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free groups

Daniel C. Cohen

ABSTRACT

An almost-direct product of free groups is an iterated semidirect product of finitely
generated free groups in which the action of the constituent free groups on the homology
of one another is trivial. We determine the structure of the cohomology ring of such a
group. This is used to analyze the topological complexity of the associated Eilenberg—
MacLane space.

1. Almost-direct products of free groups

If G; and Go are groups and a: Gp — Aut(G2) is a homomorphism from G; to the group
of (right) automorphisms of Gg, the semidirect product G = G x4, G; is the set G2 x G with
group operation (g2, 91) - (g5, 91) = (a(g})(g2)d5, g149}). There is a corresponding split, short exact
sequence

L1

P Z e

1 G G

L2 T

Gl 17

where ¢1(g1) = (1, g1), t2(g2) = (92, 1), and 7(g2,91) = ¢1. Identifying G; and Gy with their
images under ¢; and (9, the group G is generated by (G; and Ga. Furthermore, for ¢ € Gy
and go € G, the relation gl_ngg1 = a(gy)(gy) holds in G. If G; and G4 are free groups, these are
the defining relations of G.

An almost-direct product of free groups is an iterated semidirect product
G= >4f:lFm = Fy Xy (Fny_y Xap_y (7 Xag (Fpy Xay Fny)))

of finitely generated free groups in which the action of the group NLIFM on Hy(Fy,; Z) is trivial
for each j and k with 1 < j < k < £. In other words, the automorphisms ay : xf;ll F,, — Aut(F,,)
which determine the iterated semidirect product structure of G are [A-automorphisms, inducing
the identity on the abelianization of F,,. If F),, is freely generated by x;, for 1 <p < n;, the
group G is generated by these elements (for 1 <i < ¢) and has defining relations

x;;xmxi’p = aj(aci7p)(acj7q) for 1<i<j</{, 1<p<n;,l<g<n;. (1)

Ezxample 1.1. Perhaps the most famous example of an almost-direct product of free groups
is the Artin pure braid group Py, the fundamental group of the configuration space F(C,¢)
of £ ordered points in C. The almost-direct product structure of Py = Fy_j X, | X -+ Xq, XF}
is given by (the restriction of) the Artin representation; see, for instance, Birman [Bir75].
This structure is in evidence in the standard presentation of P,. The pure braid group has
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generators A, ;, for 1 <i < j </, where Fj, = (Aq k41, ..., Ak k+1). The relations in Py are given
by Ar,gAz,jAr,s - aj—l(Ar7s>(Ai,j)? where

Ai’j ifi<r<s<jorr<s<i<jy,
A A AL ifr<s=i<j

ai_1(A A )= Td7 k)T ’

J 1( r,s)( Z,j) A A A AilAfl if’l“:i<8<j,
[ATJ,A ]A JAL AT ifr<i<s <y,

~1y~! denoting the commutator. In the notation established above, the free

, in the almost-direct product decomposition of P, is generated by

with [u, v] = uvu™ v
group Fp, 1<k</l—1
i = Aipy1, 1 <i< k.

Interest in braid groups and configuration spaces, and in generalizations such as complements
of fiber-type (or supersolvable) hyperplane arrangements and orbit configuration spaces, has
prompted a great deal of work on almost-direct products of free groups, and much is known
about the structure of these groups. For instance, the iterated semidirect product structure of
G = NleFni is used in [CS98] to construct a finite, free, length ¢ resolution of the integers over
the group ring ZG. Consequently, an arbitrary iterated semidirect product of free groups G is of
type F'L and has cohomological dimension ¢. In the case where G is an almost-direct product,
analysis of this resolution reveals that the integral (co)homology groups of G are torsion-free, and
that the Hilbert series of the cohomology ring is given by

l
h(H*(G Z dimg H*(G; Q) - t" = [[(1 + nit). (2)
= i=1

This result may also be obtained using a spectral sequence argument; see Falk and
Randell [FR85]. Furthermore, the techniques of [FR85] can be used to prove that an almost-
direct product of free groups G satisfies the famous LCS formula, first established for the pure
braid group by Kohno [Koh85]. Let Gj, be the kth lower central series subgroup of G, defined
inductively by G1 = G and Gg11 =[Gk, G| for k > 1. If ¢, =rank Gy /Gj11 denotes the rank of

the kth lower central series quotient, then, in Z[[t]], one has

¢

b(H*(G), —t) = [[(1 — mit) = [ (1 — 5%~
i=1 E>1
Additionally, the methods of [FR85, FR88] may be applied to show that an almost-direct product
of free groups G is residually nilpotent without torsion, that is, (,~; Gx = {1} and Gy/Gy41 is
torsion-free for each k. As shown by Paris [Par00], it follows that G is biorderable, and hence
the group ring ZG has no zero divisors.

