mZ-modules that are compatible with ϕ after base change.
As an element of GL2(m), the action of any σ ∈ Gal(K/K ) on E[`] and E F [`]
with respect to our chosen bases can differ only up to sign, thus we may assume
G E(m)/(G E(m) ∩ {±1}) = G E F (m)/(G E F (m) ∩ {±1}).

We first consider (a), with −1 ∈ G E(m). In this case K (E[m]) is a quadratic
extension of L , by Lemma 5.17. If K (E[m]) is not the compositum of F and
L , then G E F (m) contains −1 and K (E F [m]) is also a quadratic extension of
L (by the previous lemma), and therefore contains −1; we thus have G E F (m)
conjugate to G E(m) = G, and either F does not lie in K (E[m]) or it is contained
in L . If K (E[m]) is the compositum of F and L , then K (E[m]) = L(

√
d) and

the previous lemma implies that −1 6∈ G E F (m) and therefore K (E F [m]) = L .
The actions of Gal(L(

√
d)/K (

√
d)) on E[m] and Gal(L/K ) on E F [m] with

respect to our chosen bases commute with the isomorphism ϕ, and it follows that
G E F (m) is conjugate to the index 2 subgroup of G E(m) = G corresponding to
Gal(L(

√
d)/K (

√
d)) = Gal(K (E[m])/F), which does not contain −1, and this

occurs only when F is a subfield of K (E[m]) not contained in L .
We now consider (b), with −1 6∈ G E(m). in which case K (E[m] = L is a

subfield of K (E F [m]), by Lemma 5.17. If F 6⊆ L then K (E[m]) is not the
compositum of F and L and −1 ∈ G E F (m), by the previous lemma; by the
same argument used above, this implies that G E(m) is conjugate to an index 2
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subgroup of G E F (m), and we must have G E F (m) conjugate to G. If F ⊆ L then
K (E[m]) = L and−1 6∈ G E(m), and since K (E[m]) is the compositum of F and
L , we also have −1 6∈ G E F (m), by the previous lemma. So G E F (m) = G E(m)
is an index 2 subgroup of G not containing −1, and this occurs only when
F ⊆ L .

In case (b) of Corollary 5.25, when F is a subfield of L the `-torsion fields of E
and its twist E F coincide, but E[m] and E F [m] are typically not isomorphic as
Galois modules, and G E(m) and G E F (m) need not be conjugate (or even locally
conjugate) in GL2(m), as shown by the following example.

EXAMPLE 5.26. Let E/Q be the elliptic curve y2+ y = x3− x2−10x−20 with
Cremona label 11a1, which we may also write as y2 = x3− 13392x − 1080432.
Its quadratic twist by F = Q(

√
5) has Cremona label 275b2. The torsion field

Q(E[5]) can be written as Q[a]/(a4 − a3 + a2 − a + 1) and is equal to the
splitting field L of the 5-division polynomial of E . The field Q(E[5]) contains F ,
so Q(E F [5]) = Q(E[5]), and G E(`) and G E F (`) are both index 2 subgroups of
G = 〈G E(`),−1〉, but they are not conjugate. Indeed, one finds that G E(`) '〈(

1 0
0 2

)〉
and G E F (`) ' 〈(3 0

0 4

)〉 are nonconjugate cyclic groups of order 4. If we
instead twist E by a quadratic field F ′ not contained in L , say F ′ = Q(

√−3),
we obtain the elliptic curve with Cremona label 99d2 and find that G E F ′ (`) is
conjugate to both 〈±(1 0

0 2

)〉 and 〈±(3 0
0 4

)〉.
In the previous example, we obtained three nonconjugate subgroups of GL2(5)

as images of Galois representations arising in a family of quadratic twists of
single elliptic curve E . The following lemma shows that for m = ` prime, up
to conjugacy, three is maximal and can occur only when G E(`) lies in a Borel
group.

LEMMA 5.27. Let E be an elliptic curve over a number field K , let ` be a prime,
and let n be the number of nonconjugate subgroups of GL2(`) that arise as
G E F (`) for some quadratic twist E F of E. Then n 6 3; the case n = 3 can
occur only when G E(`) lies in a Borel group, and the case n = 2 can occur only
when G E(`) lies in either a Borel group or the normalizer of a Cartan group.

Proof. For ` = 2 we always have n = 1, so we assume that ` is odd and put
G := 〈G E(`),−1〉. It follows from Corollary 5.25 that n is at most one more than
the number of index 2 subgroups of G that do not contain−1. Thus if G E(`) = G
contains −1 and has no index 2 subgroups that do not contain −1, then n = 1;
this applies whenever G E(`) contains SL2(`) or has projective image isomorphic
to A4, S4, or A5 (by Lemma 3.21). By Proposition 3.1, we may now assume that
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G E(`) (and therefore G) is contained in either a Borel group or the normalizer of
Cartan group (possibly both).

Let us first suppose that the image of G in PGL2(`) is dihedral; then G is a
subgroup of the normalizer C+ of a Cartan group C . If G2 is an index 2 subgroup
of G that does not contain −1, then G2 also has dihedral image in PGL2(`). If
we put H := G ∩ C and H2 := G2 ∩ C and apply Lemma 3.13, we must be
in case (2a) of the lemma, since H2 does not contain −1, and H2 is an index 2
subgroup of H that is normal in C+. It follows from Corollaries 3.17 and 3.18
that H2 determines G2, and H has at most one index 2 subgroup that does not
contain −1 and is normal in C+, so there is at most one possible G2; thus n 6 2.

If G lies in a nonsplit Cartan group Cns then it has at most one index 2 subgroup,
since Cns is cyclic, and we again have n 6 2. Otherwise G lies in a Borel group
B, which we now assume. The group G and its index 2 subgroups are uniquely
determined by their intersections with the split Cartan group Cs contained in B;
these are abelian groups, each of which can be written as a product of at most two
cyclic groups. It follows that G ∩ Cs has at most three subgroups of index 2. If
it has three, then at least one of them must contain −1, since if H1 and H2 are
distinct index 2 subgroups of G∩Cs that do not contain−1 then 〈H1∩H2,−1〉 is
an index 2 subgroup that contains −1. Thus G has at most two index 2 subgroups
that do not contain −1, and we therefore have n 6 3.

REMARK 5.28. Lemma 5.27 does not apply to composite integers m. Indeed, for
m = 8 there may be as many as 20 nonconjugate G E F (m) that arise as F ranges
over quadratic extensions of K ; see [52] for examples.

For any subgroup G of GL2(`) we refer to 〈G,−1〉 and its index 2 subgroups
that do not contain −1 as twists of G (so G is always a twist of itself). If
G = G E(`) for some elliptic curve E/K then the twists of G are precisely the
subgroups that arise as G E F (`) for some quadratic twist E F (up to conjugacy in
GL2(`)). Quadratic twists E F that realize every possibility for G E F (`) can be
efficiently constructed using the results in this section. It suffices to determine
the quadratic fields that lie in K (E[`]) (of which there are at most 3), and to
determine which of these quadratic fields lies in the splitting field L of the `-
division polynomial of E . The discriminants of these quadratic fields must divide
the discriminant of K (E[`]), whose prime divisors include only ` and the primes
of bad reduction for E . Provided we can factor the discriminant of E , these fields
can be determined by simply testing candidate fields F with suitable discriminants
by computing G E F (`); in practice this is much faster than attempting to
explicitly compute the torsion field K (G E(`)) and the quadratic extensions F/K
it contains.
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REMARK 5.29. If G is locally conjugate to G ′, then each of its twists H is
locally conjugate to a corresponding twist H ′ of G ′. If G = G E(`) for some
elliptic curve E/K , then the twists of G and the twists of any locally conjugate
G ′ all arise as images of Galois representations of elliptic curves defined over
K . Thus the discovery of a subgroup G of GL2(`) that arises as G E(`) may lead
directly to as many as 5 other nonconjugate subgroups G ′ that arise as the image of
Galois representations of curves that are twists of either E or the elliptic curve E ′

isogenous to E given by Theorem 3.32.

EXAMPLE 5.30. Consider the elliptic curve E/Q with Cremona label 11a3,
which has G E(5) = 〈

(
1 0
0 2

)(
1 1
0 1

)〉. The group G E(5) has three twists, including
itself. The other two are 〈G E(5),−1〉 and its index two subgroup 〈(4 0

0 3

)(
1 1
0 1

)〉,
which can be obtained as Galois images by twisting E by Q(

√−3) and
Q(
√

5), which yields curves with Cremona labels 99d1 and 275b1, respectively.
The group G E(5) is locally conjugate to G E ′(`) = 〈

(
2 0
0 1

)(
1 1
0 1

)〉, where E ′ has
Cremona label 11a2. Twisting E ′ by Q(

√−3) and Q(
√

5) yields curves with
Cremona labels 99d3 and 275b3, respectively, whose Galois images realize the
corresponding twists of G E ′(`). The six subgroups of GL2(5) in this example are
nonconjugate and listed in Table 3 under the labels 5b.1.1, 5B.1.2, 5B.1.3,
5B.1.4, 5B.4.1, and 5B.4.2 (the curves listed in Table 3 for these groups
are not all the same as those in this example, some have smaller conductor).

