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In this paper, we prove the uniqueness of the decaying positive solution on all of Rn 

for certain second order non linear elliptic equations. This improves earlier work 
of a number of authors. These problems occur in the theory of peak solutions. In 
particular, our results apply to a number of non-smooth nonlinearities which occur 
as limiting equations in population problems. 

The purpose of this paper is to improve a uniqueness result in Section 2 of Dancer 
[6]. The improvement is of particular interest because it applies to the asocial nonlin-
earity or its variants which occurs in population models (as in Conway, Gardner and 
Smoller [1], Dancer [2, 4 ] , Du [8]. Once again, the uniqueness results are new even for 
balls. 

We consider the problem 

—eAu = g(u) in D 

(1) u = 0on&D. 

More precisely, as in Dancer [6], we assume g : R —> R is C 1 and that there exist 
0 < a < b such that g(0) = g(b) = 0, g(y) < 0 on (0, a), g(y) > 0 on (a, b), 
and f£g(y)dy > 0. In addition, we assume that there is 8 > 0 such that g'(y) < 0 
on (0,6), g'(y) ^ 0 on (b — 6,b) and, if n ^ 4, we assume that there exist r ^ 
(n — l ) / (n — 3) and fei > 0 such that g(y) ^ k\\y — a\T for y near a and y > a. These 
are the basic assumptions on g in Dancer [6]. Define <j> S (a,b) by f£ g(y)dy = 0. In 
addition, assume that there exists 7 € [a, b) such that (y — j)g'(y) ^ g{y) on ( 7 , 6 ) . 

If 7 > 0, we assume 6(y) = yg'(y)/g(y) has the following properties: 9(y) ^ # ( 7 ) on 
[0,a], 9(y) ^ 6(<j>) on (a, <f>), 6 is non increasing on (d>,7) and 6{y) ^ 0(-y) on ( 7 , 6 ) . 

Note that, compared with [6], we have weakened (at least partially) the condition on 
g on (a, 6) at the expense of placing conditions on g on (0, a). Note also that our 
assumptions imply that # ( 7 ) > 1 if 7 > <f>. We shall need this below. To see this, note 
that since (y — ct)g'(y) < g(y) is true close to a (for y > a > a and to b for y < 6 
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306 E.N. Dancer [2] 

(since g(y) > 0 and g'(y) < 0) , when we choose 7 minimal, (y — ~y)g'{y)—g(y) must be 
zero at some point 71 G ( 7 , b). Then 0(71) = 7 1 / ( 7 1 - 7 ) > 1. Hence # ( 7 ) ^ #(71) > 1. 
Note also that the existence of <p is necessary for the existence of solutions (by Dancer 
and Schmitt [7]). 

We consider a bounded domain D in Rn such that 0 € D, D has C 3 boundary, D 
is invariant under the n reflections in the coordinate planes and such that, in addition, 
if 1 ^ i ^ n and if 0 < t < s < U, then (I - P{) A , t 2 (I - Pi)Dit3. Here Pi is the 
orthogonal projection onto span e;, £>j:S = {x G D : Xi = s}, U = sup{xj : a; € £>} and 
{e i} denotes the usual basis for Rn. We say that such a domain is of type Rn-

THEOREM 1 . Assume that the above assumptions on g hold and D is of type 
Rn and n > 2. Then (1) has exactly two positive solutions u with 0 < ||u||oo <b, for 
all small positive e. 

PROOF: The proof is a straight forward adaption of the proof of Dancer [6, Theo­
rem 2]. The only difficulty is to prove the uniqueness and weak non-degeneracy (in the 
sense of Section 1 there) of the positive solution UQ of 

(2) - r 1 _ n ( r n - 1 u ' ( r ) ) ' = g(u{r)) on (0,oo) 

u'(0) = 0, 0 < ||u||oo < 6, U(T) -> 0 on r -+ 00. 

The proof of this combines the ideas in the proof of Dancer [6, Lemma 1] with those in 
Kwong and Zhang [10] . We let tu(r) denote the solution of 

- r 1 - " ^ " - V ) ' = ff>o(OHr) 
w(0) = 1, w'(0) = 0 . 