For certain almost-direct products of free groups, the structure of the cohomology ring is
known. In the case where G is the upper triangular McCool group, a subgroup of the group
of basis-conjugating automorphisms of the free group F,, the cohomology ring was recently
determined by Cohen et al. [CPVWO08|. If G is the fundamental group of the complement of a
fiber-type hyperplane arrangement .4, then the cohomology ring H*(G) is isomorphic to the well-
known Orlik—Solomon algebra of A and so is determined by combinatorial aspects of A. See Orlik
and Terao [OT92] as a general reference on arrangements. In particular, the cohomology ring of
the pure braid group can be described in this way, recovering a classic result of Arnol’d [Arn69]
and Cohen [Coh76]. For any fiber-type arrangement A, Shelton and Yuzvinsky [SY97] showed
that the (rational) cohomology ring H*(G) is a Koszul algebra.
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In this paper, we determine the structure of the cohomology ring of an arbitrary almost-direct
product of free groups G. Our results provide an algorithm which takes as input the presentation
of G with relations (1) and yields an explicit description of H*(G) = E/J as a quotient of the
exterior algebra E = A H'(G); see Theorem 3.1. This description is used to show in Theorem 3.2
that H*(QG) is Koszul for any almost-direct product G. As an application, in Theorem 4.2 we
compute the topological complexity of the Eilenberg—MacLane space associated to the group
G x Z™ for any almost-direct product G = x‘_, F},. satisfying n; > 2 for each 4. This homotopy-
type invariant, introduced by Farber [Far03], is motivated by the motion planning problem from
robotics.

Some of the results of this paper were announced in [Coh07].

2. Fox calculus

Let G = xleFni be an almost-direct product of free groups. It is not difficult to show that
the relations (1) can be expressed as commutators. Consequently, the abelianization H,(G;Z) =
G/|G, G] is free abelian of rank N = Zle n;. In this section, we use the Fox calculus to analyze
the maps in low-dimensional integral homology and cohomology induced by the abelianization
map a: G — G/[G,G] = ZN.

THEOREM 2.1. Let G be an almost-direct product of free groups with abelianization G/|G, G| =
ZN . For i <2, the map a,: H;(G; Z) — H;(Z"; Z) in integral homology is injective, and the map
a*: H(ZN;Z) — H'(G; Z) in integral cohomology is surjective.

We first exhibit a presentation of G that is particularly amenable to analysis by Fox calculus.
Let IA,, denote the kernel of the natural map Aut(F,,) — GL(n, Z) induced by the map of F,, to
its abelianization. As shown by Magnus and Nielsen, the group IA,, of [A-automorphisms of F},
is generated by automorphisms 3; j, for 1 <4, j <n with i # j, and 0;,5¢, for 1 <1, s,t <n with
i, s, t distinct; see [MKS66]. If F), is generated by yi, . . ., Yn, these automorphisms are given by

Y if k#£1,
Bigluk) =", ey
y; Yy, k=i,

i k£,
and Hz’;s,t(yk): {yk 7& (3)

PROPOSITION 2.2. Let G = Fy,, Xq, X -+ Xq, Fy, be an almost-direct product of free groups.
Then G admits a presentation with generators x;,, for 1 <i < ¢ and 1 < p < n;, and relations
LjqTip = xi,pwj,qw;’£ for1<i<j<t, 1<p<ni 1<q<ny,

where wf 4 is a word in the generators xj1,. .., Tjn; and is an element of the commutator

subgroup G, G] of G.

Proof. The almost-direct of free groups G admits a presentation with generators x;, and

relations z; v, , =, ,a;(z; ,)(z; ), where aj(w;p) € IA;;; see (1). Thus, ay(w;p) =7 - Y
where each 1, 1<k<m, is one of the generators (3;; or 0;s; of IA,, recorded in (3)
above and ¢ € {1, —1}. Clearly, w} = a;(x; ,)(x;,) is a word in the generators z;1, ..., Zjy;.