6. Computational results

We implemented the algorithms described in Section 5 using the C
programming language (as noted earlier, Magma scripts implementing the
algorithms in Section 3 are available at [68]). For the computation of Frobenius
triples in Algorithm 4, at primes up to 240 we relied on the smalljac software
library [63] based on the algorithms described in [35], and for larger primes
we used the implementation of the SEA algorithm described in [67]. For the
computation of the matrices Ap described in Section 5.2 we used a modified
version of the algorithm in [9] that was optimized for smaller primes, using
techniques described in [64, Section 4] and [67].

As a key practical optimization, we precomputed tables of Frobenius triples
for every elliptic curve E/Fp, for primes p 6 216. This allows us to compute
Frobenius triples for the reductions of an elliptic curve E over a number field
K at degree-1 primes p of K with N (p) 6 216 by simply doing a table lookup;
this is particularly useful when computing Galois images for large families of
elliptic curves. While 216 is typically much smaller than the (log NE)

10+o(1) bound
given by the GRH-based Chebotarev bounds of Corollary 4.7, in the typical
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case where ρE,` is surjective we can usually obtain an unconditional proof of
this fact by computing Frobenius triples for just a handful of small primes of
good reduction; typically just ten or twenty primes suffice. This optimization
dramatically improves the practical efficiency of our algorithms because it allows
us to very quickly determine a small set of primes S that we know contains the set
of exceptional primes SE (the primes ` for which G E(`) does not contain SL2(`));
this is the main motivation for treating Algorithms 6 and 7 separately.

We have applied our algorithms to several large databases of elliptic curves,
including:
• Cremona’s elliptic curve data [19], which includes all elliptic curves over Q of

conductor less than 350 000 (about 2 million curves);
• the Stein–Watkins table of elliptic curves [61], which includes a large

proportion of the elliptic curves over Q of conductor up to 108, and of
prime conductor up to 1010 (about 140 million curves);

• the L-functions and modular forms database (LMFDB) [44, 45], which
includes Cremona’s tables as well as some 150 000 elliptic curves of small
conductor over quadratic and cubic fields.

We also analyzed more than 109 elliptic curves of bounded height over Q and
ten quadratic fields (the five real and five imaginary quadratic fields of least
absolute discriminant). In addition to these, we analyzed elliptic curves in families
parameterized by various modular curves, including:

• the modular curves X H of genus 0 described in [74];

• the modular curve XS4(7) of genus 0 over Q(
√−7), using the model in [36];

• the modular curve X+s (11) of genus 2, using the model in [2];

• the modular curve X+ns(11) of genus 1, using the model in [16];

• the (isomorphic) modular curves X+s (13) and X+ns(13) of genus 3, using the
models given in [4];

• the modular curves X0(`) for primes 11 6 ` 6 61 of genus up to 5, using
the models provided by the Magma [11] function SmallModularCurve, as
well as quadratic points on these curves found in [13].

We restricted our attention to elliptic curves without complex multiplication
and used our Monte Carlo algorithm to compute G E(`) up to local conjugacy.
In cases where we were not able to unconditionally prove G E(`) = GL2(`) we
repeated the algorithm 200 times, thereby ensuring (under the GRH) that the
probability of error is less than 3−200.
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Having computed G E(`) up to local conjugacy, in each case with two
nonconjugate groups G and G ′ locally conjugate to G E(`) we computed
d1(G E(`)) via Proposition 5.22, and in cases with d1(G) 6= d1(G ′) used this
information to determine G E(`) up to conjugacy. We encountered only one case
with d1(G) = d1(G ′), arising for the groups labeled 11B.10.4 and 11B.10.5
in Table 3, but in this case G and G ′ have twists that are not locally conjugate, and
by twisting E appropriately we were able to determine G E(`) up to conjugacy,
as described in Section 5.6.

REMARK 6.1. Thanks to recent work by Zywina [74], for the elliptic curves
E/Q that we found to have exceptional Galois images G E(`), we were able
to independently verify our results using his explicit models of modular curves
X H/Q of prime level that include every subgroup H of GL2(`) that is known to
arise for a non-CM elliptic curve over Q; in no instance did we find an error in
our computations.

6.1. Results over Q. In total we found 63 exceptional Galois images G E(`)

for non-CM elliptic curves E/Q. These are listed in Table 3, along with an
elliptic curve of minimal conductor that realizes G E(`). In collaboration with
John Cremona, our results for elliptic curves of conductor up to 350 000 have
now been incorporated into Cremona’s tables and the LMFDB.

REMARK 6.2. Although we analyzed a total of more than 1010 elliptic curves
E/Q, every exceptional G E(`) that we found already occurs for a curve in
Cremona’s tables; indeed the largest conductor needed to obtain every exceptional
G E(`) that we found is 232, 544, which is the conductor of curve listed for the
group labeled 11Nn.

6.2. Results over quadratic fields for elliptic curves with rational j -
invariants. It follows from Conjecture 1.1 that the exceptional Galois images
G E(`) that do not contain SL2(`) that can arise when E is the base change
of a non-CM elliptic curve over Q to a quadratic field are, up to conjugation
in GL2(`), the 63 exceptional G E(`) that arise over Q and their subgroups of
index 2. Using Algorithm 2, we can easily enumerate these groups, and we find
that up to conjugacy in GL2(`), there are 68 groups G E(`) that arise for base
changes from Q to a quadratic field but not over Q.

An elliptic curve E over a quadratic field K whose j-invariant lies in Q is
either the base change of an elliptic curve over Q, or a twist of such a curve.
As we are only concerned with elliptic curves without complex multiplication,
we can assume j (E) 6∈ {0, 1728} and only need to consider quadratic twists. It
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follows from Corollary 5.25 that the groups G E(`) that can arise when E is an
elliptic curve over a quadratic field with j (E) ∈ Q are the groups G that arise
for base changes from Q and their twists, as defined in Section 5.6: these are the
groups 〈G,−1〉 and its index 2 subgroups that do not contain −1. A computation
shows that, up to conjugation in GL2(`) and assuming Conjecture 1.1, there are
23 such twists that do not arise for the base change of an elliptic curve over Q,
We thus obtain the following result.

THEOREM 6.3. Assume Conjecture 1.1. Up to conjugation in GL2(`) there are
160 Galois images G E(`) that do not contain SL2(`) and arise for non-CM
elliptic curves E over quadratic fields with j (E) ∈ Q and primes `; these are
listed in Tables 3 to 6. Of these, 63 arise over Q, 68 arise for base changes of
elliptic curves over Q but not over Q, and 29 arise only for elliptic curves that
are not base changes from Q.

Of the 68 exceptional groups that arise for base changes EK of elliptic curves
E/Q to quadratic fields K (but not over Q), 23 have surjective determinant map
(these are listed in Table 4) and 45 do not (these are listed in Table 5). Along with
each group we list an elliptic curve E/Q and the discriminant D of a quadratic
field K for which G EK (`) is conjugate to the group listed. In each case K is a
subfield of Q(E[`]); taking D = (−1/`)` to be the discriminant of the quadratic
subfield of the cyclotomic field Q(ζ`)) yields the subgroup of G E(`) with square
determinants, while any other quadratic subfield K of Q(E[`]) yields a group
whose determinant map is surjective.

The 29 elliptic curves listed in Table 6 are quadratic twists E F
K of base changes

of elliptic curves E/Q to quadratic fields K by quadratic subextensions F/K of
K (EK [`])/K that were computed using the methods described in Section 5.6.

6.3. Results over quadratic and cubic fields. As noted above, the LMFDB
includes tables of elliptic curves of small conductor over various quadratic
and cubic fields, including the five real and five imaginary quadratic fields of
least absolute discriminant, as well as the cubic field of discriminant −23. The
enumeration of modular elliptic curves over the five imaginary quadratic fields
Q(
√−1), Q(

√−2),Q(
√−3), Q(

√−7), and Q(
√−11) was originally addressed

by Cremona in [20, 21] who constructed tables for elliptic curves of conductor
norm up to 500; these results have recently extended to conductor norm 10 000
by Cremona and his student Warren Moore. The tabulation of elliptic curves over
the real quadratic field Q(

√
5) described in [10] has been extended to conductor

norm 5000, and the LMFDB also contains data for elliptic curves over Q(
√

2)
and Q(

√
3) to conductor norm 5000, and over Q(

√
13) and Q(

√
17) to conductor
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norm 2000 and 1000, respectively (as of this writing). In addition, elliptic curves
over the cubic field Q[a]/(a3 − a2 + 1) of discriminant −23 of conductor norm
up to 10 000 are included in the LMFDB, based on the work in [24].

In total, we computed G E(`) for 115, 894 non-CM elliptic curves over these
fields that are listed in the LMFDB, as well as families of elliptic curves of
bounded height, and curves parameterized by points of bounded height on the
modular curves listed above. Table 7 list the exceptional groups G E(`) that we
found for non-CM elliptic curves over the ten quadratic fields noted above that
are not already listed in Tables 3 to 6. It follows from [74] and the results
of Section 5.6 that these groups cannot arise for non-CM elliptic curves over
quadratic fields that have rational j-invariants (we do not require Conjecture 1.1
here because these groups all lie in the Borel group).

