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Abstract

We show that the set of real polynomials in two variables that are sums of three squares
of rational functions is dense in the set of those that are positive semidefinite. We also
prove that the set of real surfaces in P3 whose function field has level 2 is dense in the
set of those that have no real points.

Introduction

0.1 Sums of squares
Let R[x1, x2]6d be the space of real polynomials of degree 6 d in two variables. Consider the cone
Pd ⊂ R[x1, x2]6d of polynomials that are positive semidefinite, i.e. that only take nonnegative
values. Since an odd degree polynomial changes sign, we will assume that d is even.

It has been known since Hilbert that every polynomial f ∈ Pd is a sum of four squares in
the field R(x1, x2) of rational functions ([Hil93], see [Lan03, p. 282]). If d 6 4, Hilbert [Hil88]
has shown the stronger statement that f is a sum of three squares in R[x1, x2], but this does not
extend in any way to degrees d > 6. Indeed, there exist polynomials f ∈ P6 that are not sums
of squares of polynomials (Hilbert [Hil88]), and that are not sums of three squares of rational
functions (Cassels, Ellison and Pfister [CEP71]). Motzkin’s polynomial 1 + x2

1x
4
2 + x2

2x
4
1 − 3x2

1x
2
2

is an example of both phenomena.
Sums of squares of polynomials form a closed cone Σd ⊂ Pd [BCJ79, Theorem 3] and hence

are not dense in Pd as soon as d > 6. At least when d = 6, the structure of the cone Σd is very
well understood [Ble13, BHORS12].

Our goal is to complete the picture by studying the set Qd ⊂ Pd of polynomials that are
sums of three squares in R(x1, x2). It is easily seen to be a countable union of closed subsets
of Pd, indexed by the degrees of the denominators of the rational functions that appear in a
representation of f ∈ Qd as a sum of three squares. Our main contribution is a proof of the
density of this subset.

Theorem 0.1. The subset Qd ⊂ Pd is a countable union of closed semialgebraic subsets of Pd
that has empty interior if d > 6. It is dense in Pd.

When d > 6, the set Pd\Σd of positive semidefinite polynomials that are not sums of squares
of polynomials is a nonempty open subset of Pd. As a consequence of Theorem 0.1, Qd is dense
in this open subset, showing the existence of many polynomials f ∈ R[x1, x2]d that are sums of
three squares in R(x1, x2) but not sums of squares of polynomials. The first examples of such
polynomials had been constructed by Leep and Starr [LS01, Theorem 2].
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0.2 Strategy of the proof

Our starting point is Colliot-Thélène’s Hodge-theoretic proof of the Cassels–Ellison–Pfister

theorem [Col93]: he associates to a polynomial f its homogenization F ∈ R[X0, X1, X2], and

the real algebraic surface defined by S := {Z2 + F (X0, X1, X2) = 0}. He then interprets the

polynomials f that are sums of three squares in R(x1, x2) as those for which the complex

surface SC carries an extra line bundle of a particular kind, and concludes by applying the

Noether–Lefschetz theorem.

As a consequence, Qd may be viewed as a union of Noether–Lefschetz loci in Pd. Over

C, density results for Noether–Lefschetz loci have been first obtained by Ciliberto, Harris and

Miranda, and by Green [CHM88], and we adapt these arguments over R.

We rely on a real analogue of Green’s infinitesimal criterion [CHM88, § 5], [Voi02, § 17.3.4],

which was developed for other purposes in a joint work with Wittenberg [BW18, § 7.2]. Section 1

is devoted to establishing this criterion in a form suitable for our needs: Proposition 1.3. One

way to verify the hypothesis of Green’s criterion is to construct Noether–Lefschetz loci of the

expected dimension. Following Ciliberto and Lopez [CL91], we do so in § 2 by considering

Noether–Lefschetz loci associated to determinantal curves, a strategy independently adopted

by Bruzzo, Grassi and Lopez in [BGL17]. Finally, § 3 contains the proof of Theorem 0.1.

0.3 Level of function fields

The argument described above may be adapted to other families of real surfaces: here is another

application of it. Recall that if K is a field, Pfister [Pfi65, Satz 4] has shown that the smallest

integer s such that −1 is a sum of s squares in K is a power of 2 (or +∞): it is the level

s(K) of K. Moreover, if X is an integral variety over R of dimension n without real points,

s(R(X)) 6 2n [Pfi67, Theorem 2].

Let us restrict to varieties that are smooth degree d surfaces S ⊂ P3
R, defined by a degree

d homogeneous equation F ∈ R[X0, X1, X2, X3]d. Let Θd ⊂ P(R[X0, X1, X2, X3]d) be the set of

those surfaces that have no real points. As before, we assume that d is even, since otherwise Θd =

∅. If d = 2, any such surface S is isomorphic to the anisotropic quadric {X2
0 +X2

1 +X2
2 +X2

3 = 0},
and s(R(S)) = 2. On the other hand, it follows from the Noether–Lefschetz theorem applied as

in [Col93] that if d > 4, a very general S ∈ Θd satisfies s(R(S)) = 4. In § 4, we will show the

following.

Theorem 0.2. The set of surfaces S ∈ Θd such that s(R(S)) = 2 is dense in Θd.

0.4 Conventions about algebraic varieties over R
An algebraic variety X over R is a separated scheme of finite type over R. We denote

its complexification by XC. Its set of complex points X(C) is endowed with an action of

G := Gal(C/R) ' Z/2Z such that the complex conjugation σ ∈ G acts antiholomorphically.

The real points of X are then the fixed points X(R) = X(C)G.

Conversely, suppose that the set of complex points of a reduced quasi-projective algebraic

variety XC over C is endowed with an action of G given by an antiholomorphic involution. If the

isomorphism X(C)'X(C) that the involution induces between X(C) and its conjugate variety is

algebraic, Galois descent shows that XC is naturally the complexification of an algebraic variety

X over R. We refer to [Sil89, I § 1] or [Man17, § 2.2] for more details.
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1. Green’s infinitesimal criterion over R

This section is devoted to an adaptation over R of [CHM88, § 5], where Green studies the relation
between infinitesimal variations of Hodge structure and density of Noether–Lefschetz loci. We
follow the exposition of [Voi02, § 17.3.4].

1.1 Variations of Hodge structure over real varieties
Let BC be a smooth algebraic variety over C, and let H2

Q be a Q-local system on B(C) carrying

a weight 2 variation of Hodge structure: in particular, the holomorphic vector bundle H2 :=
H2

Q⊗QOB(C) is endowed with a Hodge filtration by holomorphic subbundles F 2H2 ⊂ F 1H2 ⊂H2,

whose graded pieces H2,0, H1,1 and H0,2 may be viewed as C∞ complex subbundles of H2. Let
H2

R ⊂ H2 and H1,1
R ⊂ H1,1 be the C∞ real subbundles consisting of sections with values in the

real local system H2
R := H2

Q ⊗Q R, and ∇ : H2
→ H2 ⊗Ω1

B(C) be the connection induced by H2
Q.