Observing that
Big(w) =wily; Ly ' B (W) =wilyy Lyl and 0. (w) = vilv, v,

induction on m shows that w! 7]{1 is a commutator. |
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Ezample 2.3. In terms of the standard generators A; ; of the pure braid group F, the above
result yields a presentation with relations

AT’SAZ.,]. fi<r<s<jorr<s<i<jy,
Ai,jAr,s = AT7SAS’j [AS 7 A ] lf ' 8 —is j:’
A, A, 1A Al iftr=i<s<y,
AﬁsAi’j[A;j,[Am,A ] ifr<i<s<j.
Let Fn be the free group on generators zi,...,xyN, with integral group ring ZFy. The

standard ZFy-resolution of Z is given by
(zZFy)N 25 zFy < 7,

where (ZFy)Y is a free ZFy-module of rank N with basis e1,..., ey, O1(e;) =z; — 1, and

€(x;) = 1. The Fox calculus is based on the fact that the augmentation ideal IFy =kere is a
free ZFy-module of rank N, generated by {z; — 1|1 < < N}. In other words, for any w € ZF},
there are unique elements dw/dz; € ZFy, the Fox derivatives of w, such that

N

w—e(w)—zg;i( —1). (4)

Define the Fox gradient, the ZFy-linear homomorphism V: ZFy — (ZEFx)", by

Then, the ‘fundamental formula of Fox calculus’ (4) reads w — e(w) = 01(V(w)). This may be
used to establish the ‘product rule’ V(uv) =V (u) - €(v) + uV(v). In particular, if z € Fly, then
V(i =-271V(2).

For a finitely presented group G = Fy/R, the Fox calculus may be used to obtain a partial
resolution of Z as a (left) ZG-module. If R is the normal closure of {ri,...,ry} in Fiy and
¢: Fx — G is the natural projection, with extension ¢: ZFy — ZG to group rings, this partial
resolution is of the form

M 82G N 81G €
(zGYM == (zG)N - 176G = 7, (5)

where ¢ is the augmentation map, 9 = $ 00y, and (the matrix of ) the map O is given by the

matrix of Fox derivatives
~ 8’”
(4(5))

As indicated above, we regard ZG-modules as left modules. Elements of the free module
(ZG)™ are viewed as row vectors, and ZG-linear maps (ZG)™ — (ZG)" are viewed as m X n
matrices which act on the right.

Now let G = >4f 1F,; be an almost- direct product of free groups, let N = Zf 1 1, and denote

the generators of Fiy by w;4, for 1 <i< /¢ and 1 < ¢ <n;, in accordance with the presentation
of GG provided by Proposition 2.2. A free 7.G- resolutlon of Z,
o¢ oG G .
Co(G) —— Cpa(G) — -+ — C2(G) —— C1(G) — Co(G) — Z, (6)

is constructed in [CS98]. This resolution is minimal in the sense that Cy(G) is a free ZG-module
of rank equal to by(G), the gth Betti number of G. In other words, the boundary maps of this
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resolution all augment to zero, € o 8qG = 0; see [CS98, Proposition 3.3|. Using the construction
of [CS98], one can show that the truncation (C<2(G), 822) of this resolution coincides with
the partial resolution (5) obtained by applying the Fox calculus to the presentation of G from
Proposition 2.2.

The resolution (6) may be realized as the augmented, cellular chain complex of the universal
cover )NCG of a CW-complex X of type K(G,1); see [CS98, §1.3] for the construction of
the complex Xg. As noted above, the abelianization of G = NleFm is free abelian of rank
N = Zle n;. Denote the generators of G/[G, G] = ZN by tij, for 1 <i</and 1<j<n; The
group ring ZZ~ may be identified with the ring A = Z[tffjl] of Laurent polynomials. Let Yg
be the universal abelian cover of X, the covering corresponding to the abelianization map
a: G — ZN. Denote the cellular chain complex of Y by (Ca, ds), where C, = A ®z5 Cy(G) and
0q = idp ®Zgﬁf.

Abelianization induces a chain map de: (Ce, de) — (Ke, de), where the latter is the chain
complex of the universal (abelian) cover of the N-dimensional torus (S')*¥, which is a K (Z", 1)-
space. Using the standard CW decomposition of the torus, the complex (K, ds) can be realized
as the Koszul complex, with K; = AN generated by eij, Kg= A(g) generated by e;, j, - - - €;, 4,
for 2<g¢< N, and

p+q

Me

dl](eihjl e equq va]p 1)6i17j1 e 6ip—17jp—1 ’ eil’+17jp+1 T eiq’jq.

p:l
The maps ag: Co — Kg and a1: C; — Ky may be taken to be identity maps. The chain
group Cy has basis in correspondence with the relations in the presentation of G recorded in
Proposition 2.2. Let r}’! be the basis element corresponding to the relation ;2 ¢ = 2 i puy .
Recall that w? qu [G G] is a commutator in the generators z;1,...,T;,,. We explicitly
identify the map ag: Co — Ko (up to chain equivalence). For this, we use the abelianized Fox

gradient, the A-linear homomorphism V¢ =ao V.