Table 8 lists the exceptional groups G E(`) that we found for non-CM elliptic
curves over the cubic field of discriminant −23 that do not already appear in
Tables 3–7.

REMARK 6.4. Unlike the results listed in Tables 3–6, which are complete under
Conjecture 1.1, Table 7 are known to be incomplete. In particular, it follows from
[43, Proposition 4.4.8.1] that there are infinitely many elliptic curves over each of
the ten quadratic fields that we consider with G E(11) conjugate to a subgroup of
11S4, but none are listed in our tables.

REMARK 6.5. The elliptic curves listed in Table 3 for the groups labeled
7Ns.2.1 and 7Ns.3.1 both have j-invariant 2268945/128 and represent the
unique Q-isomorphism class of elliptic curves E/Q that are exceptions to the
local–global principle for isogenies [65]: each admits a rational 7-isogeny locally
everywhere (modulo every prime of good reduction), but not globally (over Q).
The elliptic curve listed in Table 4 for the group labeled 13A4.1[2] is the base
change of the elliptic curve over Q listed in Table 3 for the group labeled 13S4
to Q(

√
13); it represents one of five Q-isomorphism classes of elliptic curves

over Q(
√

13) that are exceptions to the local–global principle for 13-isogenies
[3, Corollary 1.9] (three have rational j-invariants and two do not). The elliptic
curve listed in Table 4 for the group labeled 5Ns[2] is one of infinitely many
examples of elliptic curves over Q(

√
5) with distinct j-invariants that admit a 5-

isogeny locally everywhere but not globally, as proved in [3, Theorem 1.5], as is
the curve listed in Table 7 for the group labeled 5Ns.2.1[2]. These curves all
have G E(5) conjugate to 5Ns[2] or 5Ns.2.1[2]; the former case may arise
for the base change of an elliptic curve E/Q with G E(5) conjugate to 5Ns, while
the latter case can only arise only for elliptic curves E/Q(

√
5) with j (E) 6∈ Q.
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6.4. Group labels. In the tables that follow conjugacy classes of subgroups G
of GL2(`) are identified by labels of the form

`S.a.b.c[d],
where ` is a prime, S is one of G, B, Cs, Cn, Ns, Nn, A4, S4, A5, while a, b,
c are (optional) nonnegative integers whose meaning depends on S, as described
below, and d is the index of det(G) in Z(`)×; the suffix [d] is omitted when d = 1.
Let r be the least positive integer that generates the index d subgroup of Z(`)×.

G: G contains SL2(`); the label `G denotes GL2(`) and `G[d] is used when
d = [GL2(`) : G] > 1.

B: G is conjugate to a subgroup of B(`) that contains an element of order `, the
label `B denotes B(`) and `B[d] denotes `B ∩ `G[d]. The label `B.a.b[d]
denotes the subgroup generated by(

a 0
0 1/a

)
,

(
b 0
0 r/b

)
,

(
1 1
0 1

)
,

where the integers a, b > 0 are both as small as possible.
Cs: G is conjugate to a subgroup of Cs(`) (including scalar subgroups of Z(`) ⊆

Cs(`)). The label `Cs denotes Cs(`) and `Cs[d] denotes `Cs ∩ `G[d]. The
label `Cs.a.b[d] denotes the subgroup generated by(

a 0
0 1/a

)
,

(
b 0
0 r/b

)
,

with a, b > 0 minimal.

Cn: G is conjugate to a subgroup of Cns(`) that does not lie in Cs(`). For ` = 2
this is the index 2 subgroup of GL2(2), which is denoted 2Cn. For ` > 2
the label `Cn denotes Cns(`), and `Cn[d] denotes `Cn ∩ `G[d]. The label
`Cn.a.b[d] denotes the subgroup generated by(

a εb
b a

)
,

with the integers b > 0, a > 0 chosen to make (a, b) lexicographically
minimal.

Ns: G is conjugate to a subgroup of C+s (`) with dihedral projective image.
The label `Ns denotes C+s (`), the label `Ns[d] denotes `Ns ∩ `G[d], and
`Ns.a.b[d] denotes the subgroup of C+s (`) generated by(

a 0
0 1/a

)
,

(
0 b
−r/b 0

)
,
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with a and b minimal, and `Ns.a.b.c[d] denotes the subgroup generated by(
a 0
0 1/a

)
,

(
0 b
−1/b 0

)
,

(
0 c
−r/c 0

)
,

with a, b, c > 0 minimal.

Nn: G is conjugate to a subgroup of C+ns(`) with dihedral projective image and
not conjugate to any subgroup of C+s (`). The label `Nn denotes C+ns(`) and
`Nn[d] denotes `Nn ∩ `G[d]. The label `Nn.a.b[d] denotes the subgroup
generated by (

a εb
b a

)
,

(
1 0
0 −1

)
with (a, b) lexicographically minimal, and `Nna.b.c[d] denotes the
subgroup generated by (

a εb
b a

)
,

(
1 0
0 −1

)
δc,

where δ = (x εy
y x
)

is any generator for Cns(`) and c = [Z(`) : G ∩ Z(`)] as in
Corollary 3.17.

A4: G has projective image isomorphic to A4 and does not contain SL2(`). This
requires d > 1. The label `A4.a[d] indicates [det(G) : det(Z(G)] = a (which
must be 1 or 3, the latter only when ` ≡ 1 (mod 3)). Algorithm 1 can be used
to obtain an explicit set of generators.

S4: G has projective image isomorphic to S4 and does not contain SL2(`). The
label `S4 indicates Z(G) = Z(`) and d = 1, while `S4[d] is used for d >
1 when [det(G) : det(Z(G))] = 2, and `S4.1[d] is used when [det(G) :
det(Z(G))] = 1 (which implies d > 1). See Lemma 3.21 for a list of the
cases that can occur. Algorithm 1 can be used to obtain an explicit set of
generators.

A5: G has projective image isomorphic to A5. This requires ` ≡ ±1 (mod 5)
and d > 1. The label `A5.[d] indicates [det(G) : det(Z(G))] = 1 (the only
possible case, by Lemma 3.21). Algorithm 1 can be used to obtain an explicit
set of generators.

A magma script that will compute the label of any subgroup of GL2(`) is
available at [68]; it also includes a procedure to construct a subgroup based on
its label, with generators as above.
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6.5. Tables of exceptional Galois images. Each of the tables that follow lists
the following data:

• the first column lists the label of a group G ⊆ GL2(`), as defined above, the
second columns lists its index in GL2(`), and the third lists the generators for
G as indicated by the label;

• the column ‘−1’ indicates whether the group G contains the scalar matrix −1
or not;

• t is the number of twists the group has (as defined in Section 5.6), equivalently,
the number of nonconjugate G E ′(`) that arise among the twists E ′ of E (defined
over the same field K ).

• d0 is the index of the largest subgroup of G that fixes a linear subspace of
Z(`)2; equivalently, the degree of the minimal extension over which E admits
a rational `-isogeny.

• d1 is the index of the largest subgroup of G that fixes a nonzero vector in Z(`)2;
equivalently, the degree of the minimal extension over which E has a rational
point of order `.

• d is the order of G; equivalently, the degree of the minimal extension L/K for
which E[`] ⊆ E(L).

• the curve column lists the Weierstrass coefficients [a1, a2, a3, a4, a6] of an
integral equation

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6

that defines an elliptic curve E/K . When K 6= Q, these may be polynomials
in a ∈ OK with minimal polynomial f (a), in which case the curve is listed
as [a1, a2, a3, a4, a6]/( f (a)). Curves are linked to their entry in the LMFDB,
when available

• for elliptic curves E over quadratic fields with j (E) ∈ Q that are not base
changes from Q we list j (E).

• N is the absolute norm of the conductor of the elliptic curve E in factored form.

• D is the discriminant of the number field K (not listed when K = Q).

Pairs of locally conjugate groups are indicated by brackets on the left, and
for each such pair the listed curves are related by a chain of `-isogenies, as in
Theorem 3.32. Recall from Section 2 that we view elements of Aut(E[`]) as
2× 2 matrixes that act on column vectors on the left (this distinction is important
because many of the groups are not conjugate to their transposes).
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Table 3. Exceptional G E(`) for non-CM elliptic curves E/Q.

