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DISTANCE FUNCTIONS AND ORLICZ-SOBOLEYV
SPACES

D. E. EDMUNDS AND R. M. EDMUNDS

1. Introduction. Let A be a bounded, non-empty, open subset of R” and
given any x in R”, let

d(x) = dist(x, R"™\A);

let k¥ € N and suppose that p € (1, co). It is known (c.f. e.g. [4] ) that
if u belongs to the Sobolev space W*P(A) and u/d* € I”(A), then
u e Wé""’(A). Further results in this direction are given in [5] and [9].
Moreover, if m is the mean distance function in the sense of [2], then it
turns out that

v/m € LXA) ifv € WIA).

Under appropriate smoothness conditions on the boundary of A, m and d
are equivalent, and thus W(}'Z(A) may in this case be characterized as the
subspace of W'2(A) consisting of all functions u € W'2(A) such that
u/d € L*(A).

The object of this paper is to give various extensions of these results,
and, in particular, to provide an analogous characterization for Orlicz-
Sobolev spaces. For the sake of definiteness we deal with spaces modelled
upon the particular Orlicz function ¢ defined by

o(t) = exp(t’) — 1 (v € (1, 00));

this function occurs naturally in Sobolev embedding theory [1] and is
typical of these required in the study of strongly non-linear elliptic
equations. Corresponding results for other specific Orlicz functions are
possible.

2. Preliminaries. Throughout A will stand for a non-empty, open,
bounded subset of R” with boundary dA and closure A; points of R” will
be represented by x = (x, ..., x,,); kK will stand for a natural number. Let
p € [1, co) and let I7(A) be the Banach space of (equivalence classes of)
real- or complex-valued functions u such that |u|” is Lebesgue-integrable
over A, with norm H'”,;,A defined by

llul, o = (/A lu(x) |de)1/p‘
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Given any @ € Njj, a = (a), . . ., @,), We write
n n
lo| = 2‘ «, D = d/dx, and D* = Hl D%
= i=
Let K € N; by W”‘”’(A) is meant the linear space
{u € I’(A):Du € IP(A) for all « € Ny with |a] = k},

endowed with the norm |||, oA where

il = 2 ID%ll, o
lal=k

the closure in W*?(A) of the space C; (A) of all infinitely differentiable
functions with compact support in A is denoted by Wok'p (A).

An Orlicz function is any map ¢:[0, co) — [0, oo) which is continuous,
convex and such that

lim ¢(¢)/t = 0, lim ¢(t)/t = oo.
—0

—00

The Orlicz class Z¢(A) is the set of all (equivalence classes of) functions
u:A — R such that

[\ olu(x) Jdx < oo;

the Orlicz space Ly(A) is the linear hull of Z¢(A), provided with the
Luxemburg norm ||-||(¢m given by

IIuII(@‘A = inf{A > O:‘[\ o( lu(x)|/Nydx = 1};

Ly(A) is a Banach space which is, in general, neither reflexive nor
separable. The closure E (A) in Ly(A) of the family of all bounded,
measurable functions on A is, however, both separable and contained
in Z¢(A). Let £ € N; the Orlicz-Sobolev space WkE¢(A) is defined by

WXE(A) = {u € Ey(A):D*u € EyA)
for all « € Ny with |a| = k},

together with the norm ”'”km),/\’ where

||u|'k,(¢)‘/\ = |2<k ”DauH(d;.)‘A.

The closure of C5(A) in WkE¢(A) is denoted by WéE¢(A).
Henceforth ¢ will stand for the Orlicz function defined by

o(t) = exp(’) — 1 (1 € [0, c0));

here » is a given number in the open interval (1, co).
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3. The distance function d. We recall that 4 is defined by
d(x) = dist(x, R"\A).