PROPOSITION 2.4. Let 1<i<j</l,1<p<nj,andl<qg<n Iprq [T [uk, vi], where uy,
and vy are words in the generators xj1, ..., T;n; of G, then

a2(rp,]q) €ip€jq + tiptig Z V& (ur) V().
k=1

Proof. Tt suffices to check that dg o ag(r}) = d2(r}’}). This is an exercise using the Fox calculus. O

Proof of Theorem 2.1. Abusing notation, we let e: A — Z denote the augmentation map sending
a Laurent polynomial to its evaluation at 1, i.e., €(g) = g, ;~1. Since the boundary maps of
the complexes Co and K, both augment to zero, i.e., eod; =0 and eod, =0, all homology
groups H;(G;7Z) and H;(Z";7Z) are torsion-free, and the map a, in homology is given simply
by a. = € o a,. It follows immediately that a,: H;(G;Z) = Z @5 C; — Z @p K; = H;(ZN; Z) is an
isomorphism for ¢ =0, 1.

The bases {r]}} and {e;jpejq} for the chain groups C; and Kz correspond to bases of

the homology groups Hs(G;Z) and Hy(ZN;Z), which we denote by the same symbols. By
Proposition 2.4,

O (rp,’jq) =coay(r jq) =€iptjq+ Z e(V (ug))e(V*(vg)).
k=1
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Since uy, and vy, are words in the generators z;1,. .., Tjn,; of Fp; in the almost-direct product
decomposition of G, we have V%(uy)= ijzl Gkr€jr and V& (vg) = ijzl hire;,r for some
Gk,rs Pir € AL Tt follows that

D,qN q,7,8
() =cipejo+ Y. DI ejes (7)

1<r<s<n;

for some integers cf ’jg’r’s. Order the bases of the homology groups Ha(G;Z) and Ho(ZYN;Z) as

follows:
Hy(G;Z): {r(s} {xPd} {53}, . {r0% ,} and
Ho(Z;Z): {erperghs {erpeaa) {ezpea}, {erpeaads {eapesa}s {eapeaals - -
{erpeegts - - {e—1peeqts {eeperq}s

where each subset is ordered lexicographically (by {p, ¢}). With these choices, the matrix of the
map dag: Ho(G; Z) — Ho(ZN; Z) is of the form

01 Cipg 00 0 -oovvvens 0 --- 0 0
00 0 I 0 Cpg --ovvvee- 0 0 0
00 0 0 I Cyg -wovvve-- 0 0 0
A=|: . : , (8)
00 0 0 0 0 coevvvnens I -+ 0 Ciy
00 0 0 0 0 coevveens 0 -+ I Cypqy

where I denotes an identity matrix of appropriate size and the entries of C;; are determined
by (7). It follows that as: Ho(G; Z) — Ho(ZN; Z) is injective.

Passing to cohomology, the map a* from H¥(Z"; Z) = H;(Z"; Z)* to H|(G; Z) = H;(G; Z)* is
the dual of a,: H;(G;Z) — H;(Z"; Z) and hence is surjective for i < 2. O

For brevity, denote the generators of H'(Z";Z) = H{(Z"; Z)* by the same symbols. Then,
the cohomology ring H*(Z"; Z) is the exterior algebra over Z generated by eip for 1 <i </ and
1 <p < n;. The proof of Theorem 2.1 can be used to explicitly identify the kernel of the map

a*: H2(ZN;Z) — H?(G; Z). Let

I 0 0 0
0 Kia 0 0
0 I 0 0
0 0 Kz 0
0 0 Kag 0
|0 0o 1 0
0 0 0 Ky
0 0 0 - Kiiy
o 0 0 - I

be the unique integral matrix satisfying AB = 0, where A is given by (8). Note that K; j = —C; ;.
Define elements n?’q € H? (ZN; Z),for 1 <j</land1<p<q<nj, corresponding to the columns
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of B:
Jj—1 n; 1y
M= g+ DD D K s )
i=1 r=1 s=1
D,q,75
/L’]

COROLLARY 2.5. The set

where the coefficients & are the entries of the matrices K;;, 1 <i<j — 1.