Group Index Generators −1 t d0 d1 d Curve N

2Cs 6 Yes 1 1 1 1 [1, 1, 1, −10, −10] 3151

2B 3
(

1 1
0 1

)
Yes 1 1 1 2 [1, 0, 1, 4, −6] 2171

2Cn 2
(

0 1
1 1

)
Yes 1 3 3 3 [0, −1, 0, −2, 1] 2272

3Cs.1.1 24
(

1 0
0 2

)
No 2 1 1 2 [1, 0, 1, 4, −6] 2171

3Cs 12
(

2 0
0 2

)
,
(

1 0
0 2

)
Yes 2 1 2 4 [1, 1, 0, 220, 2192] 2172

{3B.1.1 8
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 1 6 [1, 0, 1, −1, 0] 2171

3B.1.2 8
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 2 6 [1, 0, 1, −171, −874] 2171

3Ns 6
(

2 0
0 2

)
,
(

0 2
1 0

)
,
(

1 0
0 2

)
Yes 1 2 4 8 [1, 1, 1, 3, −5] 21132

3B 4
(

2 0
0 2

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 2 12 [1, 1, 1, −3, 1] 2152

3Nn 3
(

1 0
0 2

)
,
(

2 1
2 2

)
Yes 1 4 8 16 [0, 0, 1, −7, 12] 5172

5Cs.1.1 120
(

1 0
0 2

)
No 3 1 1 4 [0, −1, 1, −10, −20] 111

5Cs.1.3 120
(

3 0
0 4

)
No 3 1 2 4 [0, 1, 1, −258, −2981] 52111

5Cs.4.1 60
(

4 0
0 4

)
,
(

1 0
0 2

)
Yes 3 1 2 8 [0, 0, 1, −93, 625] 32111

5Ns.2.1 30
(

2 0
0 3

)
,
(

0 1
3 0

)
Yes 1 2 8 16 [0, 0, 1, −2850, −58179] 3252311

5Cs 30
(

2 0
0 3

)
,
(

1 0
0 2

)
Yes 1 1 4 16 [0, 1, 0, −4319, −100435] 28711

{5B.1.1 24
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 1 20 [0, −1, 1, 0, 0] 111

5B.1.2 24
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 4 20 [0, −1, 1, −7820, −263580] 111

{5B.1.4 24
(

4 0
0 3

)
,
(

1 1
0 1

)
No 3 1 2 20 [1, 0, 1, −76, 298] 2152

5B.1.3 24
(

3 0
0 4

)
,
(

1 1
0 1

)
No 3 1 4 20 [1, 0, 1, −1, −2] 2152

5Ns 15
(

0 4
1 0

)
,
(

2 0
0 3

)
,
(

1 0
0 2

)
Yes 1 2 8 32 [0, 0, 0, −56, 4848] 25191

{5B.4.1 12
(

4 0
0 4

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 2 40 [0, 0, 1, −3, −5] 32111

5B.4.2 12
(

4 0
0 4

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 4 40 [0, 0, 1, −70383, 7187035] 32111

5Nn 10
(

1 0
0 4

)
,
(

2 3
4 2

)
Yes 1 6 24 48 [1, −1, 1, −5, 2] 3352

5B 6
(

2 0
0 3

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 4 80 [1, 1, 0, 504, −13112] 21132

5S4 5
(

0 3
3 4

)
,
(

2 0
0 2

)
,
(

3 0
4 4

)
Yes 1 6 24 96 [0, 0, 0, 9, −18] 2234
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Table 3. Continued.

7Ns.2.1 112
(

2 0
0 4

)
,
(

0 1
4 0

)
No 2 2 6 18 [1, −1, 1, −2680, −50053] 215272

7Ns.3.1 56
(

3 0
0 5

)
,
(

0 1
4 0

)
Yes 2 2 12 36 [1, −1, 0, −107, −379] 215272

{7B.1.1 48
(

1 0
0 3

)
,
(

1 1
0 1

)
No 3 1 1 42 [1, −1, 1, −3, 3] 21131

7B.1.3 48
(

3 0
0 1

)
,
(

1 1
0 1

)
No 3 1 6 42 [1, −1, 1, −213, −1257] 21131

{7B.1.2 48
(

2 0
0 5

)
,
(

1 1
0 1

)
No 3 1 3 42 [1, −1, 0, −107, 454] 72131

7B.1.5 48
(

5 0
0 2

)
,
(

1 1
0 1

)
No 3 1 6 42 [1, −1, 0, 628, −17823] 72131

{7B.1.6 48
(

6 0
0 4

)
,
(

1 1
0 1

)
No 3 1 2 42 [1, 1, 1, −6910, −232261] 213172

7B.1.4 48
(

4 0
0 6

)
,
(

1 1
0 1

)
No 3 1 3 42 [1, 1, 1, −50, 293] 213172

7Ns 28
(

0 6
1 0

)
,
(

3 0
0 5

)
,
(

1 0
0 3

)
Yes 1 2 12 72 [0, 0, 1, 2580, 549326] 3252411

{7B.6.1 24
(

6 0
0 6

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 3 1 2 84 [0, 0, 0, −43, −166] 24131

7B.6.3 24
(

6 0
0 6

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 6 84 [0, 0, 0, −3403, 83834] 24131

7B.6.2 24
(

6 0
0 6

)
,
(

2 0
0 5

)
,
(

1 1
0 1

)
Yes 3 1 6 84 [1, −1, 1, −965, −11294] 3272131

7Nn 21
(

1 0
0 6

)
,
(

2 5
4 2

)
Yes 1 8 48 96 [0, −1, 1, −10158, 804091] 232291

{7B.2.1 16
(

2 0
0 4

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
No 3 1 3 126 [1, −1, 1, −5, 5] 2134

7B.2.3 16
(

2 0
0 4

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
No 3 1 6 126 [1, −1, 1, −95, −697] 2134

7B 8
(

3 0
0 5

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 3 1 6 252 [1, −1, 0, 3, −1] 2134

{11B.1.4 120
(

4 0
0 6

)
,
(

1 1
0 1

)
No 3 1 5 110 [1, 1, 1, −305, 7888] 112

11B.1.6 120
(

6 0
0 4

)
,
(

1 1
0 1

)
No 3 1 10 110 [1, 1, 1, −30, −76] 112

{11B.1.5 120
(

5 0
0 7

)
,
(

1 1
0 1

)
No 3 1 5 110 [1, 1, 0, −3632, 82757] 112

11B.1.7 120
(

7 0
0 5

)
,
(

1 1
0 1

)
No 3 1 10 110 [1, 1, 0, −2, −7] 112

{11B.10.4 60
(

10 0
0 10

)
,
(

4 0
0 6

)
,
(

1 1
0 1

)
Yes 3 1 10 220 [1, −1, 0, −2745, −215726] 32112

11B.10.5 60
(

10 0
0 10

)
,
(

5 0
0 7

)
,
(

1 1
0 1

)
Yes 3 1 10 220 [1, −1, 0, −270, 1777] 32112

11Nn 55
(

1 0
0 10

)
,
(

3 5
8 3

)
Yes 1 12 120 240 [0, 0, 0, −6682520, 39157150032] 25132431

13S4 91
(

3 0
12 9

)
,
(

2 0
0 2

)
,
(

9 5
0 6

)
Yes 1 6 72 288 [0, 1, 0, −4788, 109188] 223152132

{13B.3.1 56
(

3 0
0 9

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 3 468 [0, 1, 1, −114, 473] 3172

13B.3.2 56
(

3 0
0 9

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 12 468 [0, 1, 1, −44704, −3655907] 3172

{13B.3.4 56
(

3 0
0 9

)
,
(

4 0
0 7

)
,
(

1 1
0 1

)
No 3 1 6 468 [0, 1, 1, −19322, 1116938] 3172132

13B.3.7 56
(

3 0
0 9

)
,
(

7 0
0 4

)
,
(

1 1
0 1

)
No 3 1 12 468 [0, 1, 1, −7555032, −8001807082] 3172132
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Table 3. Continued.

{13B.5.1 42
(

5 0
0 8

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 4 624 [1, −1, 0, −139, 965] 2151172

13B.5.2 42
(

5 0
0 8

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 12 624 [1, −1, 0, −126109, −17206537] 2151172

13B.5.4 42
(

5 0
0 8

)
,
(

4 0
0 7

)
,
(

1 1
0 1

)
Yes 1 1 12 624 [0, 0, 0, −338, 2392] 2851132

{13B.4.1 28
(

4 0
0 10

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 6 936 [0, −1, 1, −2, −1] 3172

13B.4.2 28
(

4 0
0 10

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 12 936 [0, −1, 1, −912, 10919] 3172

13B 14
(

2 0
0 7

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 12 1872 [1, −1, 0, −2, 6] 215272

{17B.4.2 72
(

4 0
0 13

)
,
(

2 0
0 10

)
,
(

1 1
0 1

)
Yes 1 1 8 1088 [1, 1, 0, −660, −7600] 2152172

17B.4.6 72
(

4 0
0 13

)
,
(

6 0
0 9

)
,
(

1 1
0 1

)
Yes 1 1 16 1088 [1, 1, 0, −878710, 316677750] 2152172

{37B.8.1 114
(

8 0
0 14

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 12 15984 [1, 1, 1, −8, 6] 5272

37B.8.2 114
(

8 0
0 14

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 36 15984 [1, 1, 1, −208083, −36621194] 5272

Table 4. Known exceptional G E(`) with surjective determinant for base changes of non-
CM elliptic curves E/Q to quadratic fields Q(

√
D).