Finally, we still denote by H2 the total space of the geometric vector bundle associated to H2,
whose fiber over b ∈ B(C) is H2

b = H2
Q,b⊗QC, and we use the same convention for its subbundles.

Assume now that BC is the complexification of an algebraic variety B over R, and that we
are given an action of G on the Q-local system H2

Q that is compatible with that on B(C). We

consider the induced action of G on (the total space of) H2 induced by the maps:

H2
b = H2

Q,b ⊗Q C σ⊗σ−−→ H2
Q,σ(b) ⊗Q C = H2

σ(b), (1.1)

where σ acts naturally on the first factor and via complex conjugation on the second: in particular,
σ acts C-antilinearly in the fibers of H2. We make the assumption that this action of σ preserves
the factors Hp,q of the Hodge decomposition. Consequently, there are induced actions of G on
H1,1 and H1,1

R .
We will consider the G-module Z(1) := 2π

√
−1 ·Z ⊂ C. It is isomorphic to Z with an action

of G by multiplication by −1. We also denote by Z(1) the G-equivariant constant local system
on B(C) with fibers Z(1), and if M is any G-module or G-equivariant sheaf on B(C), we define
M(1) to be the tensor product M ⊗Z Z(1). If b ∈ B(R), we view H1,1

R,b(1) as a G-stable subspace

of H2
b via the embeddings H1,1

R,b ⊂ H2
b and Z(1) ⊂ C.

1.2 The infinitesimal criterion
We fix b ∈ B(R), and we choose a G-stable connected analytic neighbourhood ∆ of b ∈ B(C), on
which H2

Q is trivialized, and such that ∆(R) := ∆ ∩B(R) is connected and contractible. Such a
neighbourhood exists: choose any connected contractible neighbourhood of b in B(C), intersect
it with its image by σ, remove an appropriate closed subset of ∆(R), and retain the connected
component containing b.

The trivialization of H2
Q over ∆ gives rise to an isomorphism H2|∆ ' ∆ × H2

b , that is G-
equivariant by unicity of the trivialization.

Proposition 1.1. Suppose that there exists λ ∈ H1,1
R,b(1)G such that the map

∇(λ) : TB(C),b −→ H0,2
b (1.2)

induced by evaluating the connection ∇ on λ is surjective.
Then there exists an open cone Ω⊂H2

R,b(1)G such that for every ω ∈ Ω, there exists b′ ∈∆(R)

and ω′ ∈ H1,1
R,b′(1)G such that ω = ω′ under the identification H2

b 'H2
b′ given by the trivialization.
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Proof. The trivialization of H2
Q over ∆ yields an isomorphism H2

R|∆ ' ∆ × H2
R,b. Under our

surjectivity hypothesis, the composition of the inclusion H1,1
R |∆ ⊂ H2

R|∆ and of the projection to
H2

R,b gives a map

φ : H1,1
R |∆ → H2

R,b

that is submersive at (b, λ) by [Voi02, Lemme 17.21]. The map φ is equivariant with respect to
the natural action of G on both sides. Consequently, tensoring by Z(1) and taking G-invariants
gives rise to a map

φ′ : H1,1
R (1)G|∆(R) → H2

R,b(1)G,

where H1,1
R (1)G|∆(R) is the C∞ real vector bundle on ∆(R) with fiber H1,1

R,b′(1)G at b′ ∈ ∆(R).

It is well known that the fixed locus MG of a G-action on a C∞ manifold M is again a
manifold, whose tangent space Tx(MG) at a fixed point x ∈MG is (TxM)G (see the much more
general [Aud91, I § 2.1]). This implies that φ′ is still submersive at (b, λ). Consequently, the image
of φ′ contains an open set of H2

R,b(1)G. Since this image is obviously a cone, it contains an open

cone Ω ⊂ H2
R,b(1)G. This cone has the required property. 2

1.3 Density
In the classical complex case, the set of points in the base where Green’s criterion may be verified
is the complement of a complex-analytic subset. Consequently, assuming the base connected, it is
dense if it is nonempty. The same holds in our setting if one restricts to a connected component
of B(R), as one sees by adapting the argument to the real-analytic category.

Proposition 1.2. Let K ⊂ B(R) be a connected component. The set of b ∈ K for which there
exists λ ∈ H1,1

R,b(1)G such that the map (1.2) is surjective is either empty, or dense in K.

Proof. We prove that the complement W ⊂ K of this set is a real-analytic subset of K. This
concludes because the set of x ∈ K such that a neighbourhood of x is included in W is easily
seen to be open and closed, hence equal to K or empty, and it follows that the complement of
W is empty or dense in K, as wanted.

Since F 1H2 ⊂ H2 is holomorphic and H2
R ⊂ H2 is a real-analytic subbundle, we deduce

that H1,1
R = F 1H2 ∩ H2

R is a real-analytic subbundle of H2. Since the action of G on B(C) is
real-analytic, and since the compatible action on H2 is induced by an action on H2

Q, the G-action

on H2 is real-analytic, and hence so is the subbundle H1,1
R (1)G ⊂H2|B(R). Since the connection ∇

induces a morphism ∇ :H1,1⊗TB(C) →H0,2 of holomorphic vector bundles [Voi02, (10.2.1)], the

set Z ⊂H1,1
R (1)G consisting of the (b, λ) for which the map (1.2) is not surjective is a real-analytic

subset of H1,1
R (1)G.

We may deduce that W := {b ∈ B(R) | H1,1
R,b(1)G ⊂ Z} is a real-analytic subset of B(R). To

check it locally at b ∈ B(R), choose a trivialization of H1,1
R (1)G in a neighbourhood U ⊂ B(R)

of b with fiber Rk and notice that W ∩ U is real-analytic as the intersection of the real-analytic
subsets (Z ∩ (U × {v}))v∈Rk of U . 2

1.4 Families of real varieties
Let us specialize Propositions 1.1 and 1.2 to variations of Hodge structure of geometric origin.