To establish the characterization of WOI"E¢(A) which is the main object of
this paper, we shall use the result mentioned in Section 1 and proved
in [4], that if p € (1, o0), then u € W() P(A) if u € WKP(A) and
u/d* € IP(A). The proof of this in [4] uses the fact that the map which
takes each f € I”(A) into the corresponding maximal function is a
bounded map of L?(A) into itself, and so the hypothesis that p > 1 is
essential. However, Professor C. Kenig has pointed out to us that a
Whitney decomposition of A into cubes may be used to establish this
result even when p = 1, and for the reader’s convenience we indicate
briefly below the main lines of this argument for the case k = 1, the proof
for k > 1 being similar. We are grateful to Professor Kenig for supplying
the essential idea of this proof.
By the Whitney decomposition theorem [7],

(e

A = U Q"

J=1

where each 0 1s a closed cube with sides parallel to the coordi-
nate axes, Q A Q,—(Z)lfjsvé [, and for each j € N,

diam Q; = dis((Q;, R"™\A) = 4 diam ¢,

Let ¢, € (0, '), let x'/) be the centre of Q, let /; be the length of each side
of Q; and put '

Qr =1+ e)Q — x) + x:0, c 0r
and the Q*need not pairwise disjoint. Let ¢ & Cy°(R") be such that
0=¢ =1, ¢(x) = 1 for all

xEQ()Z:[ ;; ,9(x) = 0forall x &€ (1 + €)Qy;

for each j € N put
— N
9(x) = ¢(1]_x_) (x € R,
J
Then ¢,(x) = 1 for all x € Q,, ¢;(x) = 0 for all x & Q* and there is

a constant A such that for all x € R alli € {1,2,...,n} and all
Jj €N,

IDg;(x) | = A(diam Q).
Put
9(x) = &(x)/B(x),
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where

®(x) = i o(x) (x € A);
then for all x € A,

S g0 - 1.

J=1

It is also shown in [7] that each point of A is contained in at most 12" of
the of Finally, put

dj = dist(Q_v, R\ A)
and note that
\/ﬁlléd/§4\/ﬁlj (j € N).

Now letu € W”’(A) and suppose that u/d € L’(A), where p € [1, c0).
For each x € A,

[ele)

u(x) = 2 u(x),

Jj=1

where u(x) = u(x)¢/(x); then given € > 0,

u(x) = 2 uj(x) + E u,-(x) = v(x) + wx).

<
dl>( d]:(

As there are points y!/) & Qf and e Q; such that
dist()""), R"\A) = dist(Q% R"\A) and

: ‘ 1
Ix(-/) _ y(,/)' = ifl\/’—'l’
it follows that
. , 1
q’, = dlst(Q,*, R\ A) + 561\/’_11
and so

. 1 1 1
dis(Q% R'\A) = d, — Ef‘\/a‘ = (1 — gfl)‘?/ = d,

for all j € N. Since the series for v has a finite number of terms only, each
term being a function with compact support in A, v € C5°(A). To show
that u € Wy P(A), it is thus sufficient to prove that
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Il — V“l,p,/\ = ”WH],p‘A = C(o),

where C(e) = 0 as e — 0.
Let x € supp u; for some j € N with d; = €. Then x € QF; thus

dix) = dj + (1 + c,)\/r_dj = dj(2 + ) = e2 + ¢) < 3e
Put A(e) = {x € A:d(x) < 3e¢}. Then
p f »
= A(e) |u| —0

p o]
Iwllp s = fAm 2yl = fAm ’Ellulqu“
P

djéz ’
as € = 0. To estimate IIDI-wllp‘ A note that

Dw = (Diu)( 2 ¢j*) + u 2 D,~<1>,’-k
dj§(

di=e
and that
D} = (1/2)Dg; — ¢,(DD)/®*.
If x € supp ¢,
d(x) =d(2 + ¢) = 3d, and
1D, (x) | = A(Vnl) ™ = 1247d(x);
also ®(x) is a finite sum,

Dd(x) = 2 D¢, (x) and

m=1
d(x) = 3d,, |D¢,,(x)| = 124/d(x)

if in addition x € supp ¢,,. Hence for all x € &,

IDw(x) | = [Du(x)]| |d2< 97(x)

m=1

+ 12A|u(x)[d2< XQJ*(x){l + 2 Xg(x) }/d (x),

from which it follows that

1/p
P n P
1Dl 5 = ([M Dl ) + 12401 + 12 )(ﬁ(()(lul/d) )

—>0ase—0.

1/p

It is now clear that u € Wy?(A), as required.
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THEOREM 1. Suppose that dA is of class C™, let u € WkE¢(A) and
assume that u/d* e Ly(A). Then u € Wé‘Ed,(A).