Group Index Generators −1 t d0 d1 d Curve D

3Cn 6
(

1 2
1 1

)
Yes 1 4 8 8 [0, 0, 1, −7, 12] −7

5Cn.0.1 60
(

0 2
1 0

)
Yes 1 2 8 8 [0, 0, 1, −2850, −58179] −3

5Cn 20
(

3 2
1 3

)
Yes 1 6 24 24 [1, −1, 1, −5, 2] −15

5Nn.1.1.1 20
(

1 4
3 4

)
,
(

1 2
1 1

)
Yes 1 6 24 24 [1, −1, 1, −5, 2] −3

7Cs 56
(

3 0
0 5

)
,
(

1 0
0 3

)
Yes 2 1 6 36 [0, 0, 1, 2580, 549326] −3

7Cn 42
(

6 4
6 6

)
Yes 1 8 48 48 [0, −1, 1, −10158, 804091] −23

7Nn.1.3 42
(

1 0
0 6

)
,
(

1 2
3 1

)
Yes 1 4 24 48 [0, −1, 1, −10158, 804091] 161

11Cn 110
(

10 1
6 10

)
Yes 1 12 120 120 [0, 0, 0, −6682520, 39157150032] −4

11Nn.1.3 110
(

1 0
0 10

)
,
(

1 6
3 1

)
Yes 1 6 60 120 [0, 0, 0, −6682520, 39157150032] 44

{13B.12.1 84
(

12 0
0 12

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 2 312 [1, −1, 0, −139, 965] 17

13B.12.2 84
(

12 0
0 12

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 12 312 [1, −1, 0, −126109, −17206537] 17
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Table 4. Continued.

{13B.12.5 84
(

12 0
0 12

)
,
(

5 0
0 3

)
,
(

1 1
0 1

)
Yes 3 1 4 312 [1, −1, 0, −139, 965] 221

13B.12.3 84
(

12 0
0 12

)
,
(

3 0
0 5

)
,
(

1 1
0 1

)
Yes 3 1 6 312 [1, −1, 0, −126109, −17206537] 221

{13B.12.4 84
(

12 0
0 12

)
,
(

4 0
0 7

)
,
(

1 1
0 1

)
Yes 3 1 6 312 [0, 0, 0, −338, 2392] 8

13B.12.6 84
(

12 0
0 12

)
,
(

6 0
0 9

)
,
(

1 1
0 1

)
Yes 3 1 12 312 [0, 0, 0, −12818, −745992] 8

{17B.16.2 144
(

16 0
0 16

)
,
(

2 0
0 10

)
,
(

1 1
0 1

)
Yes 3 1 8 544 [1, 1, 0, −660, −7600] 5

17B.16.7 144
(

16 0
0 16

)
,
(

7 0
0 15

)
,
(

1 1
0 1

)
Yes 3 1 16 544 [1, 1, 0, −878710, 316677750] 5

{17B.16.8 144
(

16 0
0 16

)
,
(

8 0
0 11

)
,
(

1 1
0 1

)
Yes 3 1 8 544 [1, 1, 0, −660, −7600] 85

17B.16.6 144
(

16 0
0 16

)
,
(

6 0
0 9

)
,
(

1 1
0 1

)
Yes 3 1 16 544 [1, 1, 0, −878710, 316677750] 85

{37B.11.1 228
(

11 0
0 27

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 6 7992 [1, 1, 1, −8, 6] 5

37B.11.2 228
(

11 0
0 27

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 36 7992 [1, 1, 1, −208083, −36621194] 5

{37B.11.6 228
(

11 0
0 27

)
,
(

6 0
0 25

)
,
(

1 1
0 1

)
Yes 3 1 12 7992 [1, 1, 1, −8, 6] 185

37B.11.9 228
(

11 0
0 27

)
,
(

9 0
0 29

)
,
(

1 1
0 1

)
Yes 3 1 18 7992 [1, 1, 1, −208083, −36621194] 185

Table 5. Known exceptional G E(`) with nonsurjective determinant for base changes of
non-CM elliptic curves E/Q to quadratic fields Q(

√
D).

Group Index Generators −1 t d0 d1 d Curve D

3Cs.1.1[2] 48 No 2 1 1 1 [1, 0, 1, 4, −6] −3

3Cs[2] 24
(

2 0
0 2

)
Yes 2 1 2 2 [1, 1, 0, 220, 2192] −3

3B.1.1[2] 16
(

1 1
0 1

)
No 2 1 1 3 [1, 0, 1, −1, 0] −3

3Cn[2] 12
(

0 2
1 0

)
Yes 1 2 4 4 [1, 1, 1, 3, −5] −3

3B[2] 8
(

2 0
0 2

)
,
(

1 1
0 1

)
Yes 2 1 2 6 [1, 1, 1, −3, 1] −3

3Nn[2] 6
(

2 2
2 1

)
,
(

0 1
2 0

)
Yes 1 4 8 8 [0, 0, 1, −7, 12] −3

5Cs.1.1[2] 240
(

1 0
0 4

)
No 2 1 1 2 [0, −1, 1, −10, −20] 5

5Cs.4.1[2] 120
(

4 0
0 4

)
,
(

1 0
0 4

)
Yes 2 1 2 4 [0, 0, 1, −93, 625] 5

5Cs[2] 60
(

2 0
0 3

)
,
(

1 0
0 4

)
Yes 1 1 4 8 [0, 0, 1, −2850, −58179] 5

{5B.1.1[2] 48
(

1 0
0 4

)
,
(

1 1
0 1

)
No 3 1 1 10 [0, −1, 1, 0, 0] 5

5B.1.4[2] 48
(

4 0
0 1

)
,
(

1 1
0 1

)
No 3 1 2 10 [0, −1, 1, −7820, −263580] 5
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Table 5. Continued.

5Ns[2] 30
(

0 4
1 0

)
,
(

2 0
0 3

)
,
(

1 0
0 4

)
Yes 1 2 8 16 [0, 0, 0, −56, 4848] 5

5B.4.1[2] 24
(

4 0
0 4

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
Yes 3 1 2 20 [0, 0, 1, −3, −5] 5

5Nn[2] 20
(

4 3
1 1

)
,
(

4 2
1 4

)
Yes 1 3 12 24 [1, −1, 1, −5, 2] 5

5B[2] 12
(

2 0
0 3

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
Yes 1 1 4 40 [1, 1, 0, 504, −13112] 5

5A4.1[2] 10
(

2 0
0 3

)
,
(

3 3
4 1

)
,
(

2 0
0 2

)
Yes 1 6 24 48 [0, 0, 0, 9, −18] 5

7Cs.2.1[2] 224
(

2 0
0 4

)
,
(

1 0
0 2

)
No 2 1 3 9 [1, −1, 1, −2680, −50053] −7

7Cs[2] 112
(

3 0
0 5

)
,
(

1 0
0 2

)
Yes 2 1 6 18 [1, −1, 0, −107, −379] −7

{7B.1.1[2] 96
(

1 0
0 2

)
,
(

1 1
0 1

)
No 2 1 1 21 [1, −1, 1, −3, 3] −7

7B.1.2[2] 96
(

2 0
0 1

)
,
(

1 1
0 1

)
No 2 1 3 21 [1, −1, 1, −213, −1257] −7

7B.1.4[2] 96
(

4 0
0 4

)
,
(

1 1
0 1

)
No 2 1 3 21 [1, −1, 0, −107, 454] −7

7Ns[2] 56
(

0 6
1 0

)
,
(

3 0
0 5

)
,
(

1 0
0 2

)
Yes 1 2 12 36 [0, 0, 1, 2580, 549326] −7

{7B.6.1[2] 48
(

6 0
0 6

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 2 1 2 42 [0, 0, 0, −43, −166] −7

7B.6.2[2] 48
(

6 0
0 6

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 2 1 6 42 [0, 0, 0, −3403, 83834] −7

7B.6.3[2] 48
(

6 0
0 6

)
,
(

3 0
0 3

)
,
(

1 1
0 1

)
Yes 2 1 6 42 [1, −1, 1, −965, −11294] −7

7Nn[2] 42
(

3 3
6 4

)
,
(

4 6
2 4

)
Yes 1 8 48 48 [0, −1, 1, −10158, 804091] −7

7B.2.1[2] 32
(

2 0
0 4

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 2 1 3 63 [1, −1, 1, −5, 5] −7

7B[2] 16
(

3 0
0 5

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 2 1 6 126 [1, −1, 0, 3, −1] −7

{11B.1.4[2] 240
(

4 0
0 9

)
,
(

1 1
0 1

)
No 2 1 5 55 [1, 1, 1, −30, −76] −11

11B.1.9[2] 240
(

9 0
0 4

)
,
(

1 1
0 1

)
No 2 1 5 55 [1, 1, 0, −2, −7] −11

{11B.10.2[2] 120
(

10 0
0 10

)
,
(

2 0
0 7

)
,
(

1 1
0 1

)
Yes 2 1 10 110 [1, −1, 0, −2745, −215726] −11

11B.10.4[2] 120
(

10 0
0 10

)
,
(

4 0
0 9

)
,
(

1 1
0 1

)
Yes 2 1 10 110 [1, −1, 0, −270, 1777] −11

11Nn[2] 110
(

10 9
1 1

)
,
(

7 2
1 7

)
Yes 1 12 120 120 [0, 0, 0, −6682520, 39157150032] −11

13A4.1[2] 182
(

8 0
0 5

)
,
(

10 10
11 2

)
,
(

2 0
0 2

)
Yes 1 4 48 144 [0, 1, 0, −4788, 109188] 13

{13B.3.1[2] 112
(

3 0
0 9

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
No 3 1 3 234 [0, 1, 1, −114, 473] 13

13B.3.4[2] 112
(

3 0
0 9

)
,
(

4 0
0 1

)
,
(

1 1
0 1

)
No 3 1 6 234 [0, 1, 1, −44704, −3655907] 13

13B.4.1[2] 56
(

4 0
0 10

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
Yes 3 1 6 468 [0, −1, 1, −2, −1] 13

{13B.5.1[2] 84
(

5 0
0 8

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
Yes 1 1 4 312 [1, −1, 0, −139, 965] 13

13B.5.2[2] 84
(

5 0
0 8

)
,
(

2 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 12 312 [0, 0, 0, −338, 2392] 13

https://doi.org/10.1017/fms.2015.33 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.33


Computing images of Galois representations attached to elliptic curves 69

Table 5. Continued.