Let π : S → B be a smooth projective morphism of smooth algebraic varieties over R: both
S(C) and B(C) are endowed with an action of G such that σ acts antiholomorphically, and the
map π : S(C) → B(C) is G-equivariant.
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The local system H2
Q := R2π∗Q on B(C) underlies a weight 2 variation of Hodge structure,

whose connection is the Gauss–Manin connection. The action of G on S(C) induces an action of
G on H2

Q that is compatible with the G-action on B(C). Let us verify the assumption made in

§ 1.1 that the induced C-antilinear action on H2 preserves the Hodge decomposition. By (1.1),
this action may be written as a composition:

H2
b = H2

Q,b ⊗Q C Id⊗σ−−−→ H2
Q,b ⊗Q C σ⊗Id−−−→ H2

Q,σ(b) ⊗Q C = H2
σ(b). (1.3)

The first arrow is the conjugation with respect to the real structure H2
R,b ⊂ H2

b , and hence

exchanges the factors Hp,qb and Hq,pb of the Hodge decomposition. The second arrow is obtained
by functoriality from the antiholomorphic map σ : Sσ(b)(C) → Sb(C), and hence also exchanges
the factors of the Hodge decomposition by the argument of [Sil89, I Lemma 2.4]. Consequently,
we are indeed in the setting of § 1.1.

Let b ∈ B(R) and b ∈∆⊂ B(C) be as in § 1.2. Griffiths [Voi02, Théorème 10.21] has computed
the map ∇(λ) of (1.2) as the composition of the Kodaira–Spencer map and of the contracted
cup-product with λ induced by the pairing Ω1

Sb,C ⊗ TSb,C → OSb,C :

TBC,b −→ H1(Sb,C, TSb,C)
λ−→ H2(Sb,C,OSb,C). (1.4)

Propositions 1.1 and 1.2 then become as follows.

Proposition 1.3. Suppose that there exists λ ∈ H1,1
R (Sb(C))(1)G such that the composition

(1.4) is surjective. Then there exists an open cone Ω ⊂ H2(Sb(C),R(1))G such that for every
ω ∈ Ω, there exists b′ ∈∆(R) and ω′ ∈H1,1

R (Sb′(C))(1)G such that ω = ω′ under the identification
H2(Sb(C),C) ' H2(Sb′(C),C) given by the trivialization.

Moreover, the set of b ∈ B(R) for which there exists such a λ is dense in every connected
component K of B(R) that it meets.

Remark 1.4. In order to verify the hypothesis of Proposition 1.3, one has to construct a class λ ∈
H1,1

R (Sb(C))(1)G. A natural source of such cohomology classes are cycle classes [L] ∈ H2(Sb(C),
R(1)) of line bundles L on Sb that are defined over R. Indeed, [L] is of type (1, 1) by Hodge
theory, and analyzing the G-action on the exponential exact sequence [Sil89, I (4.11), Lemma
4.12] shows that it belongs to H2(Sb(C),R(1))G.

Remark 1.5. It is possible, in the setting of Proposition 1.3, that the set Σ of b ∈ B(R) such
that there exists a λ ∈ H1,1

R (Sb(C))(1)G for which (1.4) is surjective is dense in some connected
component of B(R), but does not meet another one.

This happens when S → B is the universal family of smooth quartic surfaces in P3
R.

In this case, we will show in Lemma 4.3 that Σ is dense in the connected components of
B(R) parameterizing surfaces without real points. However, Σ cannot intersect the connected
components corresponding to surfaces S whose real locus is a union of 10 spheres (that exist
by [Sil89, (3.3) p. 189]). Indeed, one computes using [Sil89, VIII § 3] that for such surfaces,
H1,1

R (S(C))(1)G has rank 1, and hence is generated by λ := [OP3
R
(1)]. Since the line bundle OP3

R
(1)

is defined on the whole family, its cohomology class λ remains Hodge under small deformations
showing that (1.4) vanishes.

Remark 1.6. If b ∈ B(R), let F∞ := σ⊗ Id be the C-linear involution of H2
b = H2

Q,b⊗QC induced

by σ. It exchanges the factors of the Hodge decomposition, and hence preserves H1,1
b . Since
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H1,1
R,b(1)G is Zariski-dense in its complexification (H1,1

b )F∞=−1, and since the surjectivity of (1.4)
depends algebraically on λ, it would be sufficient, in the hypotheses of Proposition 1.3, to require
that λ ∈ (H1,1

b )F∞=−1.

Remark 1.7. If the family S → B is induced by a linear system in a fixed variety X over R, it
may be better to apply Proposition 1.1 to the variation of Hodge structure given by the vanishing
cohomology.

2. An explicit Noether–Lefschetz locus

To verify the hypothesis of Proposition 1.3, we need to construct an appropriate cohomology
class λ. In the complex setting, several strategies are available to do so: the original degeneration
method of Ciliberto, Harris and Miranda [CHM88], computations with jacobian rings [Kim91,
Theorem 2], use of explicit Noether–Lefschetz loci [CL91], or the much more general arguments
of Voisin [Voi06].

Here, we adapt the strategy of Ciliberto and Lopez [CL91, Lemma 1.2, Theorem 1.3 and
their proofs]: we take for λ the class of a determinantal curve. This section is devoted to working
out this idea in the generality we need. We first analyze Green’s criterion when λ is the class of
a curve in § 2.1, and specialize to the case of a determinantal curve in § 2.2. The main difference
with [CL91] is that we argue purely cohomologically rather than geometrically on the Noether–
Lefschetz loci.

2.1 Applying Green’s criterion to the class of a curve
In this paragraph, we fix smooth projective complex varieties C ⊂ S ⊂X, where C is a curve, S a
surface and X a threefold. The image in H2(S(C),C) of the Betti cohomology class λ ∈H2(S(C),
Z(1)) of C in S is of type (1, 1) by Hodge theory. We may thus view it as an element λ ∈ H1(S,
Ω1
S) = H1,1(S). We study the composition

ψλ : H0(S,NS/X) → H1(S, TS)
λ−→ H2(S,OS) (2.1)

of the boundary map of the normal exact sequence 0 → TS → TX |S → NS/X → 0 and of the
contracted cup-product with λ. To do so, we consider the two exact sequences

0 → NC/S → NC/X → NS/X |C → 0, (2.2)

0 → OS → OS(C) → OS(C)|C → 0, (2.3)

and we recall that NC/S ' OS(C)|C .

Proposition 2.1. The map ψλ of (2.1) coincides with the composition

H0(S,NS/X) → H0(C,NS/X |C) → H1(C,NC/S) → H2(S,OS)

of the restriction map and of the boundary maps of (2.2) and (2.3).

