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COMPARISON THEOREMS OF HILLE-WINTNER TYPE FOR
THIRD ORDER LINEAR DIFFERENTIAL EQUATIONS

L. ERBE

Integral comparison theorems of Hille-Wintner type of second order

linear equations are shown to be valid for the third order linear

equation y'" + q(t)y = 0 .

1. Introduction

The Sturm comparison theorem and its generalizations play an important

role in the study of the oscillatory character of the second order linear

equation

(1) y" + q(t)y = 0 , g ( C[a, +») .

One of the simpler forms of the theorem states that if equation (l) is

disconjugate on [a, +°°) (that is, no solution of (l) has more than one

zero on [a, +°°) ) , and if q 6 C[a, +°°) with qAt) £ q(t) on

[a, +°°) , then the equation

(2) y" + qAt)y = 0

is also disconjugate on [a, +00) . This result may be extended to

comparisons of an integral type, one of which is the so-called Hille-

Wintner comparison theorem.

THEOREM 1 [ « ] , [ / 5 ] . Let Q(t) = I q(s)ds and QAt) = I qAs)ds= ) q{s)de and QAt) = \ qA
>t >t
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176 L . Erbe

exist with 0 5 Q-.(t) 5 Q(t) on [a, +<*>) and assume equation ( l ) is

disconjugate on [a, +°°). . Then so also is equation ( 2 ) .

In this paper we shall be interested in extending an analogue of

Theorem 1 to the third order linear equations

(3) Ly = y'"+ q(t)y = 0

and

(h) Lxy = y'"+ q^tfy = 0 .

We recall-that equation (3) is said to be disconjugate on an interval

I c [a, +°°) in case no nontrivial solution has more than two zeros on J .

Disconjugacy and its connection with oscillation and nonoscillation have

been studied by many authors {of. Barrett [7], Hanan [7], Lazer [77], Etgen

and Shih [3], [4], [5], Jones [9], [70], and the references therein). In

particular, it has been shown in [7 3] (see also [7, Theorem 3.11]) that if

q{t) 5 q±{t) 5 q(t) and if Ly = y'" + q(t)y = 0 and Ly = y'" + q{t)y = 0

are both disconjugate on [a, +°°) , then so is L y = y'" + q (t)y = 0 .

This may be thought of as one analogue of the Sturm Comparison Theorem in

the study of the oscillatory character of Ly = 0 . In order to compare

our results with other known criteria for disconjugacy, we recall that if

q(t) 5 0 on [a, +°°) and if Ly = 0 is disconjugate on [a, +°°) , then

([7]),

(5) j tq{t)dt < -HX> .

Further, if

(6) j t2q{t)dt < -H» ,

t hen Ly = 0 i s d i s c o n j u g a t e on [ t Q , -H=°) , some t 2 a , ( [ 6 ] ) . On t h e

o t h e r hand, i f for some 6 , 0 < 6 < 1 , we have

(7) J" t1+&q(t)dt = -.- ,

then Ly = 0 is oscillatory (that is, Ly = 0 has a solution which

changes sign on each half-line [t , -H») ) ([77]). Finally, comparison
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with the Euler equation shows that Ly = 0 is (eventually) disconjugate if

(8) lim sup t\(t) < 2/3^3

and is oscillatory if

(9) lim inf t3q(t) > 2/3\/3 .

Additional c r i t e r i a may be found in the references ci ted above and in

the book of Swanson 1142. We remark also that Ly = 0 i s disconjugate on

an interval J ( f in i t e or inf in i te ) in case there exist a, B € C (I)

with a < B on I and a" + fit, a, a ' ) i 0 2 B" + / ( * , B, B') , t d I ,

where f(t, r, r') = 3rr' + v + p ( t ) , ( that i s , a, B are lower and

upper solutions of the Riccati equation for Ly = 0 ) (see [2 ] ) .

2. Statement and proof of the results

THEOREM 2. Assume Ly = 0 i s disconjugate on [a, +°°) ., and let

q, q, € c[a , +°°) satisfy

(10) q(t) 5 0 , q^U) > 0 , t > a .

Assume further that

(11) Q(t) = j q(s)ds and Q(t) = \ q
>t L >t ±

exist and satisfy

(12)

Then L-.y = y'" + qAt)y = 0 is disconjugate on [t , -H») /or some

t o - a •

If we relax the requirement that q be nonnegative, we may establish

COROLLARY 3. Assume Ly = 0 is disconjugate on [a, +°°) , q > 0 j

and assume that

(13) ((tisflft), t > a ,
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(lit) <?"(£) S Q(t) , t 2 a 3

where

Q*At) = j q^(s)ds and Q~(t) = J q~(s)ds

and where qAt) Emax[o, qAt)'] , q~(t) = max[o, -qAt)~] . Then L y = 0

is disconjugate on [t.., +°°) for some t > a .