13B.5.4[2] 84
(

5 0
0 8

)
,
(

4 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 12 312 [1, −1, 0, −126109, −17206537] 13

13B[2] 28
(

2 0
0 7

)
,
(

1 0
0 4

)
,
(

1 1
0 1

)
Yes 1 1 12 936 [1, −1, 0, −2, 6] 13

{17B.4.1[2] 144
(

4 0
0 13

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 4 544 [1, 1, 0, −660, −7600] 17

17B.4.2[2] 144
(

4 0
0 13

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 8 544 [1, 1, 0, −878710, 316677750] 17

{37B.8.1[2] 228
(

8 0
0 14

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 1 1 12 7992 [1, 1, 1, −8, 6] 37

37B.8.3[2] 228
(

8 0
0 14

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 36 7992 [1, 1, 1, −208083, −36621194] 37

Table 6. Known exceptional G E(`) for non-CM elliptic curves E over quadratic fields
Q(
√

D) with j (E) ∈ Q that are not base changes from Q.

Group Index Generators −1 t d0 d1 d j-invariant D N
curve
7Cs.2.1 112

(
2 0
0 4

)
,
(

1 0
0 3

)
No 2 1 3 18 218335143341−7 −3 5472412

[0, 0, −1, 21500(3a+5), 152590625a+129702031]/(a2−a+1)
13B.1.1 168

(
1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 1 156 −3313132−135−1 17 2252

[1, −1, 1, −131a−205, 1758a+2745]/(a2−a−4)

13B.1.2 168
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 12 156 −3311869132−15−13 17 2252

[1, −1, 1, −118691a−185455, −31941270a−49878411]/(a2−a−4)
13B.1.3 168

(
3 0
0 5

)
,
(

1 1
0 1

)
No 3 1 3 156 −3311869132−15−13 221 2252132

[0, 0, 0, −36119689047(11a+80), 177741267090426(2156a+15055)]/(a2−a−55)

13B.1.5 168
(

5 0
0 3

)
,
(

1 1
0 1

)
No 3 1 4 156 −3313132−135−1 221 2252132

[0, 0, 0, 39865527(11a−91), 9591463206(2156a−17211)]/(a2−a−55)
13B.1.4 168

(
4 0
0 7

)
,
(

1 1
0 1

)
No 3 1 6 156 −26331345−1 8 52134

[a, 1, 1, −85a−126, 481a+684]/(a2−2)

13B.1.7 168
(

7 0
0 4

)
,
(

1 1
0 1

)
No 3 1 12 156 −26331311732935−13 8 52134

[a, 1, 1, 1602(2a−3), 164788a−235526]/(a2−2)
13B.1.9 168

(
9 0
0 6

)
,
(

1 1
0 1

)
No 3 1 3 156 −26331345−1 8 52134

[a, 1, 1, 7140(2a−3), −1142440a+1631547]/(a2−2)

13B.1.6 168
(

6 0
0 9

)
,
(

1 1
0 1

)
No 3 1 12 156 −26331311732935−13 8 52134

[a, 1, 1, 270780(2a−3), 358789873a−512576303]/(a2−2)
13B.1.8 168

(
8 0
0 10

)
,
(

1 1
0 1

)
No 3 1 4 156 −3313132−135−1 221 2252132

[0, 0, 0, 39865527(5a−64), 9591463206(860a−8607)]/(a2−a−55)

13B.1.10 168
(

10 0
0 8

)
,
(

1 1
0 1

)
No 3 1 6 156 −3311869132−15−13 221 2252132

[0, 0, 0, −36119689047(56a+389), 177741267090426(24052a+166763)]/(a2−a−55)
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Table 6. Continued.
13B.1.12 168

(
12 0
0 11

)
,
(

1 1
0 1

)
No 3 1 2 156 −3313132−135−1 17 2252134

[1, −1, 0, 22139a−56731, −3795909a+9723481]/(a2−a−4)

13B.1.11 168
(

11 0
0 12

)
,
(

1 1
0 1

)
No 3 1 12 156 −3311869132−15−13 17 2252134

[1, −1, 0, −20058779a−31341842, −70235146527a−109676893910]/(a2−a−4)
17B.1.2 288

(
2 0
0 10

)
,
(

1 1
0 1

)
No 3 1 8 272 −17137332−17 5 22174

[a, −1, 0, 132(a−2), 304(−4a+7)]/(a2−a−1)

17B.1.10 288
(

10 0
0 2

)
,
(

1 1
0 1

)
No 3 1 16 272 −17210132−1 5 22174

[a+1, −a−1, 0, −175742(a+1), −12667110(4a+3)]/(a2−a−1)
17B.1.9 288

(
9 0
0 6

)
,
(

1 1
0 1

)
No 3 1 8 272 −17137332−17 85 22172

[0, 0, 0, −72762975(7a+30), 29048618250(532a+2199)]/(a2−a−21)

17B.1.6 288
(

6 0
0 9

)
,
(

1 1
0 1

)
No 3 1 16 272 −17210132−1 85 22172

[0, 0, 0, 96798750975(7a−37), 1257319934817750(532a−2731)]/(a2−a−21)
17B.1.15 288

(
15 0
0 7

)
,
(

1 1
0 1

)
No 3 1 8 272 −17137332−17 5 22174

[a+1, a, a+1, −38178(a+1), 5707018a+4289808]/(a2−a−1)

17B.1.7 288
(

7 0
0 15

)
,
(

1 1
0 1

)
No 3 1 16 272 −17210132−1 5 22174

[a, a−1, a+1, 607a−1216, 9919a−17512]/(a2−a−1)
17B.1.8 288

(
8 0
0 11

)
,
(

1 1
0 1

)
No 3 1 8 272 −17137332−17 85 22172

[0, 0, 0, −72762975(9a+37), 29048618250(756a+3107)]/(a2−a−21)

17B.1.11 288
(

11 0
0 8

)
,
(

1 1
0 1

)
No 3 1 16 272 −17210132−1 85 22172

[0, 0, 0, −96798750975(8a+85), −1257319934817750(1036a+7727)]/(a2−a−21)
37B.10.1 456

(
10 0
0 26

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 3 3996 −71113 5 74

[a+1, a, a, −78a−78, 418a+333]/(a2−a−1)

37B.10.2 456
(

10 0
0 26

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 36 3996 −71137320833 5 74

[a, a−1, a, 2039213a−4078427, 2003653476a−3506903387]/(a2−a−1)
37B.10.6 456

(
10 0
0 26

)
,
(

6 0
0 25

)
,
(

1 1
0 1

)
No 3 1 12 3996 −71113 185 74372

[0, 0, 0, 94230675(11a−82), 28183538250(1859a−13602)]/(a2−a−46)

37B.10.21 456
(

10 0
0 26

)
,
(

21 0
0 23

)
,
(

1 1
0 1

)
No 3 1 18 3996 −71137320833 185 74372

[0, 0, 0, 2444609268675(11a−82), 108162428702847750(−1859a+13602)]/(a2−a−46)
37B.10.9 456

(
10 0
0 26

)
,
(

9 0
0 29

)
,
(

1 1
0 1

)
No 3 1 9 3996 −71137320833 185 74372

[0, 0, 0, 2444609268675(13a−95), 108162428702847750(−2353a+17179)]/(a2−a−46)

37B.10.14 456
(

10 0
0 26

)
,
(

14 0
0 16

)
,
(

1 1
0 1

)
No 3 1 12 3996 −71113 185 74372

[0, 0, 0, 94230675(13a−95), 28183538250(2353a−17179)]/(a2−a−46)
37B.10.11 456

(
10 0
0 26

)
,
(

11 0
0 17

)
,
(

1 1
0 1

)
No 3 1 6 3996 −71113 5 74374

[a+1, a, a+1, −107609(a+1), 26319665a+19766651]/(a2−a−1)

37B.10.17 456
(

10 0
0 26

)
,
(

17 0
0 11

)
,
(

1 1
0 1

)
No 3 1 36 3996 −71137320833 5 74374

[a, a−1, a+1, 2791683423a−5583366848, 101558059929979a−177727302798321]/(a2−a−1)
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Table 7. Some exceptional G E(`) for non-CM elliptic curves E over quadratic fields.