As in Dancer [6], tin(0) > a and u'0(r) < 0 on (0,oo). Choose r > 0 such that 
uo(r) = 7 . (If no such r exists, the argument is simpler.) Note that uo(r) > 7 on 
( 0 , f ) . Hence -r1-n(rn-\u0(r) - 7 ) ' ) ' = fl("o(r)) ^ g'(Mr))(u0(r) - 7 ) on (0,f) 
by our assumptions on g. Since uo(r) — 7 > 0 on (0,7), a standard Sturm comparison 
theorem argument ensures that w(r) > 0 on [0,f) . Note that uo(r) < 7 on (?, 0 0 ) . 
Our argument here follows the one in Dancer [6] fairly closely. We first assume that, 
if n denotes the first positive zero of u>, then u 0 ( r i ) ^ cj>. We shall prove in a little 
while that r\ exists. Thus <j> ^ u 0 ( r i ) ^ 7 . By our assumptions on g, it follows easily 
(see the proof of Kwong and Zhang [ 10 , Lemma 7]) that there is 7 > 1 such that 

f ^ 0 if 0 ^ y ^ u0(ri) 
(3) ig(y)-y9'(y)< . . , 

[ > 0 if u 0 ( r i ) ^ y ^ 6 . 
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(That 7 > 1 follows because 9{uo(ri)) ^ # ( 7 ) > 1.) As in Dancer [6] or Kwong and 
Zhang [10], we define 0 by 7 = 1 + 2/3"1. If r2 denotes the second zero of w (where 
we take r 2 = 00 if there is no second zero), we see from (3) that 

(4) (l9(v.Q{r)) - u0(r)g''(u0(r))^w(r) ^ 0 on [0,r 2) . 

(Note that w(r) > 0 on (0,ri) and w(r) < 0 on (ri,r2). As in Step 1 of the proof of 
Dancer [6, Lemma 1], it follows easily that W(r) is increasing and positive on (0,r 2 ) , 
where W(r) = r " - 1 (v(r)w'(r) — w(r)v'(r)) and v(r) = ru'0(r) +/?un(r) . As in Dancer 
[6], this leads to a contradiction when r 2 = 00 if w is bounded and n = 2 or if w(r) -* 0 
as r —> 00 and n ^ 3. Thus w cannot have exactly one zero and satisfy the boundary 
condition at infinity (the one in the definition of weak nondegeneracy). 

For future reference, note that we can apply the same argument to the finite prob­
lem 

- ^ - " ( r — V M ) ' = g(u(r)) , u'(0) = 0, 

u(R) = 0 u(r) > 0 on (0,R). 

If we define w as before, we find that the first zero r\ of w if it exists satisfies u(ri) ^ 7 
and if the second zero r 2 of w exists, then W(r2) > 0. If u(r\) ^ <j>, this implies that 
r2 # R because, if w(r2) = 0, w'(r2) > 0 while v{R) = Ru'(R) < 0 (since u(R) = 0). 
If r 2 = R, this then implies that W(R) — Rn~1v(R)w'(R) < 0 which contradicts what 
we have proved above. This nearly always precludes the second zero of w being at R. 

We now return to the problem on [0 ,00) . First note that the Wronskian argument 
at the end of Step 1 of the proof of Dancer [6, Lemma 1] implies that w must have a 
zero in (0 ,00) . Thus r, always exists. 

Next we need to consider the possibility that un(ri) < <j>. Here we need to use an 
argument in Kwong and Zhang [6] and Kaper and Kwong [9]. We can simply apply 
Kwong and Zhang [6, Lemmas 15 and 16] on (ri ,oo) to deduce that for the finite 
problem w(r) has no zero in (ri,R] if u(ri) < d> and u(R) — 0, while for the infinite 
problem (that is, on [0,00)) we find that, if uo( r i ) < ^ . w is not the principal solution 
of the linearised equation (in the sense there). This means that to does not decay at 
infinity if n ~£ 3 and w is not bounded at infinity if n = 2 (by a slight variant of Kwong 
and Zhang [6, Lemma 4]). 