Proof. Evidently u € Wk’p(A) and u/d* € I’(A) for all p € [v, co).
Thus, by the result discussed above, u € Wg'p (A) for all p € [», c0), and
sou € C*7I(A) and D%ulyy, = 0 for all « € N} with |of = k — 1
(cf. e.g. [6] ). Extend u to all of R” by setting it equal to zero on R"\ A, and
denote this extension again by u.

For the moment suppose that u € C®(A). Since A is of class C,
there is a covering of A by open sets U, ..., Uy such that each U, is
homeomorphic, via a C™ diffeomorphism ®; with C inverse, to the open
unit ball B in R”, and with

(U, N A) ={y € Ry <1,y, >0},
®,(U; N oA = {y € Ryl < 1,y, = 0}.

Let U, be an open set in R” with U, C A and such that Uy, U, ..., Uy is
an open covering of A; let ¢y, ¢,..., ¢y be a C* partition of unity
subordinate to this covering. For each € > 0, let y,.:[0, co) — [0, 1] be a C™
function such that

=:=
o - {1527
and
W@ | = e
forallt = 0andallj € {i,2,...,k}, where cis an absolute constant. Put

u; = u¢,; then

N
u= > u; and
i=0

suppu;, € U; N A for each i.
Since D%ly, = 0 for all « € Nj with |a] = k — 1, it follows that
Du (@ '(»)) = 00y )

as y, | 0 for all « € Nj with |of = k and «, = j, and all
i € {1,2,...,N}. It is now routine to verify that there is a constant C
such that for all p € (1, c0), all @ € Nj with |a] = &, all € > 0, and
alli € {1,2,...,N},

ID*(u; — (e 0 (®,),)u;} ”,I;,AnU, = Cle
Put
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N
v =y + 21 (Y 0 (@,),),
1=
let p > 0 and denote by M the smallest integer such that N = 2M: put
=0forie {N+1,..., ZM}, if N < 2. Then by the convexity

of ¢,
a  _ no (€
/¢(Du D% )dx
A p

=f ( ZD“u—uwo(cb))})

Boi=1

=2" M/ qu( D*(u; — u;(de o(‘b),,)})

i=1

v 2 ()

I

II/\

—>0ase—0.

Since v € C{(A), it follows that u € WOF (A).
All that is left is to remove the assumption that u € C*(A). Suppose
that we merely know that

u e CI(R) n WrE, (M),

with D%uly, = 0 for all @« € Nj with |a| = k — 1. With the notation used

above, put
vi=uo® {y=("y)ly<1l,y =Z0}—>R

1

and let V; be the extension of v; to B by oddness:

V‘(y’, yn) = _V-(y,, _yn)

for all y € Bwith y, < 0 (i € {1, 2,...,N}). Each ¥, belongs to
WHE #(B). To check that this is so, first note that for all @ € N with
la| < k, and all ¢y € C;°(B), integration by parts shows that
with B, = {y € B:y, = 0},

ﬁViD"dey = L V(DU y)dy + L Vi(V)D*U y)dy
= /& Vi)D" y)dy + L (Vs 3D, —y)dy

~ ﬁ, (= D*M()D™;(»)dy
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+ ﬁ (=D, 2D, (y)dy.

the integrated terms vanishing on {y € B:y, = 0} since DBvi( y) = 0on
this set if |8] = k — 1. Hence

Jortay - L (= D()D*,(y)dy
- L (= DONDY (', —y,)dy

= L (= 1N w(p)dy,

where

_ [ ity € B,
W(y) - {__D(Xv_(y/’ _yn) lfy € B .

This shows that ¥, has the appropriate generalized derivatives in B, and
the anti-symmetry then leads to the conclusion that v, € W*E #(B), for
i€ {l,2,..., N}. Moreover, supp ¥; C B as

suppv; C {y € By, = 0}.

Extend each such ¥; by zero to all of R”, and denote this extension again
by v, for notational simplicity. Given any € > 0, write v, = p_ * ;, where
p is the usual mollifier and

pdy) = € "p(y/e).

Apphcatlon of Lemma 2.1 of [3] now shows that as € — 0, ¥, — 7, in
WKE #(B). Moreover, a simple calculatlon shows that for all & € NO, w1th
|l é k — 1, D%, (y) = if |y < 1 and y, = 0. Also
v..€ C(B)fori € {1, 2,. ,N}. Finally, put

1,€
o =v,0® forie{l,2,...,N}, and

1,€ 1

U = 2 dtt; . + dolpe * ).