Group Index Generators −1 t d0 d1 d D N
Curve

5Nn.2.2[2] 80
(

2 4
2 2

)
,
(

1 0
0 4

)
No 2 3 3 6 5 312

[0, a−1, 1, 42a−95, 192a−332]/(a2−a−1)

5Ns.2.1[2] 60
(

2 0
0 3

)
,
(

0 1
1 0

)
Yes 1 2 4 8 5 22192

[1, 0, 1, 2a, 2a+2]/(a2−a−1)

5Nn.3.2[2] 40
(

3 4
2 3

)
,
(

1 0
0 4

)
Yes 2 3 6 12 5 312

[0, −a−1, 1, −1, 2a+1]/(a2−a−1)

7Ns.6.1.2 84
(

6 0
0 6

)
,
(

0 1
6 0

)
,
(

0 2
2 0

)
Yes 1 2 12 24 −3 7413122323791

[0, a+1, −1, 3351111a+661990, −762997059a+3083596118]/(a2−a+1)

7Nn.0.1.1[2] 84
(

6 1
2 1

)
,
(

0 3
1 0

)
Yes 1 4 24 24 −7 2872112232291

[0, 0, a, −686(4a+13), 104431a+347925]/(a2−a+2)

7A4.3[2] 84
(

5 4
4 2

)
,
(

5 4
0 6

)
Yes 1 4 8 24 −7 222392

[1, 1, a+3, −14a−12, −33a−17]/(a2−a+2)

7A4.1[2] 28
(

4 0
5 2

)
,
(

5 2
1 2

)
,
(

3 0
0 3

)
Yes 1 4 24 72 −7 29792

[−a+3, 5a−7, 6a−2, 1217a−851, −19779a−3823]/(a2−a+2)

7S4.1[2] 14
(

0 4
5 3

)
,
(

2 4
0 4

)
,
(

3 0
0 3

)
Yes 1 8 48 144 −7 28112

[−2a, 0, 2a+2, 7a−5, −a+3]/(a2−a+2)



11B.1.1 120
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 1 110 8 21231

[a+1, −1, 1, −2a−3, 2a+3]/(a2−2)

11B.1.2 120
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 10 110 8 21231

[a+1, −1, 1, −947a−1473, −20242a−29187]/(a2−2)

11B.1.3 120
(

3 0
0 8

)
,
(

1 1
0 1

)
No 3 1 5 110 −7 114232

[0, 0, −1, 1210a+814, 7986a−33850]/(a2−a+2)

11B.1.8 120
(

8 0
0 3

)
,
(

1 1
0 1

)
No 3 1 10 110 −7 114232

[0, 0, 2a−1, 2662(−55a+92), 10629366a+34424653]/(a2−a+2)

11B.1.10 120
(

10 0
0 9

)
,
(

1 1
0 1

)
No 3 1 2 110 8 21114231

[a+1, −a−1, a, 171a−326, 3124a−4706]/(a2−2)

11B.1.9 120
(

9 0
0 10

)
,
(

1 1
0 1

)
No 3 1 5 110 8 21114231

[a+1, −a−1, a, 114516a−178196, −26700245a+38567674]/(a2−2)

11Ns 66
(

2 0
0 6

)
,
(

0 10
1 0

)
,
(

1 0
0 2

)
Yes 1 2 20 200 13 2315212

[0, −a, 1, −711a−1975, 32565a+51092]/(a2−a−3)
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11B.10.1 60
(

10 0
0 10

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 2 220 8 24231

[a, a, 0, 6a−10, 16a−26]/(a2−2)

11B.10.2 60
(

10 0
0 10

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 10 220 8 24231

[a, a, 0, 3786a−5890, −161936a+233494]/(a2−2)

11B.10.3 60
(

10 0
0 10

)
,
(

3 0
0 8

)
,
(

1 1
0 1

)
Yes 3 1 10 220 −7 28114232

[0, 0, 2a+2, 352(55a+37), −511107a+2166385]/(a2−a+2)



11B.3.1 24
(

3 0
0 4

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 5 550 −7 21112

[1, 1, a, 0, 0]/(a2−a+2)

11B.3.2 24
(

3 0
0 4

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 10 550 −7 21112

[1, 1, a, 35a−135, −217a+705]/(a2−a+2)

11A5.1[2] 22
(

5 7
0 3

)
,
(

5 5
1 4

)
Yes 1 12 120 600 −11 26341032

[0, 0, 0, 3841a+8421, 76280a+1073622]/(a2−a+3)

11B 12
(

2 0
0 6

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 10 1100 −8 32112

[1, a+1, 0, a−4, −a−5]/(a2+2)

13Ns 91
(

2 0
0 7

)
,
(

0 12
1 0

)
,
(

1 0
0 2

)
Yes 1 2 24 288 8 52722632

[a, 1, a+1, 14455a−27951, 2058670a−3164816]/(a2−2)

17B.4.3[2] 144
(

4 0
0 13

)
,
(

3 0
0 12

)
,
(

1 1
0 1

)
Yes 1 1 16 544 17 28172

[0, a−1, a+1, 62a−174, 378a−955]/(a2−a−4)



17B.4.1 72
(

4 0
0 13

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 1 1 4 1088 5 22292

[1, 1, a, −3a−2, 2a]/(a2−a−1)

17B.4.3 72
(

4 0
0 13

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 16 1088 5 22292

[1, 1, a, 447a−4152, −85116a+59004]/(a2−a−1)



17B.2.1 36
(

2 0
0 9

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 1 1 8 2176 −4 24172

[a+1, 1, 0, 10a−54, 80a−132]/(a2+1)

17B.2.3 36
(

2 0
0 9

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
Yes 1 1 16 2176 −4 24172

[a+1, −1, a+1, −45a+46, −21a−161]/(a2+1)

17B 18
(

3 0
0 6

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 1 1 16 4352 −4 53172

[0, a−1, a, 79a+41, 14a+286]/(a2+1)
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19B.7.1 120
(

7 0
0 11

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 3 1026 13 132

[a, −a−1, 0, −7a+6, a+20]/(a2−a−3)

19B.7.2 120
(

7 0
0 11

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 18 1026 13 132

[a, −a−1, 0, 73118a−178094, 15174381a−35305705]/(a2−a−3)



19B.7.4 120
(

7 0
0 11

)
,
(

4 0
0 10

)
,
(

1 1
0 1

)
No 3 1 9 1026 −3 243472194

[0, a+1, 0, −7314a−12540, 753536a+12257]/(a2−a+1)

19B.7.10 120
(

7 0
0 11

)
,
(

10 0
0 4

)
,
(

1 1
0 1

)
No 3 1 18 1026 −3 243472194

[0, 4a+1, 0, 2640723a−7167660, 5225465897a−5332549369]/(a2−a+1)



19B.7.8 120
(

7 0
0 11

)
,
(

8 0
0 5

)
,
(

1 1
0 1

)
No 3 1 6 1026 13 132194

[a, −a+1, 1, −2641a+1957, −1369a−100185]/(a2−a−3)

19B.7.5 120
(

7 0
0 11

)
,
(

5 0
0 8

)
,
(

1 1
0 1

)
No 3 1 9 1026 13 132194

[a, −a+1, 1, 26395484a−64292143, −103917992039a+241830189815]/(a2−a−3)



19B.8.1 60
(

8 0
0 12

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 6 2052 13 132

[a+1, 1, 1, −2a−2, −6a−8]/(a2−a−3)

19B.8.2 60
(

8 0
0 12

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 18 2052 13 132

[a+1, 1, 1, −1727a−4177, 66984a+119182]/(a2−a−3)

19B.8.4 60
(

8 0
0 12

)
,
(

4 0
0 10

)
,
(

1 1
0 1

)
Yes 3 1 18 2052 −3 283472194

[0, 5a+5, 6, −7290a−12540, −807848a−22730]/(a2−a+1)



19B.4.1 40
(

4 0
0 5

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 9 3078 −8 2134192

[−3, 2a−5, −2a+4, −7a+13, 5a−7]/(a2+2)

19B.4.2 40
(

4 0
0 5

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 18 3078 −8 2134192

[−3, −4a−2, 2a−1, 3717a−1680, 108119a+59932]/(a2+2)

19B 20
(

2 0
0 10

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 18 6156 −8 3354

[0, −4a+8, −9a+9, −73a+14, −87a+111]/(a2+2)



23B.2.1 48
(

2 0
0 12

)
,
(

1 0
0 5

)
,
(

1 1
0 1

)
No 3 1 11 5566 −7 21232

[1, a+1, a+1, 29a−65, −120a+121]/(a2−a+2)

23B.2.5 48
(

2 0
0 12

)
,
(

5 0
0 1

)
,
(

1 1
0 1

)
No 3 1 22 5566 −7 21232

[1, −a−1, a+1, 16a, −42a−21]/(a2−a+2)
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23B 24
(

5 0
0 14

)
,
(

1 0
0 5

)
,
(

1 1
0 1

)
Yes 3 1 22 11132 −11 32232

[1, −a, a, 4a−3, −a−1]/(a2−a+3)



29B.7.1 120
(

7 0
0 25

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
No 3 1 7 5684 −4 292

[1, a, 1, −1, 0]/(a2+1)

29B.7.2 120
(

7 0
0 25

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
No 3 1 28 5684 −4 292

[1, a, 1, 2080a−3751, 73352a−79386]/(a2+1)