We first recall some properties of extension classes used in the proof. Let

0 → A f−→ B g−→ C → 0 (2.4)

be an exact sequence of locally free sheaves on S. Choose an open cover (Ui) of S such that g|Ui

admits a section σi : C|Ui → B|Ui . Setting τi,j := σj − σi ∈ H0(Ui ∩ Uj ,A ⊗ C∨) gives rise to
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a cocycle (τi,j) whose cohomology class ξ ∈ H1(S,A ⊗ C∨) is independent of the choices. It is
the extension class of (2.4). Direct computations with cocycles show that the extension class

of the tensor product 0 → A⊗L f−→ B ⊗ L g−→ C ⊗ L→ 0 by a line bundle L on S is equal to ξ,

that the extension class of the dual 0 → C∨ g∨−→ B∨ f∨−→ A∨ → 0 is equal to −ξ, and that the
boundary maps Hq(S, C) → Hq+1(S,A) in the long exact sequence of cohomology associated to
(2.4) are induced by the cup-product by ξ.

Proof of Proposition 2.1. The proposition follows from the compatibility of the two boundary
maps appearing in the commutative diagram of coherent sheaves on S

0 // TS //

��

TX |S
��

// NS/X

��

// 0

0 // NC/S
// NC/X

// NS/X |C // 0

(2.5)

and in the pull-back diagram

0 // OS // E //

��

TS

��

// 0

0 // OS // OS(C) // NC/S
// 0

(2.6)

in addition to the fact that the boundary map H1(S, TS) → H2(S,OS) associated to the first
line of (2.6) is induced by the cup-product with its extension class, that turns out to be equal
to λ. To verify this fact, we rather consider the twist of (2.6) by OS(−C)

0 // OS(−C) // E(−C) //

��

TS(−C)

��

// 0

0 // OS(−C) // OS // OC // 0

and we prove that the extension on the first line is canonically dual to the extension

0 → Ω1
S(C) → D(OS(C)) → OS(C) → 0

defined by Atiyah in [Ati57, § 4], and whose extension class (the Atiyah class) is equal to −λ
by [Ati57, Proposition 12] (the factor 2πi in [Ati57, Proposition 12] corresponds to the comparison
between Chern classes in Betti and de Rham cohomology, and is accounted for here by our
definition of Z(1)).

To check this duality statement, choose x ∈ S and local sections f ∈ OS,x and v ∈ TS(−C)x
that coincide in OC,x and hence induce (f, v) ∈ E(−C)x. Let s ∈ OS(C)x and β ∈ Ω1

S(C)x giving
rise to a local section (s, β) ∈ D(OS(C))x in the notations of [Ati57, § 4]. A direct computation
shows that (f, v) · (s, β) = β(v) + sf −ds(v) is well defined, OS,x-linear, and induces the required
duality. 2

Corollary 2.2. If the groups H1(S,NS/X(−C)), H1(C,NC/X) and H2(S,OS(C)) vanish, the
map ψλ of (2.1) is surjective.

Proof. Using (2.2) and (2.3), this follows from Proposition 2.1. 2
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2.2 The case of a determinantal curve
We now restrict the situation to the case where C is a determinantal curve. Let X be a smooth
projective connected complex threefold, and n > 1 be an integer. Let L,H1, . . . ,Hn be base-point
free line bundles on X, and define H := H1 + · · ·+Hn. In this paragraph, we make the following
assumptions.

Hypotheses 2.3. For every 1 6 j, k 6 n:

(i) H2(X,OX) = 0;

(ii) H1(X,Hj) = H2(X,Hj −Hk) = H3(X,−Hj) = 0;

(iii) H0(X,KX + L) = H1(X,L) = H1(X,KX + L−Hj) = H2(X,L−Hj) = 0.

The particular case considered in [CL91] is X = P3
C, Hj = OP3

C
(1) and L = OP3

C
(2).

Choose M = (Mi,j)16i6n+1,16j6n a (n+ 1)×n matrix with Mi,j ∈ H0(X,Hj). Let C ⊂ X be
defined by the vanishing of the maximal minors of M , and S ⊂ X be the zero-locus of a section
τ ∈ H0(X,H + L) vanishing on C.

Lemma 2.4. If M is general, C is a smooth curve, possibly empty. Once such a matrix M is
fixed, if τ is general, S is a smooth surface, possibly empty.

Proof. Let M :=
⊕

16i6n+1,16j6nH
0(X,Hj) be the parameter space for such matrices, and let

C ⊂M×X be the universal variety defined by the vanishing of maximal minors. We consider the
fiber Cx of the second projection C→X at x ∈X(C). Since the Hj are base-point free, evaluation
at x with respect to local trivializations yields a linear surjection evx : M → Mn+1,n(C), and
Cx = {M ∈M | rank(evx(M)) < n}. It follows that Cx ⊂M is irreducible of codimension 2 and
that its singular locus Sing(Cx) ⊂ M, being the inverse image by evx of the set of matrices of
rank < n − 1, has codimension 6 [BV88, Proposition 1.1]. We deduce that C is irreductible of
dimension dim(M) + 1 and that dim(Sing(C)) < dim(M). It follows that the generic fiber of the
first projection C →M has dimension 1 (but may be empty if this projection is not dominant)
and does not meet Sing(C), and hence is smooth by generic smoothness as we are in characteristic
0. Consequently, we may choose M ∈M so that C is a smooth curve.

That S may be chosen smooth follows from an easy variant of the results of [KA79]. Since C
is defined by the vanishing of sections of H, IC(H) is generated by its global sections, and since
L is base-point free, so is IC(H +L). Fix x ∈ C, and let mx ⊂ OX,x be the maximal ideal. As C
is a smooth curve, the evaluation map H0(X, IC(H + L)) → OX(H + L) ⊗ (mx/m

2
x) has rank

2, so that the set of τ ∈ H0(X, IC(H + L)) whose zero-locus is singular at x has codimension
2. A dimension count shows that the zero-locus of a general τ is smooth along C. The base
locus of the linear system H0(X, IC(H + L)) being C, it follows from Bertini’s theorem [Jou83,
I Théorème 6.10 2)] that the zero-locus of a general τ is smooth off C. We deduce that if τ is
general, S is smooth. 2

From now on, we suppose that M and τ have been chosen general in the sense of Lemma 2.4.
Our goal is to show in Proposition 2.5 below that, under Hypotheses 2.3, the morphism ψλ
defined in (2.1) is surjective. We first explain the tools that will allow to carry out the relevant
coherent cohomology computations.