Then
Uy € C(N),
D%ylap = O for all @ € Nj with ol = &k — 1, and
weo = u in WE(N).

Use of the first part of the proof now finishes the argument.

4. Mean distance functions. In this section we give results in the
opposite direction to that of Section 3.
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Definition 1. Let p € (1, c0), let ¢ € R" be such that |¢| = 1, and
define

pe(x) = min{ |t):x + 6 € A} (x € R").

The mean p-distance function m, (with respect to A) is defined by

o) 7 = 0, [ (oe) o) (x <

where w, is the surface area of the unit ball in R" and do is the surface
measure on the unit sphere.

This is an obvious generalization of the mean distance function of E. B.
Davies [2], which is the function m,, in our notation.

LEMMA 1. Suppose that 1 < p < q < oco. Then for all x € A,
d(x) = mq(x) = m,(x).

Proof. Since d(x) = p:(x) for all £ € R" with |{§| = 1, it follows that
3

(my(x) 7 = w, ! f,g,zl (d(x)) " “da(§) = (d(x))"*,
and so d(x) = m,(x). By Holder’s inequality,

/
oo = ([, ety do® )y 719 = g0y,

which shows that m (x) = m,(x).

The next theorem is a simple extension of a result of Davies which deals
with the case p = 2.

THEOREM 2. For all f € Cy°(A), and any p € (1, o),

M Ve s () 7 = (p—f—l)p J, erad 7 P

Proof. We begin by establishing a one-dimensional version of (1),
namely, that if ¢, b € R,

p(t) = min(|t — al, |t — bl) and g € C5((a, b)),

then

() / z lg(2) 1P/ (p(2) )Pt = (;—ﬁ——l)p / z lg’(z) |Pdt.

To prove this, let
O, ={t € (a b)gt)y >0}, O_ = {t € (a b):g() < 0}.

Since O, is open,
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where the I,, are pairwise disjoint, open invervals. Let /,, = (aq,, b,,) and
set

¢ +b,,).

m = E(am
Then since g(a,,) = 0,

L.m

fam lg(®)1P/(t — a,,)’dt
N f ol am>"’( f (lgs) |p)'ds)dt
= /::(Ig(s) I”)’(f:"' (t - am)_pdt)ds

p o -1 _ -
i f . 86 g 6)s — ) ds

1 _
- (= am)' P(ge,))".
p—1
Thus
/; lg() 1P/t — a,,)*dt
)4 m _ (=0 ( fem 1/p
= -1 1(/am (8(s))7(s — a,,) ”ds) (fam lg’(s) I”ds) ,
and so
Cm P p Com ,
(3) fam lg(0) 1P/t — a,)Pdt = (;_:T) fam 1g'(¢) Pdt.

It follows similarly that

@ [ lewre, - o s (p%l),, [ wwrva

and (3) and (4) together show that

ﬁM lg(0) 1P/ (p,, (1) )Pdt = (;—?i—l)p ﬁM lg'(¢) |Pdt,

where
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o) = min([t — a,), ¢ = b,|).
Evidently a similar inequality holds for each interval into which O_ may
be decomposed; thus as p(t) = p,,(¢t) forallz € I,
b
f 1g(0) 17/(p(e) )

= fo+ lg(@) 17/(p(2) )P + j(;f lg (@) 17/(p(r) ) dt

= (—”—)”{ L, wwva+ [ g0 |sz}

p— 1

(ﬁ)p [ g

and (2) is proved.
Now let {e|, e,, ..., e,} be any orthonormal basis of R" and let x € A
have coordinates (x,, x,, . .., x,,) with respect to this basis; put

lIA

pi(x) = pe(x).
Then
f(!f(x)l/pi(x))”dxi = (1—)—%)/] f|D,f(x) |Pdx,,

where the integrals are over a line through an arbitrary point in A and
parallel to the x;-axis. Hence

/A (1S Ce) 17p,(x) )P
= (p%l)p [x D, f(x) |Pdx

(;f—l)p [\ lgrad f(x) |Pdx.