29B.7.4 120
(

7 0
0 25

)
,
(

4 0
0 15

)
,
(

1 1
0 1

)
No 3 1 14 5684 −4 294

[−a, a−1, −a, −141a−157, −2591a−5674]/(a2+1)

29B.7.8 120
(

7 0
0 25

)
,
(

8 0
0 22

)
,
(

1 1
0 1

)
No 3 1 28 5684 −4 294

[a, 2a−1, −2, −3645a−2261, 107979a+8482]/(a2+1)



29B.4.1 60
(

4 0
0 22

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 3 1 14 11368 −4 24292

[a+1, 5a+3, −4, 12a+24, 296a+232]/(a2+1)

29B.4.2 60
(

4 0
0 22

)
,
(

2 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 28 11368 −4 24292

[a+1, −5a+1, 4, 144a+564, −5944a+2472]/(a2+1)

29B 30
(

2 0
0 15

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 28 22736 −7 24292

[2a, −1, −a−2, 4a+8, 12a−24]/(a2−a+2)



31B.5.4 320
(

5 0
0 25

)
,
(

4 0
0 24

)
,
(

1 1
0 1

)
No 3 1 15 2790 −11 3852314

[0, 3, 3, 136740690a−686742129, 1958685589751a−6654652545690]/(a2−a+3)

31B.5.11 320
(

5 0
0 25

)
,
(

11 0
0 20

)
,
(

1 1
0 1

)
No 3 1 30 2790 −11 3852314

[0, 3, 3, −142290a−572319, 65600681a+157039605]/(a2−a+3)

31B.6.4 160
(

6 0
0 26

)
,
(

4 0
0 24

)
,
(

1 1
0 1

)
Yes 3 1 30 5580 −11 283852314

[0, −3, 2a, −2276640a−9157149, −4205273505a−10078006254]/(a2−a+3)



31B.7.1 64
(

7 0
0 9

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
No 3 1 15 13950 −3 72312

[3, −5, −4, 195a+198, 5134a−6388]/(a2−a+1)

31B.7.3 64
(

7 0
0 9

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
No 3 1 30 13950 −3 72312

[3a−3, 5a, −3, −5546a−1044, −214581a+68920]/(a2−a+1)

31B 32
(

3 0
0 21

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 3 1 30 27900 −3 74312

[3, −a−2, −a, 95a−370, 1614a−6420]/(a2−a+1)
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Table 7. Continued.

37B 38
(

2 0
0 19

)
,
(

1 0
0 2

)
,
(

1 1
0 1

)
Yes 1 1 36 47952 −11 243374

[0, −a+4, 6, −16170a+16494, −431712a+1866132]/(a2−a+3)

41B 42
(

6 0
0 7

)
,
(

1 0
0 6

)
,
(

1 1
0 1

)
Yes 1 1 40 65600 −4 2152412

[a, 3a+1, 0, 14a, 13a+5]/(a2+1)

Table 8. Some exceptional G E(`) for non-CM elliptic curves E over Q[a]/(a3 − a2 + 1).

Group Index Generators −1 t d0 d1 d D N
Curve

7Cs.1.1 336
(

1 0
0 3

)
No 3 1 1 6 −23 2372

[1, −a2+a, a2+a, −3a−2, −2a−2]

7Cs.1.4 336
(

4 0
0 6

)
No 3 1 2 6 −23 2376

[1, 4a2+2a+4, 0, 56a2−114a−120, −316a2+224a+512]

7Cs.6.1 168
(

6 0
0 6

)
,
(

1 0
0 3

)
Yes 3 1 2 12 −23 235272

[a+1, a+1, a2+a, 12a2+20a+5, 72a2−49a−47]

31B.5.1 320
(

5 0
0 25

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
No 3 1 3 2790 −23 51972

[a+1, a, a, −40a2+23, −179a2+2231a+1786]

31B.5.3 320
(

5 0
0 25

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
No 3 1 30 2790 −23 51972

[a+1, a, a, 474525a2−3200a−273302, −90370559a2−71881939a−2769254]

31B.5.6 320
(

5 0
0 25

)
,
(

6 0
0 16

)
,
(

1 1
0 1

)
No 3 1 6 2790 −23 51316972

[a+1, a2+a+1, 0, −38977a2+261a+22342, 4547700a2−65990438a−52406399]

31B.5.16 320
(

5 0
0 25

)
,
(

16 0
0 6

)
,
(

1 1
0 1

)
No 3 1 15 2790 −23 51316972

[a2, 2a2+3a+1, −2, −62172325a2+61226571a+68084562, 192717035605a2+178577917357a+44210952860]

31B.6.1 160
(

6 0
0 26

)
,
(

1 0
0 3

)
,
(

1 1
0 1

)
Yes 3 1 6 5580 −23 52972

[a2+a+1, 3, 2a2−a, a2+2a+3, 9a2−a−6]

31B.6.3 160
(

6 0
0 26

)
,
(

3 0
0 1

)
,
(

1 1
0 1

)
Yes 3 1 30 5580 −23 52972

[a, 2a, a2−a, −31743a2+58113a−42806, −4057150a2+7108029a−5326264]
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généralisée’, Astérisque 61 (1979), 165–167.
[52] J. Rouse and D. Zureick-Brown, ‘Elliptic curves over Q and 2-adic images of Galois’, Res.

Number Theory 1 (2015).
[53] A. Schönhage and V. Strassen, ‘Schnelle Multiplikation Großer Zahlen’, Computing 7 (1971),

281–292.
[54] A. Schönhage, ‘Factorization of univariate integer polynomials by diophantine approximation

and an improved basis reduction algorithm’, in Automata, Languages, and Programming,
LNCS, 172 (1984), 436–447.

[55] R. Schoof, ‘Elliptic curves over finite fields and the computation of square roots mod p’,
Math. Comp. 44 (1985), 483–494.

[56] R. Schoof, ‘Counting points on elliptic curves over finite fields’, J. Théor. Nombres Bordeaux
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Bordeaux 24 (2012), 475–485.
[66] A. V. Sutherland, ‘Isogeny volcanoes’, in Proceedings of the Tenth Algorithmic Number

Theory Symposium (ANTS X), (eds E. W. Howe and K. S. Kedlaya) Open Book Series 1
(Mathematical Sciences Publishers, 2013), 507–530.

[67] A. V. Sutherland, ‘On the evaluation of modular polynomials’, in Proceedings of the Tenth
Algorithmic Number Theory Symposium (ANTS X), (eds. E. W. Howe and K. S. Kedlaya)
Open Book Series, 1 (Mathematical Sciences Publishers, 2013), 531–555.

[68] A. V. Sutherland, Magma scripts related to Computing images of Galois representations
attached to elliptic curves, available at http://math.mit.edu/ drew/galrep, 2015.

https://doi.org/10.1017/fms.2015.33 Published online by Cambridge University Press

http://www.lmfdb.org
http://beta.lmfdb.org
http://www.numdam.org/item?id=PMIHES_1977__47__33_0
http://www.ams.org/mathscinet-getitem?mr=482230
http://www.ams.org/journals/mcom/1994-63-208/S0025-5718-1994-1248973-7/home.html
http://link.springer.com/article/10.1007%2Fs00145-004-0315-8
http://www.jstor.org/stable/2373092
http://link.springer.com/article/10.1007%2Fs40993-015-0013-7
http://www.ams.org/mathscinet-getitem?mr=292344
http://link.springer.com/chapter/10.1007%2F3-540-13345-3_40
http://link.springer.com/chapter/10.1007%2F3-540-13345-3_40
http://www.jstor.org/stable/2007968
http://jtnb.cedram.org/item?id=JTNB_1995__7_1_219_0
http://www.ams.org/mathscinet-getitem?mr=1484415
http://link.springer.com/article/10.1007%2FBF01405086
http://www.numdam.org/numdam-bin/fitem?id=PMIHES_1981__54__123_0
http://dx.doi.org/10.1112/S1461157015000017
http://dx.doi.org/10.1112/S1461157015000017
http://link.springer.com/chapter/10.1007/3-540-45455-1_22
http://www.ams.org/journals/mcom/2014-83-285/S0025-5718-2013-02712-3/home.html
http://math.mit.edu/~drew/smalljac_v4.0.28.tar
http://math.mit.edu/~drew
http://www.ams.org/journals/mcom/2011-80-273/S0025-5718-2010-02373-7/
http://www.ams.org/journals/mcom/2011-80-273/S0025-5718-2010-02373-7/
http://jtnb.cedram.org/jtnb-bin/item?id=JTNB_2012__24_2_475_0
http://msp.org/obs/2013/1-1/p25.xhtml
http://msp.org/obs/2013/1-1/p26.xhtml
http://math.mit.edu/~drew/galrep
https://doi.org/10.1017/fms.2015.33


Computing images of Galois representations attached to elliptic curves 79

[69] T. Sunada, ‘Riemannian coverings and isospectral manifolds’, Ann. of Math. (2) 121 (1985),
169–186.

[70] H. P. F. Swinnerton-Dyer, ‘On `-adic representations and congruences for coefficients
of modular forms’, in Modular Functions of one Variable III (Antwerp, Belgium 1972),
(eds. P. Deligne and W. Kuyk) Lecture Notes in Mathematics, 350 (Springer, 1973), 1–56.
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