I t is not diff icult to see that Theorem 2 and Corollary 3 are sharp by

considering the Euler equation

(15) y'" + at~ y = 0 , a real constant,

which is disconjugate on [a, +°°) (a > 0) if and only if |a | 5 2/3J3 .

We shall give below an example whose disconjugate behaviour may not be

inferred by any c r i t e r i a known to the author.

For the case of a f in i te interval J = [a, b] , we have the following

analogue of Theorem 2. This result i s also related to the so-called Levin

comparison theorems for the second-order equation (l) and (2) (see [J2] and

[74]). We recal l that the adjoint equation of (3) is

(16) L*y = y'" - q(t)y = 0 .

THEOREM 4. Assume q 2: 0 on [a, b] and that the following

conditions hold:

(17)

+ fb

q(s)ds S q(s)ds ,
L h

[h - (b

q(s)ds 5 q{s)ds .
it. x h.

a 2 t 5 b ,

t
>t " n

Further, let L*y = 0 have a solution y = y(t) satisfying

(18) y > 0 , y' > 0 , y" < 0 3 a 2 t 2 b .

Then L y = 0 is disconjugate on [a, b] .

Before proving the above results, we shall need to establish some

properties of the nonoscillatory solutions of the adjoint equation (16)

under the assumption q > 0 , q \ 0 . Recall that L*y = 0 is
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disconjugate on an interval I if and only if Ly = 0 is disconjugate on

I {cf. [7]). If I = [a, +°°) and y = y(t) \ 0 is a nonoscillatory

solution of L*y = 0 , we may suppose that y(t) > 0 for { > t . . Since

y'" = q(t)y 2 0 , t > t , i t follows that y" is increasing on [tQ, *»)

and hence z/' can change from negative to positive values at most once

in [t , +°°) . Therefore, either y'(t) 5 0 for all t 2 t or there

exists t 2 tQ with y'(t) > 0 on [t , +°°) . Suppose then that

y'{t) 5 0 for all t i t . . Now since y"{t) is increasing, we must also

have either y"{t) 5 0 or y"(t) > 0 eventually. But if y"{t) 5 0 ,

then y'it) is decreasing and hence y'(t) 2 6 < 0 for all large t and

some 6 < 0 , which contradicts the fact that y[t) > 0 on [tQ, +") . On

the other hand, if y"(t) > 0 eventually, then it follows that

y"(t) > ri > 0 for all large t and some r| > 0 , which implies that

y'{t) -»•+«> , a contradiction. We may conclude, therefore, that we must

have y'it) > 0 on [t , +00) for some t > t^ • We summarize the above

remarks in

LEMMA 5. If q{t) > 0 and if y = y{t) $ 0 is a nonoscillatory

solution of L*y = y'" - q(t)y = 0 , then there exists t 2 a such that

(19) y{t)y'{t) > 0 on [t^ -**>) .

The following result gives a sufficient condition for disconjugacy of

L*y = 0 on an arbitrary interval I = [a, b] or [a, +°°) . In the

infinite interval case, it is actually a special case of a result of Lazer

[//, Theorem 2.1]. However, the proof given below is different.

LEMMA 6. Let q > 0 , q ̂  0 , on I and assume there exists a

solution of L*y = 0 satisfying

(20) y(t) > 0 , y'(t) > 0 , y"(t) < 0 , til.

Then l*y = 0 is disconjugate on I .

Proof. Given the solution y of L*y = 0 satisfying (20), let z

be the solution of L*y = 0 with

(21) z(a) = 0 , z'(a) = 1 , z"(a) = 1 ,

where I = [a, b] or [a, °°) . Then since z'" = qz > 0 on J , i t
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follows that z > 0 , z' > 0 , z" > 0 , t > a . Therefore, the function

W(t) = yz' - zy' is a solution of Ly = 0 satisfying

W{a) = y(a)z'{a) > 0 and W = i/s" - zy" > 0 on I so that V > 0 ,

f/' > 0 on J . Therefore, a{t) = 0 < 3(t) = (/'/" are lower and upper

solutions of the Riccati equation for Ly = 0 and hence Ly = 0 is

disconjugate on J ([2]), that is, L*y = 0 is disconjugate on I .

The converse of Lemma 6 is true, under an additional assumption, for

the infinite interval case. This is a special case of a result of Lazer

[/J, Theorem 2.2] to which we refer for the proof:

LEMMA 7. Let q{t) 5: 0 and q(t) $ 0 , I = [a, -HO) , and assume

(22) t q{t)dt = +» .