It follows that for any £ € R” with |¢§] = 1,

A

Sy (170 oyt yrax = (2)" i tesaa s s

and so

,/|;|=] j,; (1f(x) VPg(X) YPdxdae(§)

= w, (p——’_l—l)p fA lgrad f(x) | Pdx.
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Thus

Joreor [, o) dateras

p P
= w, p— N lgrad f(x) |Pdx,
p—

which amounts to (1).
CoROLLARY 1. Let [ € Wé“’(A)for some p € (1, c0). Then
f/mp e I7(AN).
Proof. Since (1) plainly holds for all elements of W(';”(A), the result is

immediate.

In [2] Davies has given conditions on A sufficient to ensure that m, is
equivalent to d. We give these below: they also ensure the equivalence of
m, and d, for all p € [1, oo).

Given any 6 € |0, g , the boundary of A is said to satisfy a #-cone

condition if there is a right-circular cone & of semi-angle 8 and fixed height
h such that given any x € JA, there is a cone & C R"\ A congruent to &
and with vertex x. Let w(a) denote the solid angle subtended at the origin
by a ball of radius ¢ < | and with centre a distance 1 from the origin:

sin”la /2
w(a) = ,[o sin" "2 tdt/ (2 fo sin” 2 tdt).

PROPOSITION 1. Suppose that 8 € (0, w/2) and that dA satisfies a 0-cone
condition. Then there is a constant b € (0, 1/4] such that for all x € A and
all p € [1, c0),

m,(x) = Aw(b sin )" '7d(x).

As the proof is the same as that given by Davies for p = 2, we omit
it.
We can now give a characterization of W&’p (A).

THEOREM 3. Suppose that dA satisfies a 6-cone condition for some
0 € (0, 7/2), and let p € [1, o). Then

WoP(A) = {f € W'"P(A):frd € IP(A) ).
Proof. That
WyP(A) € {f € W'P(A):frd € I7(MN)}

follows immediately from Corollary 1 and Proposition 1. The reverse in-
clusion holds with no conditions on dA, as has already been explained.

Now that these results have been established, we may turn to
Orlicz-Sobolev spaces.
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THEOREM 4. For all f € Cy°(A),
S Nfrmllgya = vigrad fllg) as

where v = v/(v — 1).
Proof. For all A > 0,

foli)a- |

j=1J!

Ll
Am,

< 1
52—

=1J:

f(x)|”
Am,

o 1

)

Iy

lIA

1
(1-2) "heraa 110
Jv

by Theorem 2. Hence

/Qb(f(x))xfg ") grad £ 117,

Am N

II

(o]
ad =
§| ,(M e lerad fl17 =

if \/v' = |lgrad f || 4 A, for

‘/;xé(_____lgradf(x) l)dx = .°° I ,VA =

m Jj=1

if
= |lgrad /{4y a-
The result follows immediately.
CorOLLARY 2. If f € W&E¢(A), then fim, € Ly(A).

Proof. Since (5) clearly holds for all f W(;E¢(A), the result is
obvious.

COROLLARY 3. Suppose that O\ is of class C*°. Then
WoELA) = {u € W'Ey(AN)u/d € LyA)}.

Proof. The corollary is a direct consequence of Theorem 1, Proposition
1, and Corollary 2.
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We now extend these results to higher-order spaces, and begin with an
analogue of (2).

PROPOSITION 2. Leta, b € R,a < b, let p € N be even, p = 2, and let
k € N. Then for all f € C;°((a, b)),

b k b
(6) f O 1)) Pdr = (p—f—l) ' f NSO .

1 .
Proof. Letj € {0,1,...,k — 1} and put ¢ = E(a + b). Exactly as in

the proof of (2), we find that

f; |f(j)(t) 1P/(t — a)(k—j)P

= (L)p /C If YD) 1P(s — a)” K7 Drgs,
P — 1 a
with a corresponding inequality for the integrals from ¢ to b. Hence
‘ j o
» fa |f ) 177 (p() kP
po(b o
= (P—i_l—) /a |f(J+l)(t) lp(P(I)) (k—j l)pdt,

Successive application of (7) now shows that (6) holds.