Hence we see that, in all cases, for the finite problem on [0, R], no solution of 
the linearised equation can have its second zero at R while, for the infinite problem 
there can be no solution w of the linearised equation with w'(0) — 0, w satisfies our 
boundary condition at infinity and w has at most one positive zero. 
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Let a denote 

inf {t > 0 : u(r,t) > 0 on (0,co), u (r, t) -¥ 0 as r -* oo} , 

where u(r, t) is the solution of the initial value problem for (2) which satisfies u(0, t) = 
t, u[(0,t) = 0. It is well known and easy to prove that a ^ <f> and the infimum 
is achieved. By a similar argument to that in the proof of Kwong and Zhang [10, 
Lemma 6] (which is basically a comparison argument starting from u(r,a)), we see 
that, if UQ = u( ,a), then w has exactly one zero in (0,oo). By our arguments above 
this implies that w does not satisfy the boundary condition at infinity and thus u(r, a) 
is weakly non-degenerate in the sense of Dancer [6]. As at the end of Section 1 in 
Dancer [6], we see that there is a branch of positive solutions of 

(5) — eAu = g(u) in B\, u=0 ondBi, u > 0 in Bi 

for small e with u(0) close to a (a unique such solution for each small positive e ) . By 
continuous dependence arguments (as in Dancer [6]) the solution w of the linearised 
equation at these solutions has exactly one positive zero and hence as there these so­
lutions have degree —1 as fixed points (of the map u —• (—eA + cl)~l(g(u) + cu) on 
C(Bi) for suitable large c ) . The connected branch B of solutions of (5) containing this 
curve does not continue to large e (as in Dancer [6]) and hence for each small e the 
sum of the indices of solutions in B must be zero (by homotopy invariance). On the 
other hand by a simple connectedness argument and our earlier arguments, if (u, e) £ B 
and w is the corresponding solution of the linearised equation (of (5)) with w(Q) = 1 
then w has at most one zero in [0,1]. Now B is a smooth curve parametrised by u(0) 
(Dancer [3]) and hence the other "end" of B (rescaled) must approach another solution 
u of (2) as e -+ 0 or must satisfy u(0) -¥ b as e - » 0. We show that the first case 
can not occur. If it did, our remarks above on w and continuous dependence would 
imply that the radial solution of — Aw — g'(u)w, satisfying w(Q) = 1 would have at 
most 1 zero on (0, oo) . By remarks earlier in the proof, w must have a zero and w 
is not bounded if n — 2 and does not tend to zero as r tends to infinity if n ^ 3. 
Thus u is weakly non-degenerate and since w has exactly one zero, as before we see 
that solutions of (1) nearby (for D = B\) for small positive e have index —1. This is 
impossible since the index sum is zero. Hence (u(0) : (u,e) 6 8 } is a connected set in 
(a, b) with a and b in its closure. Thus, if a < t < b, u(r, t) is zero for a finite r and 
hence u(r, a) is the unique solution of (2). Since the weak non-degeneracy of u( , a ) 
has been obtained earlier in the proof, we see from our comment at the beginning of 
the proof that this completes the proof of Theorem 1. (The last part of the proof could 
be completed in a number of ways). D 
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REMARK 1. Our methods can be extended to cover cases where g has 3 positive zeros 
0 < a, < a 2 < 0,3 by a simple combination of the techniques here with those in 
Dancer [6]. More precisely, we assume that the basic assumptions of Theorem 3 in 
there hold (not the assumption of part (iii)) but assume that g'(y) < 0 in a deleted 
neighbourhood of a,. (This assumption was omitted there). In addition, assume that 
there exists 7 € (02, a3) such that (y — 7)5'(y) < g{y) on (7, a 3 ) while, if 7 > d>, 0(y) = 
(y - ai)g'(y)/g(y) has the following properties : 6{y) ^ 0 (7 ) on (a i ,a 2 ) , 9{y) ^ 0(0) 
on (a2,0), 6 is non-increasing on ( 0 , 7 ) and 8{y) ^ 6(j) on (7 ,03) . Here <p 6 (02,03) 

is defined by g{y)dy = 0. The result is then that, if the above conditions hold and 
D is of type Rn, then (1) has exactly 2 positive solutions u with a\ < ||u||oo < a3 for 
all small positive e. 