T ={n"1<j<61<p<q<ng}
is a basis for ker(a*: H?(ZN;Z) — H?(G; Z)).

Ezample 2.6. Let G =Py =Fy_1 X, , X -+ X, XF] be the pure braid group. Let N = (é) =
Zf;% i, and denote the generators of Hl(ZN; Z) by e;j, 1 <i<j<{ Using the presentation
of Py from Example 2.3, the above construction yields the basis

{eijeir —eijejr+eirejn | 1<i<j<k</l}
for ker(a*: H?(ZN;Z) — H?(Py; 7).

3. Cohomology

In this section, we determine the structure of the cohomology ring of the almost-direct
product of free groups G = NleFm. Since H*(G;Z) is torsion-free, it suffices to analyze the
rational cohomology ring H*(G) = H*(G; Q). Let E = H*(Z"; Q) be the exterior algebra over Q,
generated by e;, for 1<i</¢ and 1<p<mn;. By Corollary 2.5, the set J is a basis for
ker(a*: E2 — H?(G)). The main results of this section are the following.

THEOREM 3.1. Let G = NleFm be an almost-direct product of free groups. The rational
cohomology ring H*(G) is isomorphic to E/J, where E is the exterior algebra over Q generated
by degree-one elements e;p, for 1 <i</{ and 1 <p<mn;, and J is the homogeneous, two-sided
ideal generated by the elements of the set J.

Recall that a connected, graded algebra A over a field k is said to be a Koszul algebra if
Tor?,q(k, k) =0 for all p # q, where p is the homological degree of the Tor groups and q is the
internal degree coming from the grading of A.

THEOREM 3.2. Let G = NleFm be an almost-direct product of free groups. The rational
cohomology ring H*(G) is a Koszul algebra.

To establish these results, we use Grobner basis theory in the exterior algebra. Order the
generators of E as follows:

e11<er2<---<elp <ez1<er2< < elap, < ----- <epr <epa<---<e€n,-
If Qj={aq,...,qm} is an increasingly ordered subset of [n;] ={1,...,n;}, let
1 it Q; =0,
€Q; = | €ia if Q; = {q},

€j7Q1 ej’ququS e e]’qm OtherWISe'

The standard monomials in E are elements of the form eq = eg, eq, - - - eg,, where each Q; C [n;]
as above and Q ={Q1,Q2,...,Q¢}. The above ordering of the generators of E induces the
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deg-lex order on the set of all standard monomials. If P = {Py, P, ..., P} with P; C [n;], let
IP| =32, IP;|. Then ep < eq if |[P|| < [Q], or [P] =[|Q] and there exist j with 1< j < ¢
and k with 1<k <|Pj| such that P, =Q; for i <j, Pj={p1,...,Pk—1,Pks---,Pm}, Qj=
{P1y-- Pk—1,Qk, - - - » @ }, and pg < qx. The deg-lex order is a linear order on the standard basis
{eq} of E that is multiplicative in the following sense. If ep and eq are non-trivial standard
monomials with epeq # 0, then epeq is a standard monomial up to sign, and 1 < ep < *epeq.

If f=73" cqeq is an arbitrary element of E, the initial term in(f) of f is the term cqeq for
which eq is the largest monomial for all Q with cq # 0. If | C E is an ideal of E, the initial ideal
in(l) of | is the ideal generated by the initial terms in(f) for f € I. A set of elements f1, ..., fi, €1
is a Grobner basis for | if the initial ideal in(l) is generated by in(f1), ..., in(fm).

LEMMA 3.3. The set J is a Grobner basis for the ideal J.

Proof. If Q; ={qi, . .., gm} is an increasingly ordered subset of [n;] ={1,...,n;}, let
ng = ej,q if Qj = {q}7

Wa2, :
n; " €jgs - €jgn Otherwise,

where nj?’q € J is the element of J given by (9). Note that {o, €J if |Q;[>2 and &g, ¢ J if

1Q;| <1.If Q={Q1, ..., Q¢}, where Q; C [n;] for each j as above, define
£Q = 80180 - €

As noted above, the set {eq}, for all possible choices of Q, is the standard basis for the
exterior algebra E. It is readily checked that the set {{q} (again, for all possible choices of Q)
is also a basis for E. One can show, for instance, that the map : E — E defined by ¢(eq) = £q is
an isomorphism (of vector spaces).