THEOREM 5. Let p be even, p = 2, let k € N and suppose that
f € C;°(A). Then

® 1700 1770
= (L)kp A (Izk ID“f(x)lz)p/zdx.

p — 1 al=

Proof. Just as in the proof of Theorem 2, and with the same notation, we
see from (6) that

/lf(x)lp/Pf') (x)dx; = (p——f) _/‘ID:'\f(x)]pdxi'
Thus,

fAlf(x)l”/p,"k(x)dx = (—”—)pk fA ( > |D“f(x),z)”/2dx’

p —1 ol =k

and so for any ¢ U R" with |¢| = 1,
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Joretoons = (25)" [ (2 wreor) e

1 la| =k

Hence

_/|;|:1 /,; Lf(x) |p/ng(X)dxd§
p kp o 2)p/2
éw"(p_l) '/A(Ialz—k |Df () | dx,
from which (8) follows directly.

COROLLARY 4. Let p be even, p = 2, and let k € N. Then if
f e Wy, fim € ().

To remove the hypothesis that p is even needs a little more effort.

THEOREM 6. Let p € [2, 00), let k € N, suppose dA is of class C™ and let
f € Cy°(A). Then there are constants C, C,, depending only on k, n, and A,
such that

) fA f () 1P/(d(x) Yedx = CHISIE .
/2
= C{‘C(k, n, A) /A (sz |Daf(x)]2)” dx.

Proof. There is a unique m € N such that 2m = p < 2(m + 1). In view
of Theorem 5, Proposition 1, and the Poincaré inequality [1], (9) holds
when p = 2m or 2(m + 1). Thus the map

) k
T, f—f/d

of Wé"q(A) in LY(A) is continuous when g = 2m and ¢ = 2(m + 1). By
interpolation theory (cf. [8], Theorems 4.3.1 and 4.3.2), the map u +—> u/ d*
of W(f ’(A) in I”(A) is continuous and has norm bounded above by

Tl N Ty 1
for an appropriate 8 € (0, 1). The result now follows easily.

COROLLARY 5. Let dA be of class C*, let p € [2, o0) and suppose that
k € N. Then

WEP(A) = (f € WrP(A):f1d* € IP(M) ).

This result is also given in [5].
Finally, we deal with higher-order Orlicz-Sobolev spaces.

THEOREM 7. Let dA be of class C™, let k € N and let f € C{°(A). Then
there is a constant C, which depends only on k, n and A, such that
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If7dMlgyn = CIUDM 1l a0

where
1/2
DY ()| = ( 2 |D“f(x>|2)
|a| =k
Proof. For any A > 0,
S0 ) = S |
(10) A(I)()\dk(x))d g.jwva 00 dx

Now suppose that » = 2. Since we may, and shall, assume without loss
of generality that the constants C; and C of (9) are both greater than or
equal to 1, the right-hand side of (10) may be majorized by

[ee)

2 c‘cuDAfny,A >

— k
j=1] '}\”J = 'O\C C_l)"fl f”,,,A»

from which it is easy to see that

S(x) - el ok .
[\¢<Adk(x))dx =1 ifNCIO) ' = 1D 1l g8

that is,
1/7dMlgyn = CCHIDY lligy.a-

If 1 < v < 2, the first term in the series expansion requires separate
treatment. In this case,

A [f(x)/d* (x) P
172
= |A|”2( Jy 17t |2")

= 2 AIMAID 115, A-

Joo( L85 Jar = oty it i

+ 22 —(AC, KCTH T 11 A
J

where C = C max(1, |A|). Since
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if
i = D4 1l a0
it follows that

— ) v 2
(G TIPS g =
and
b ] k=—1\—v k v 1
> —|Acrte DS llya = 5
j=2J" " ?
if
ACTRC ™! = 3D | gy -
Thus,
f(x) ) 11
dx = -+ -2 <1
/A‘b(}\d"(x) T=9 3\/_
if
A= 2Cf6||Dkf|I(¢),A’
and so

Hf/dk”((p) A= 3C C“D,\f“@,) A

The proof is complete.

COROLLARY 6. Let 0A be of class C™. Then

WYELA) = {f € WrE (A):f1d* € LyA) ).

1197

Proof. The corollary is an immediate consequence of Theorems 1

and 7.

One of us (D. E. Edmunds) is indebted to the University of Toronto and
Indiana University for financial support; we are both grateful to these

institutions for the facilities afforded us.
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