REMARK 2. We can weaken very slightly the condition that g is C 1 by allowing one 
positive point (and probably finitely many positive points) where g is continuous but 
g' has a jump discontinuity (usually a jump down if our assumptions are to be satisfied) 
and our assumptions are satisfied in a natural way. To see this, note that, if the jump 
discontinuity happens at £, then a solution u of (2) can only take the value £ once 
(since u is decreasing) while it follows easily from the Gidas-Ni-Nirenberg theorem that 
a solution of (1) only takes the value £ on a set of zero measure. This ensures that the 
linearised equations still make sense. One can then carefully work through and check 
all our arguments are valid. There is one point which needs extra explanation. Assume 

_____ _____ 1/2 
that Ui and are positive solutions of — Au — g(u) on e i D for Dirichlet boundary 
conditions where e; —> 0 as i —¥ 00 such that Uj and V{ both converge uniformly to the 
same solution un of (2). Let Wi = — VJHOQ) 1(ui — Vi). Since g is Lipschitz one 
easily check that a subsequence of to* converges locally in W2'p to w. It remains to 
check that — Aw = g'(uo)w almost everywhere. (The rest of the argument is as before). 
If UQ(Z) = £, and > z, Ui(x) < £ and Vi(x) < £ for large i and hence 

g f i («))-£W) = , m 

Ui{x)-Vi(x) * v v " 
(where 6(x) is between Ui(x) and vt(x)) 

-+g'(u0(z)) 

and this holds locally uniformly for ||x|| ̂  z + 6. Since we can use a similar argument 
for ||x|| < z, we can easily use this to show that w satisfies the required equation. The 
rest of the argument is a straightforward adaption of the proof of Theorem 1. This 
extension is of interest because frequently when one has a system and one equation is 
singularly perturbed, the limit equation has exactly this type of non-smoothness. (See 
Conway, Gardner and Smoller [1], Dancer [2] and [5].) Indeed, some of our results 
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could be combined with results in Dancer [5] to obtain exact multiplicity results for 
some systems occurring in population problems. (We discuss this in a little more detail 
below). 

REMARK 3. In the case of a ball B, our proof shows that, if u is a positive solution of 
—Au = Xg(u) in B, u = 0 on dB which is degenerate than the corresponding solution 
of the linearised equation must be positive on B. This may be of use for studying the 
bifurcations. This idea is useful for some other problems, for example, for g(y) = yp — yq 

where l < p < g < ( n + 2)/(n - 2) . 

REMARK 4. Note that most of Dancer [6, Lemma 4] was proved in Peletier and Serrin 
[11] by a different method. 

REMARK 5. Our positive solutions can be shown to be non-degenerate for small positive 
e and the dimension of the unstable manifold of the smaller solution is equal to the 
dimension of the unstable manifold for u0 ( m the space of radial functions). By an 
example in Dancer [6], we would not expect the result to be true for all domains. Note 
that the theorem is new even for the case of a ball. 

Lastly, we want to discuss briefly how the assumptions of Theorem 1 can be verified 

in examples. Firstly, it is nearly always true that g'{y) < 0 on 16 — B, b) where 

8 > 0. It is then easy to see that 7 < 6 - /?. If g is C 2 , and if B exists, we 
consider intervals (a,b) (with a > a) where the condition g'(y){y — a) ^ g(y) holds. 
This inequality is clearly true if y > b - 8 and is clearly true for y close to a (if 
a > a). Thus as we decrease a from b — 8, it must clearly first fail at an interior 
point of (a, b) and hence there exists a < yo < b such that g(yo) — g'{yo){yo — a) = 0 
while h(y) = g(y) -g'(y)(y-a) ^ 0 on (a,b). Thus h'(y0) = 0 and h"(y0) > 0 
if g"'(yo) exists. By an easy calculation we see that g'{yo) > 0, g"(yo) — 0 and 
9"'(yo) ^ 0 if g"'(yo) exists and a = y0 - (g{yo)/g'{yo)) • Hence we see that, if 7 > a, 
7 < sup{y - {g(y)/g'(y)) • a < y b - P, g'{y) > 0, g"(y) = 0} and if g has a 
third derivative, we only consider y's with g"'{yo) ^ 0. This is a useful estimate for 7 
which is usually best possible. We now consider 9. Note that the last inequality on 8 
is trivially satisfied when g'(y) < 0 since, as we saw earlier, # ( 7 ) > 1. 