27zen L*y = 0 is disconjugate on \t , +°°) for some i > a if and only

if there exists a nonoscillatory solution y = y(t) of L*y = 0

satisfying

(23) yit) > 0 , y'(t) > 0 , i/"U) < 0 .on \t^, -KO] ,

for some t-. - a .

Whether condition (22) is necessary for the existence of a solution of

L*y satisfying (23) under the assumption that L*y =0 is disconjugate

appears to s t i l l be an open question ( [ / / ] ) .

The proof of Theorem 2 will be given by considering an appropriate two

dimensional nonlinear Riccati system. To that end, we make the following

change of variable in the equation L*y = y'" - q(t)y = 0 :

= y"/y ,(2*0

to obtain

(25)

t h e

" l ~

system

y'ly

u> =

U2~

Thus, i f y i s a nonoscillatory solution of L*y = 0 with, say

y(t) > 0 , y'{t) > 0 for t > t , then u , u defined by (2k) sa t isfy

(25) which becomes, af ter an integration from t to T ,
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tQ S t < T < +» ,

(26)

MAt) = u (21) +

uAt) = uAT) +

? 1
M -w Ids ,

[u uAds - qds .

h x 2 h
We may now give the proof of Theorem 2.

Proof of Theorem 2. The proof of the theorem will be separated into

two cases, according to whether condition (22) does or does not hold. We

shall also assume that q \ 0 for all large t (otherwise there is

nothing to prove).

Case (i): t q(t)dt = •*=» .

Suppose that q, q , are as in the hypotheses of Theorem 2. Since

disconjugacy of Ly = 0 is equivalent to disconjugacy of L*y - 0 , l e t

y = y(t) $ 0 be a nonoscillatory solution of L*y = 0 satisfying (23) on

[tQ, +°°) , t 2 a . Defining u u as in (2k), we see that u > 0 ,

Up < 0 on L^n' °°J an<^ s i n c e y'(t) i s decreasing and y(t) i s

increasing on [tQ, °°) , i t follows that lim uAt) = 0 . Likewise,

lim uAt) = 0 . Hence, l e t t i n g T-»• °° in system (26), we see that u , M
£->°° 1 2
satisfy

(27)

= I
= J

where q{s)ds , and

(28)
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Notice that if u > 0 , u. < 0 , then g is increasing in w and

decreasing in u and g is decreasing in u and increasing in w

Consider now the system corresponding to L y = y'" + q.y = 0 and i t s

adjoint L^y = y'" - q^y = 0 :

(29)

"2(*) = j 32b>v »2)ds - Q±{t) ,

t > t Q .

We show f i rs t that (29) has a solution defined on \t , -K*>) which is

obtainable by successive approximations. To see this , define the sequences

(30)

and

(31)

v1Q(t) , t > t Q ,

E U2{t) '

" QX(t) ' M - X ' * = *o "

By induction, using the monotoneity of g and g , i t follows that

(32) v

are well-defined for a l l t i t and sat isfy

- V2n(t) - U2

Furthermore, since g \u (

(using Qx(t) > 0 ) tha t

(33) "-,„(*) > 0 >

> 0 > ^2(u]L(t), M2(t)) , i t follows

, t 2 *Q , n = 1, 2, . . . .

Define by
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vAt) = l im v At) , v At) = l im v (t) , t 2 t .
n-*x> ± n

 n-w>

It follows by the Monotone Convergence Theorem and Dini's Theorem that

vAt), V2(t) solve system (29) on [tQ, +°°) , and that {w^}, {w^}

converge uniformly on compact intervals to y , V- . Further, since

qAt) \ 0 , i t follows that vAt) < 0 , t > t . We may now define

rt
z(t) = exp I vAs)ds , t > tQ ,

and it follows that z(t) is a solution of y'" - q y = 0 on [t , +")

and satisfies z{ t) > 0 , z'{t) = vAt)z(t) > 0 , and

z"(t) = u^+u l̂s = V2(t)z(t) < 0 , t > tQ .

Therefore, by Lemma 6, L*y = y'" - q,y = 0 is disconjugate on [t,, +°°)

and hence so also i s L y = y'" + q.y = 0 . This completes the proof for

case ( i ) .

Case (ii): t q(t)dt

In this case, we show that under the assumption that (12) holds

(that is, QAt) S Q(t) ), it follows that

j t*qAt)dt <

so that condition (6) holds for L y = 0 and therefore L y = 0 is

disconjugate ([5]). (The author is indebted to Professor G. Butler for the

following observations.) Define \i(t) = t , t 2 a . Then an integration

by parts yields:

(t
(3*0 s q(s)ds = \i(s)q(s)ds

' a >n

\i'(s)Q(s)ds - \i(t)Q(t) + \i(a)Q(a) .