By Lemma 2.4, the curve C is a determinantal curve of the expected codimension in X. It
follows that its ideal sheaf IC ⊂ OX is resolved by the Eagon–Northcott complex (also called
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the Hilbert–Burch complex in this particular case, see [Eis05, Theorem A2.60, Example A2.67]):

0 →

n⊕
j=1

OX(−H −Hj)
M−→ OX(−H)⊕n+1

→ IC → 0, (2.7)

in which the first map is given by the matrix M and the second one by the n+1 maximal minors
of M . Restricting (2.7) to C using right exactness of the tensor product, and noticing that the

kernel of
⊕n

j=1OC(−H −Hj)
M−→ OC(−H)⊕n+1 is a line bundle on C that may be computed

by calculating its determinant, one gets

0 → K−1
C ⊗KX |C →

n⊕
j=1

OC(−H −Hj)
M−→ OC(−H)⊕n+1

→ N∨C/X → 0. (2.8)

The dual of the Eagon–Northcott complex is still a resolution by [Eis05, Theorem A2.60], of a
sheaf on X that we denote by Q:

0 → OX → OX(H)⊕n+1 MT

−→
n⊕
j=1

OX(H +Hj) → Q→ 0. (2.9)

It follows from Cramer’s rule that the maximal minors of M vanish on the support of Q.
Consequently, Q may be computed after restriction to C, and the dual of (2.8) shows that
Q = KC ⊗ K−1

X |C . Finally, there is an obvious morphism between (2.9) and the dual of (2.8),
where the left vertical arrow is the zero map.

0 // OX //

0

��

OX(H)⊕n+1

��

//
n⊕
j=1

OX(H

��

+Hj) // KC ⊗K−1
X |C // 0

0 // NC/X
// OC(H)⊕n+1 //

n⊕
j=1

OC(H +Hj) // KC ⊗K−1
X |C // 0

(2.10)

Proposition 2.5. The map ψλ of (2.1) is surjective.

Proof. By Corollary 2.2, it suffices to show the vanishing of the three groups H1(S,NS/X(−C)),
H1(C,NC/X) and H2(S,OS(C)). Twisting the natural exact sequence

0 → OX(−S) → IC → OS(−C) → 0 (2.11)

by OX(S) and taking cohomology, we see that the vanishing of H1(S,NS/X(−C)) follows from
that of H2(X,OX) and H1(X, IC(S)) which are deduced from Hypotheses 2.3 using (2.7).

A diagram chase using (2.10) (or, more conceptually, an analysis of the second
hypercohomology spectral sequence of this exact sequence of complexes) shows that in order
to prove the vanishing of H1(C,NC/X), it suffices to check that H2(X, IC(H)) = H1(X,
IC(H +Hj)) = 0 for every 1 6 j 6 n. In turn, these vanishings follow from the Hypotheses 2.3
and from (2.7).

By Serre duality and adjunction, the vanishing of H2(S,OS(C)) is equivalent to that of
H0(S,KS(−C)) = H0(S, (KX+S)|S(−C)). To prove it, twist (2.11) by KX+S, take cohomology,
and notice that H1(X,KX) = H0(X, IC(KX + S)) = 0 by (2.7) and Hypotheses 2.3. 2

Remark 2.6. In this situation, the Kodaira–Spencer map H0(S,NS/X) → H1(S, TS) appearing
in (2.1) may itself not be surjective. This will be the case when we apply Proposition 2.5 in § 3.3.
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3. Sums of three squares

In this section, we prove Theorem 0.1. We fix an even integer d = 2δ with δ > 1.
We explain in § 3.1 the connection between sums of squares in R(x1, x2) and line bundles on

double covers of P2
R, relating our problem to the study of Noether–Lefschetz loci. In §§ 3.2–3.3,

we apply the results of § 2 to verify Green’s infinitesimal criterion for the family of real double
covers of P2

R, and the proof of Theorem 0.1 is completed in §§ 3.4–3.5.

3.1 Sums of squares and line bundles
We first recall two lemmas already used by Colliot-Thélène [Col93].

Lemma 3.1. Let K be a field of characteristic 6= 2, and f ∈ K, and L := K[
√−f ]. Then the

following are equivalent:

(i) f is a sum of three squares in K;

(ii) −1 is a sum of two squares in L.

Proof. This is [Col93, Lemma 1.2] (see also [Lam80, ch. 11 Theorem 2.7]). 2

Lemma 3.2. Let S be a smooth projective geometrically connected variety over R. Then the
following are equivalent:

(i) −1 is a sum of two squares in R(S);

(ii) the pull-back map Pic(S) → Pic(SC)G is not surjective.

Proof. This is [vHam00, ch. I, Corollary 2.5]. For the convenience of the reader, we recall the
argument. Condition (i) is equivalent to the nontrivial quaternion algebra over R splitting over
R(S) [GS06, Proposition 1.1.7], hence to the pull-back map Z/2Z ' Br(R) → Br(R(S)) being
zero. The exact sequence [Col93, Lemma 1.1],

0 → Pic(S) → Pic(SC)G → Br(R) → Br(R(S)),

shows that this is equivalent to (ii). 2

In § 3.4, Lemmas 3.1 and 3.2 will be applied to a positive semidefinite polynomial f ∈ K =
R(x1, x2), and to the quadratic extension L = K[

√−f ] = R(S) associated to the double cover
S → P2

R determined by f .

3.2 A real double cover containing a determinantal curve
In this paragraph, we construct varieties C, S, and X to which the results of § 2.2 apply.

Let Γ := {X2
0 +X2

1 +X2
2 = 0} ⊂ P2

R be the anisotropic conic over R. There is an isomorphism
between its complexification ΓC and the projective line P1

C. The line bundle L := OΓC(1) is,
however, not defined over R for the real structure we consider on ΓC (as the zero locus of a real
section of L would be a real point of Γ). Instead, it has a so-called quaternionic structure: it may
be equipped with an isomorphism φ : L ∼−→ σ∗L such that φ ◦ (σ∗φ) = −Id, where L denotes
the conjugate line bundle on the conjugate variety ΓC, and the real structure Γ of ΓC is viewed
as an isomorphism σ : ΓC

∼−→ ΓC (see for instance [BHH10, § 3]). The isomorphism φ induces
a C-antilinear automorphism σ∗ of H0(ΓC,L) such that σ∗ ◦ σ∗ = −1. One may then choose a
basis (A,B) of H0(ΓC,L) on which the action of σ∗ is given by

σ∗A = B and σ∗B = −A. (3.1)
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In view of (3.1), the isomorphism ΓC
∼−→ P1

C defined by x 7→ [A(x) : B(x)] induces an action of
G on P1(C) given by σ([a : b]) = [b : −a].