Consider the case g(y) = y(y — a)(l - y) where 0 < a < 1/2. If 1/2 ^ a < 1, cp 
does not exist and by Dancer and Schmitt [ 7 ] , there are no positive solutions. Note 
that we can rescale the case a > 1 back to the case o ^ 1. Then 

9(y) = y(eng)' = l - - ^ - + - ^ - . 
1-y y - a 

Since y{y — a ) - 1 is decreasing on (a, 1) while y(l — t / ) _ 1 is increasing on (0,1), we see 
that 9 decreases on (a, 1). Hence the last 3 inequalities on 9 always hold. To prove 
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that 9{y) < 0 ( 7 ) on ( 0 , a ) it suffices to prove that 9(y) < 1 on ( 0 , a ) (since 0 ( 7 ) > 1 ) . 
By a simple calculation we see that it suffices to prove that 1 + a — 2y > 0 on ( 0 , a) 
and this is trivial to check. My result in this case was quoted in Yihong Du [8], and 
indeed, a question of Yihong Du motivated the present work. 

By Remark 2 , our methods can be easily applied to cover nonlinearities g(y) = 
ys(y) where s (0 ) < 0 , s is piecewise linear and continuous with a single jump dis­
continuity of s' at a and s'(y) < 0 for large y. Note that in this case 0(y) = 
1 + (ys'(y)/s(y)), 0{y) < 1 on ( 0 , a ) , 9{y) = 1 + (y/(y - a)) on (a, a) and hence 
is decreasing there and 6(y) = 1 + (y/(y — 6 ) ) on (a, b) which is also decreasing. Here 
s vanishes at a and b. These nonlinearities occur for the limit equation of competitive 
systems as in Conway, Gardner and Smoller [1], Dancer [4] or [5]. 

Our results also apply to nonlinearities g(y) = j / ( ( l — y)(y — a) — p(y — a)+) with 
p, > 0 . This occurs in a singular limit of a population system with an asocial nonlinearity 
(Conway, Gardner and Smoller [1] and Dancer [5]). We sketch the proof of this. Note 
that the nonlinearity is of the form yp(y) where p is a quadratic for y ^ a and is a 
different quadratic if y > a. There is nothing to prove if a ^ 0 or if a ^ 1 or if 0 does 
not exist. (Note that <j> may not exist if a < <j> where <j> is <j> for p, = 0 and that, if 
a ^ 0 , y~lg{y) is a quadratic for y ^ 0 . ) Since p\(y) > ( 1 — y)(y — a) for y < a with 
inequality reversed if y > a where p\(y) = ( 1 — y)(y — a) — p(y — a), pi must vanish 
at two points o,\,o,2 where a, < a if a > a and 02 < 1 . (If p\ does not vanish at all 
in [a, 1 ] , <j> cannot exist.) Since pi is quadratic, one can easily argue as earlier to see 
that yr'1(y)/ri(y) decreases on ( 01 ,02 ) where r\(y) = ypi(y). From this and earlier, 
we see that 9(y) = yg'(y)/g(y) decreases on [0, a2] where 0 is the first positive zero 
of g. (Note that the jump discontinuity of 9(y) is downward if it occurs in \p,a2\.) 
Hence we see that our assumptions on g are satisfied if 9(y) ^ 1 on [0,0]. If a > a, 
this follows from earlier. If 0 < a < 0, p\ is a quadratic on [0,0}, and so we can use 
the same argument as earlier to prove that yp'i(y)/pi(y) < 1 on [0,0]. This and our 
earlier argument for the pure quadratic case (that is with p, = 0 ) imply that 9(y) < 1 
on [0,0]. This proves that our assumptions hold. Hence we have exactly 2 positive 
solutions of 

—eAu = g(u) in D 

u = 0 on 3D 

if e is small and positive, D is of type Rn and <t> exists. We can combine this with the 
theory in Dancer [5] to prove that the predator prey system with asocial nonlinearity 
has exactly 2 positive solutions in certain parameter ranges if D is of type Rn (for a 
large and e very small compared with a - 1 in the notation there.) Note that we need 
to ensure that the solution UQ of ( 2 ) (for g replaced by g) satisfies ||un||oo > ct to know 
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there are exactly 2 solutions. Note that cv is — d _ 1 e in the notation there and b is 

used there where we use a here and that the above condition on UQ is equivalent to 

assuming ||uu||oo > ct provided <j> still exists for g. D 
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