'a 'a

it
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Similarly,

f
£ I rt

s*qA.s)ds = \i'(s)Qx(.s)ds - u U J ^ U ) + \i(a)Q (a) •
n ' n

Suppose, if possible, that t q{t)dt = +°° . Then from (35) i t follows
'a

that

(36) l im [ v'is)QAs)ds = 4«°
£-Xx> 1 a

so that if we let

- f *

then l im <)>(£) = +00 ( cond i t ion (12)) . How from (3k), s ince

l im [(f)( t)-\i(t)Q(t) ] i s f i n i t e , the re e x i s t s a > 0 and tQ > a so t h a t

(37) y(*)G(*) 2 <))(*) + u(a)«(a) - c , * 2 tQ ,

which implies

(38) •'(*) > (p'U)/y(t))(cf>(*)+e;L) , t>tQ,

where c = \\{a)Q{a) - c . Let t > t such that <)>(£) 2 2|c | for

t 2 t . Then integrating (38) from £ to t 2 t we get

(39) OMiO+^McKtJ+cJ 2 yCt)/^^) , t > ̂  ,

and so from (37) we have

(UO)

and hence

Cn) «(*) 2; (•(*]_)-WiJ/wf*!) > 0 , t > ^ ,

contradicting the integrability of q . Therefore, t qAt)dt < +°°
•'a

and L y = 0 is disconjugate. This completes the proof of Theorem 2.
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Proof of Corollary 3. The proof of Corollary 3 follows immediately

from Theorem 2. If the hypotheses of Corollary 3 hold, then it follows by

Theorem 2 that both y'" + q y = 0 and y'" - q.y = 0 are disconjugate on

[tQ, +«) . Since -<?"(£) 2 q±(t) £ q^(t) , it follows ([7], Theorem 3.11,

['3]) that y'" + q,(t)y = 0 is disconjugate on [t , -K*>) .

Proof of Theorem 4. The proof of Theorem 1+ is similar to the proof of

Theorem 2 and Corollary 3. We consider system (26) with t = a and

T = b and with u , u defined as in (2k), where y satisfies (l8).

Assuming q > 0 , then the corresponding system for L*y = 0 is

c
(U2)

rb

f
ui(t) = j M y r V2^ds + V h ) '

a £ £ £ b ,
rb

v2(t) = j g2[vv v2)ds - Qx(t) + v2(b) ,'t

rb
where Q~{t) = J q (s)ds . We may now define the successive

approximations {u }, {u^^} for a £ t £ i> byv

= u±{t) ,

and

Ct3) »ln(*) =

The proof now proceeds as in Theorem 2 and we conclude that there exists a

solution 2 of L y = 0 satisfying (20) so that L y = 0 is disconjugate

on [a, b] by Lemma 6. If now q > 0 is not assumed but condition (17)

holds, then we argue as in Corollary 3 to show that L y = 0 is

disconjugate on [a, b] . This completes the proof of Theorem h.

EXAMPLE 1 . A special case of a result of Lazer [//, Theorem 3.5]
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implies that equation (U) is disconjugate on [t , +°°) for some t > a

in case qAt)dt < +•» , q > 0 and q ^ 0 in any subinterval and

provided the second order equation

(hk) y" At)dt y = o

is nonoscillatory. In particular, (kk) is nonoscillatory (by comparison

with y" + ̂ t~ y = 0 ) in case

P r ,
C+5) lim sup t qAt)dt < r • i = - •

, ] , ± *• J 6

Applying Theorem 2 with q(t) = (2/3^3)t~ we conclude that L y = 0

is disconjugate on ["t., +«>) for some t. 2 a in case q > 0 and

q{t)dt 5 (l/3l/3~)t~2 , t ; t

which improves

Thus, i f (?,(*) = k[l + s in t )t , 6 > 0 , then

j q1(s)ds = {k/2)t~2 + O(t"2"6) , t * ~ ,

so that if -i < k < 2/3^3 , then (1+6) holds for large t and hence

L y = 0 is disconjugate on \t , +°°) for some tQ 5 a by Theorem 2.

However, equation {hk) is oscillatory since | q (s)ds > it for large

t . Thus, the criterion of Lazer is not applicable to this example nor do

the conditions (6) or (8) hold.

EXAMPLE 2. If q(t) = (2/3V'3)t~3 , then L*y = y'" - qy = 0 has a

solution y = y(t) ̂  0 satisfying (2) on I = [a, b] for all

0 < a < & < + » , (that is, y(t) = t , where 0 < A < 1 ). Therefore, if

q € C[a, b] and if
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f q+(s)ds < {t~2-b-2) /3V3 ,

(U7) a 5 t 2 b ,

then it follows by Theorem 1* that L y = 0 is di scon jugate on [a, b] .
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