We define Y := Γ × P2
R and X := YC ' ΓC × P2

C to be the complexification of Y with
the induced real structure. We set n := 2 + δ, and introduce the following line bundles on X:
Hj := p∗1OΓC(1) if j = 1, 2, Hj = p∗2OP2

C
(1) if j ∈ {3, . . . , 2 + δ}, H =

∑
j Hj and L = OX . Note

that Hypotheses 2.3 are satisfied.
Let P be the parameter space for (n+ 1)× n matrices M = (Mi,j)16i6n+1,16j6n with Mi,j ∈

H0(X,Hj) such that no column is identically zero, and whose columns are well defined up to
multiplication by a scalar: P is a product of n projective spaces. To such a matrix M , we associate
the variety C ⊂ X defined by the vanishing of all the maximal minors of M . Let τ ∈ H0(X,H)
be a section vanishing on C, and S ⊂ X be the zero-locus of τ .

Lemma 3.3. There exist M and τ such that:

(i) C is a smooth curve and S is a smooth surface;

(ii) the projection p2|S : S → P2
C is a finite double cover ramified along a smooth degree d curve

D ⊂ P2
C;

(iii) the subvarieties C and S of X are defined over R.

Proof. Lemma 2.4 shows that there is a nonempty Zariski-open subset of P over which C is
smooth, and that for a generic choice of τ , S is also smooth.

Let us show that if M is general, the projection S → P2
C is finite when τ is the first maximal

minor det(Mi,j)16i,j6n of M (and consequently when τ is general). It suffices to exhibit one such
M , for which we use homogeneous coordinates A,B on ΓC as above and X0, X1, X2 on P2

C. One
can take

M =

A 0 X0

B A X1

0 B X2


when δ = 1. One verifies that a general matrix whose first and second columns are (A,B, 0, . . . , 0)
and (0, 0, A,B, 0, . . . , 0) works when δ > 2.

We have shown the existence of a nonempty Zariski-open subset U ⊂ P for which C is a
smooth curve, and such that S is smooth with finite projection S → P2

C for a general choice of τ .
If P (X0, X1, X2)A2 + Q(X0, X1, X2)AB + R(X0, X1, X2)B2 = 0 is the equation in X of such
a surface S, where P,Q and R have degree δ, a direct computation shows that the projection
S → P2

C is finite of degree 2 with ramification locus D ⊂ P2
C defined by the equation Q2 = 4PR

of degree 2δ = d, and that the smoothness of S implies that of D.
Let U ′ ⊂ P be the open set consisting of matrices whose first two columns are not

proportional, and notice that U ⊂ U ′. There are fixed point free actions of Z/2Z on U ′ and
U obtained by exchanging the first two columns. The quotients are smooth complex algebraic
varieties U/(Z/2Z) ⊂ U ′/(Z/2Z).

Letting σ act on H0(P2
C,OP2

C
(1)) using the natural real structure OP2

R
(1) of OP2

C
(1) and

on H0(P1
C,OP1

C
(1)) using (3.1), we obtain a G-action on P, which descends to a G-action on

U/(Z/2Z) and U ′/(Z/2Z), endowing these algebraic varieties over C with a real structure by
§ 0.4. It is obvious that U ′/(Z/2Z) has a real point for this real structure (for instance, choose
M1,1 = A, M1,2 = B, and Mi,j = 0 otherwise). Since U ′/(Z/2Z) is smooth and irreducible, the
implicit function theorem shows that its real points are Zariski-dense [Ben17, Proposition 1.1],
and we deduce that U/(Z/2Z) also has a real point. Choose M to be a matrix lifting this real
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point: then C ⊂ X is defined over R. Finally, choose τ general and defined over R to ensure that
S ⊂ X is also defined over R. 2

Remark 3.4. A variant of our strategy would have been to choose n = 1 + δ, H1 := p∗1OP1
C
(2)

(which has the advantage of being defined over R),Hj = p∗2OP2
C
(1) if j ∈ {2, . . . , 1 + δ} and

L = OX . Unfortunately, with these choices, assertion (ii) of Lemma 3.3 would not hold.

3.3 Verifying Green’s criterion for a family of double covers
To be able to apply Proposition 1.3 to the family of double covers of P2

R, we need a connectedness
result going back to Hilbert [Hil88, p. 344], which we state first.

Let V := C[X0, . . . XN ]d be the space of degree d homogeneous polynomials F in N + 1
variables, endowed with its natural real structure, and let B ⊂ V be the Zariski-open subset
parametrizing polynomials F whose zero locus {F = 0} ⊂ PNC is a smooth hypersurface. Define
P sm
d ⊂ B(R) to be the locus where F is positive semidefinite, and let P+

d ⊂ V (R) be the set of
polynomials F such that F (x) > 0 if x ∈ RN+1\{0}.

Proposition 3.5. The set P sm
d is open, connected and equal to B(R) ∩ P+

d .

Proof. Let F ∈ P sm
d and x ∈ RN+1\{0}. If F (x) > 0 did not hold, then F (x) = 0, and x would be

a smooth point of {F = 0}. Consequently, the differential dFx would be surjective and F would
take negative values near x, which is a contradiction. This shows that P sm

d = B(R) ∩ P+
d . Since

P+
d is open and convex [Ben17, Lemma 4.2], it follows that P sm

d is open and P+
d is connected.

The complement of P sm
d in P+

d consist of polynomials F such that {F = 0} is singular and
has no real points. It follows that {F = 0} has at least two singular points (any of them and its
distinct complex conjugate). But the set polynomials F ∈ V such that {F = 0} has at least two
singular points has codimension > 2, so that P sm

d is the complement in P+
d of a semialgebraic

set of codimension > 2. Since the open set P+
d ⊂ V (R) is connected, so is P sm

d . 2

For the remainder of this section, we restrict to the case N = 2. We consider the universal
family S ⊂ P(1, 1, 1, δ) × B with projection π : S → B, parametrizing double covers of P2

ramified over a smooth curve of degree d: if b ∈ B(C) corresponds to the polynomial F , one has
Sb = {Z2 + F (X0, X1, X2) = 0} ⊂ P(1, 1, 1, δ). The map π is a smooth projective morphism of
algebraic varieties over R. We are interested in the fibers of π over P sm

d ⊂ B(R).

Lemma 3.6. For a dense set of b ∈ P sm
d , there exists λ ∈ H1,1

R (Sb(C))(1)G such that the
composition

TBC,b −→ H1(Sb,C, TSb,C)
λ−→ H2(Sb,C,OSb,C) (3.2)

of the Kodaira–Spencer map and of the contracted cup-product with λ is surjective.

Proof. It follows from the conditions listed in Lemma 3.3 that the surface S constructed there
is isomorphic to a real member of the family π : S → B: there exists b0 ∈ B(R) such that
S ' Sb0 . Since S projects to Γ, S(R) = ∅, and we deduce that b0 ∈ P sm

d . By Remark 1.4,
the cohomology class λ0 of the line bundle L = OS(C) associated to the curve constructed in
Lemma 3.3 belongs to H1,1

R (Sb0(C))(1)G. Moreover, Proposition 2.5, shows that the contracted

cup-product H1(Sb0,C, TSb0,C)
λ0−→ H2(Sb0,C,OSb0,C) is surjective.

The deformation theory of the family of smooth double covers of P2, carried out in [Man99,
p. 260], shows that the Kodaira–Spencer map TBC,b0 → H1(Sb0,C, TSb0,C) is surjective unless
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d = 6. Indeed, [Man99, (1.3’)] applied with Y = P2 shows that the cokernel of this map embeds

into H1(P2, TP2)⊕H1(P2, TP2(−δ)), that vanishes when δ 6= 3 and is one-dimensional when δ = 3

(as one computes using the Euler exact sequence and Serre duality). When d 6= 6, this shows

at once that the map (3.2) is surjective for (b, λ) = (b0, λ0). In the exceptional case d = 6, the

double covers are K3 surfaces, and the image of the Kodaira–Spencer map TBC,b0 → H1(Sb0,C,
TSb0,C) is included in the subspace of polarized infinitesimal deformations, that preserve the line

bundle OP2(1). This subspace has codimension 1 (see [Huy16, ch. 6, 2.4]). Since the image of

H0(S,NS/X) → H1(S, TS) in (2.1) lands in this subspace, we still deduce from Proposition 2.5

the surjectivity of (3.2) for (b, λ) = (b0, λ0).

The lemma then follows from the last statement of Proposition 1.3, which applies because

P sm
d ⊂ B(R) is open and connected by Proposition 3.5. 2

3.4 Density

We are now ready to give the proof of the density statement of Theorem 0.1. Recall from § 0.1

that Pd (respectively Qd) is the subset of R[x1, x2]6d consisting of polynomials that are positive

semidefinite (respectively sums of three squares in R(x1, x2)).

Proposition 3.7. The set Qd is dense in Pd.

Proof. Fix an open subset U ⊂ Pd, and b ∈ U ⊂ R[X0, X1, X2]d corresponding to the

inhomogeneous polynomial f ∈ R[x1, x2]6d. Our goal is to construct b′ ∈ U such that the

associated polynomial f ′ ∈ R[x1, x2]6d is a sum of three squares in R(x1, x2).

Replacing f with f + t(1 + xd1 + xd2) for t ∈ R>0 small enough, we may assume that b ∈ P sm
d

(see § 3.3). Up to changing b ∈ U again, Lemma 3.6 allows us to suppose that there exists

λ ∈ H1,1
R (Sb(C))(1)G such that (3.2) is surjective. Consequently, we can choose an open cone

Ω ⊂ H2(Sb(C),R(1))G as in Proposition 1.3.

Shrinking U , we may assume it is of the form ∆(R) for some ∆ ⊂ B(C) as in § 1.2. Denote

by S(C)|∆(R) the inverse image of ∆(R) by π : S(C) → B(C). By a G-equivariant version of

Ehresmann’s theorem [Dim85, Lemma 4], it is possible, after shrinking ∆, to ensure that there

is a G-equivariant diffeomorphism commuting with the projection to ∆(R):

S(C)|∆(R)
∼−→ Sb(C)×∆(R). (3.3)

Let us now look at the Hochschild–Serre spectral sequence computing the G-equivariant

cohomology of Sb(C):

Ep,q2 = Hp(G,Hq(Sb(C),Z(1))) =⇒ Hp+q
G (Sb(C),Z(1)). (3.4)

Since H1(Sb(C),Z) = 0 (see [Dim85, Proposition 6(i), (ii)]), [vHam99, Lemma 2.3] shows that

the cokernel of the edge morphism ε : H2
G(Sb(C),Z(1)) → H2(Sb(C),Z(1))G is isomorphic to

Z/2Z. Let Λ be the image in H2(Sb(C),R(1))G of the complement of the image of ε. Since Λ

is a translate of a lattice in the real vector space H2(Sb(C),R(1))G, it meets the open cone Ω.

Consequently, we can find a class ω ∈ H2(Sb(C),Z(1))G not in the image of ε, whose image in

H2(Sb(C),R(1))G, still denoted by ω, belongs to Ω. By construction of Ω, there exists b′ ∈ ∆(R)

such that the parallel transport ω′ ∈ H2(Sb′(C),R(1))G belongs to H1,1
R (Sb′(C))(1)G.

For every k > 0, the two restriction maps Hk(S(C)|∆(R),Z(1)) → Hk(Sb(C),Z(1))

and Hk(S(C)|∆(R),Z(1)) → Hk(Sb′(C),Z(1)) are G-equivariant isomorphisms by (3.3) and
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contractibility of ∆(R). We deduce that the restriction map from the Hochschild–Serre spectral
sequence for the G-equivariant cohomology of S(C)|∆(R)

Ep,q2 = Hp(G,Hq(S(C)|∆(R),Z(1))) =⇒ Hp+q
G (S(C)|∆(R),Z(1))

to that (3.4) for Sb(C) is an isomorphism in page 2, and hence an isomorphism. The same goes for
the restriction map between the Hochschild–Serre spectral sequences for S(C)|∆(R) and Sb′(C).

We can thus deduce from the corresponding property of ω that ω′ ∈ H2(Sb′(C),R(1))G lifts to a
class ω′ ∈H2(Sb′(C),Z(1))G not in the image of the edge map ε′ :H2

G(Sb′(C),Z(1)) →H2(Sb′(C),
Z(1))G.

Since Pic0(Sb′,C) = 0 by [Dim85, Proposition 6(i)], the Lefschetz (1, 1) theorem shows that

Pic(Sb′,C)
∼−→ Hdg2(Sb′(C),Z(1)) := H2(Sb′(C),Z(1)) ∩H1,1(Sb′(C)),

and hence that ω′ ∈ Hdg2(Sb′(C),Z(1))G is the class of a line bundle L ∈ Pic(Sb′,C)G. If L were
induced by a real line bundle on Sb′ , the existence of a cycle class map with value in G-equivariant
Betti cohomology [Kra91, § 1.3] would show that ω′ lifts to H2

G(Sb′(C),Z(1)), and thus we would
have a contradiction.

By implication (ii) =⇒ (i) of Lemma 3.2, we deduce that −1 is a sum of two squares in
R(Sb′). Lemma 3.1 then shows that the polynomial f ′ ∈ R[x1, x2]6d associated to b′ is a sum of
three squares in R(x1, x2), which is what we wanted. 2

3.5 The set of sums of three squares
We finally complete the proof of Theorem 0.1.

Proof of Theorem 0.1. Let QNd ⊂ R[x1, x2]6d be the set of polynomials f such that there exist
polynomials g, h1, h2, h3 ∈ R[x1, x2]6N of degree 6 N satisfying

fg2 = h2
1 + h2

2 + h2
3 and g 6= 0. (3.5)

It is an immediate consequence of the Tarski–Seidenberg theorem [BCR98, Theorem 2.2.1]
that QNd is a semialgebraic subset of Pd. Let us prove that QNd is a closed subset of R[x1, x2]6d
by adapting [BCJ79, Theorem 3]. Consider the norm ‖h‖ := supp∈[0,1]2 h(p) on R[x1, x2]. Let

(fj)j∈N be a sequence of elements of QNd converging to f ∈ R[x1, x2]6d. Since the case f = 0
is trivial, we may assume that the fj are nonzero. Choose gj , hj,1, hj,2, hj,3 ∈ R[x1, x2]6N with
gj 6= 0 such that

fjg
2
j = h2

j,1 + h2
j,2 + h2

j,3.

Up to scaling gj and the hj,i, we may assume that ‖fjg2
j ‖ = 1 and as a consequence that ‖hj,i‖ 6 1

for 1 6 i 6 3. Extracting subsequences, we may ensure that the sequences (gj) and (hj,i) converge
to polynomials g, hi ∈ R[x1, x2]6N . Taking the limit, we see that ‖fg2‖ = 1 so that g 6= 0, and
that (3.5) holds. Since Qd =

⋃
N∈NQ

N
d , this proves the first assertion of Theorem 0.1.

If d > 6, it is a consequence of the Noether–Lefschetz theorem applied as in [Col93] that Qd
has empty interior. More precisely, every open subset of R[x1, x2]6d contains a polynomial whose
coefficients are algebraically independent over Q, and such a polynomial cannot be a sum of three
squares of rational functions by [Col93, Theorem 3.1]. One could also argue as in [Col93, Remark
4.3]: Qd is included in a countable union of proper closed algebraic subvarieties of R[x1, x2]6d,
and hence has empty interior by a Baire category argument.

Finally, we have proven the last assertion of Theorem 0.1 in Proposition 3.7. 2
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4. Surfaces whose function field has level 2

The proof of Theorem 0.2 is analogous to that of Proposition 3.7. We fix an even integer d > 2.
Consider X := P3

C, define B ⊂ P(H0(X,OX(d))) to be the subset parametrizing equations F
defining smooth surfaces S ⊂ X, and π : S → B to be the universal surface. Endow X, B and
S with their natural real structures. Recall from § 0.3 that Θd ⊂ B(R) is the set of equations
F whose associated surfaces S = {F = 0} have no real points. Since R4\{0} is connected, Θd

consists of equations, well defined up to a scalar, that are either positive or negative on R4\{0}
and Proposition 3.5 implies that Θd ⊂ B(R) is open and connected.

Set n := d if d ≡ 0 (mod 4) and n := d − 2 if d ≡ 2 (mod 4). Define Hj := OX(1) for
1 6 j 6 n, L := OX if d ≡ 0 (mod 4) and L := OX(2) if d ≡ 2 (mod 4). Note that Hypotheses 2.3
are satisfied. When d ≡ 2 (mod 4), those are exactly the original choices of Ciliberto and
Lopez [CL91].

Consider (n + 1) × n matrices M = (Mi,j)16i6n+1,16j6n with Mi,j ∈ H0(X,Hj). To such a
matrix M , we associate the variety C ⊂ X defined by the vanishing of all the maximal minors
of M . We also consider a section τ ∈ H0(X,O(d)) vanishing on C with zero locus S ⊂ X. The
following is an analogue of Lemma 3.3.

Lemma 4.1. It is possible to find M and τ such that:

(i) C is a smooth curve and S is a smooth surface;

(ii) the subvarieties C and S of X are defined over R;

(iii) S(R) = ∅.

Proof. Since n ≡ 0 (mod 4), one may consider a particular choice M0 of M , that is defined over
R, and whose n× n submatrix (M0

i,j)16i,j6n is diagonal by blocks with blocks:X0 −X1 X2 X3

X1 X0 X3 −X2

X2 X3 −X0 X1

X3 −X2 −X1 −X0

 .

Computing that the determinant of every such block is
∑

06i,j63X
2
iX

2
j , one sees that η0 :=

det((M0
i,j)16i,j6n) ∈ H0(X,OX(n)) does not vanish on X(R). Let M be a general small real

perturbation of M0: the property that η := det((Mi,j)16i,j6n) does not vanish on X(R) persists.
Choose τ to be a general small real perturbation of η if d ≡ 0 (mod 4) (respectively of (X2

0 +
X2

1 +X2
2 +X2

3 ) · η if d ≡ 2 (mod 4)). By Lemma 2.4, the curve C and the surface S are smooth,
and the pair (M, τ) satisfies the required conditions. 2

Remark 4.2. When d ≡ 2 (mod 4), it is not possible to run our strategy with n = d and L = OX
as when d ≡ 0 (mod 4). Indeed, the degree of the determinantal curve C, that is equal to
n(n+ 1)/2 by [HT84, Proposition 12(a)], would be odd. Consequently, C would have a real
point and assertion (iii) of Lemma 4.1 could not hold.

We deduce an analogue of Lemma 3.6.

Lemma 4.3. For a dense set of b ∈ Θd, there exists λ ∈ H1,1
R (Sb(C))(1)G such that the

composition of the Kodaira–Spencer map and of the contracted cup-product with λ

TBC,b −→ H1(SC,b, TSC,b)
λ−→ H2(SC,b,OSC,b) (4.1)

is surjective.
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Proof. The surface S constructed in Lemma 4.1 is isomorphic to a particular member Sb0 of the
family π : S → B, corresponding to a point b0 ∈ Θd. By Remark 1.4, the cohomology class λ0 of
the real curve C ⊂ S constructed in Lemma 4.1 belongs to H1,1

R (Sb0(C))(1)G. By Proposition 2.5,
the map (4.1) for b = b0 and λ = λ0 is surjective. The lemma then follows from the last part of
Proposition 1.3, which applies because Θd ⊂ B(R) is open and connected. 2

We can now give the following proof.

Proof of Theorem 0.2. Fix an open subset U ⊂ Θd, and b ∈ U according to Lemma 4.3. Running
the proof of Proposition 3.7 (replacing P sm

d by Θd) shows that there exists b′ ∈ U such that
Pic(Sb′) → Pic(Sb′,C)G is not surjective. Implication (ii) =⇒ (i) of Lemma 3.2 completes the
proof. 2
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