To show that J is a Grobner basis for the ideal J, it suffices to show that J and the ideal
| = (in(nﬁ.”q) |1<j<¥¢,1<p<q<n;) generated by the initial terms of the elements of J have
the same Hilbert function; see [AHH97, Corollary 1.2]. Since {{q} is a basis for E and g, € J if
|Q;| > 2, the set

{éQ =80.8Q. - | |Q]‘ > 2 for some j with 1 <j </}
pa)

is a basis for J. The initial term of 7" in the deg-lex order is given by in(n]
Consequently, the set

- ej,pej#]'

{eq=eq.eq, - -eq, | |Q;| =2 for some j with 1 < j </}

is a basis for |. It follows immediately that the ideals | and J have the same Hilbert function. O

We now establish the main results of this section.

Proof of Theorem 3.1. Let G = NleFni be an almost-direct product of free groups. We first show
that H*(G) = H*(G; Q) is generated in degree one. This is clear if the cohomological dimension
of GG is equal to one.

Consider the split, short exact sequence of groups 1 — F,,, — G — Nf;%Fm. — 1 and the
corresponding fibration F — E 2, B of Eilenberg—MacLane spaces with fiber ' = \/mZ Stoa

bouquet of n, circles. Since G is an almost-direct product, the group G = Nf;lFm =m(B) acts
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trivially on the cohomology H*(F,,) = H*(F). Checking that the map *: HY(G) = H(E) —
HY(F)= H'(F,,) is surjective, by the Leray—Hirsch theorem (see [McCO01, Theorem 5.10]) we
have an isomorphism of vector spaces

H*(G) > H*(G) @ H*(Fy,).
The group G has cohomological dimension £ — 1. So we may inductively assume that H*(G)

is generated in degree one. Using this, the fact that H*(F},,) is also generated in degree one, and
the above isomorphism, we conclude that H*(G) is generated in degree one as asserted.

By Theorem 2.1, the map a*: E! — H'(G) is an isomorphism. This, together with the above
considerations, implies that a*: E — H*(G) is a surjection of algebras. Thus, H*(G) = E/ker(a*).
Since J = ker(a*: E2 — H?(G)), we complete the proof by showing that H*(G) and E/J have the
same Hilbert series. As noted in (2), the Hilbert series of H*(G) is given by h(H*(G),t) =
[Ty (1 + nit).

The proof of Lemma 3.3 implies that the quotient A =E/J has a basis with elements in
correspondence with those £q = &0, &g, - - - g, for which |Q;| <1 for each j with 1< j</.
It follows that the summand AF of all degree k& homogeneous elements is a vector space of
dimension ) np, np, - - - Ny, , with the sum being over all 1 < p; < pa < - - - < pi, < £. Consequently,
the Hilbert series h(A, t) = Hle(l + n;t) is equal to that of H*(G). O

Remark 3.4. The above argument yields an explicit basis for H*(G) = A. For £ € E, denote the
image of £ under the natural projection p: E— A=E/J by £ = p(£). Then A has basis

{EQ | Q={Q1,...,Q¢} where |Q;| <1 for each j with 1 < j </(}.

Proof of Theorem 3.2. By Theorem 3.1, H*(G) = E/J is the quotient of an exterior algebra by a
homogeneous ideal generated in degree two. Since J has a quadratic Grébner basis by Lemma 3.3,
H*(G) is Koszul (see, for instance, [Yuz01, Theorem 6.16]). O

Ezample 3.5. In the case where G = P, is the pure braid group, Theorem 3.1 shows that the
cohomology ring H*(FP;) is generated by degree-one elements e; j, 1 <@ < j </, which satisfy
(only) the relations

€i j€ik — €ij€jk 1 €ikejk = 0 forl<g<i<j<k</

and their consequences; see Example 2.6. This recovers the classic description of H*(P;) due to
Arnol’d [Arn69] and Cohen [Coh76].

The Koszulity of H*(Fy) ensured by Theorem 3.2 is a consequence of work by Kohno [Koh85];
see also Shelton and Yuzvinsky [SY97].

4. Topological complexity

Let X be a path-connected topological space. We will focus on the case where X is an Eilenberg—
MacLane space of type K(G, 1) for an almost-direct product of free groups G, so we assume
that X has the homotopy type of a finite CW-complex. Viewing X as the space of configurations
of a mechanical system, the motion planning problem consists of constructing an algorithm
which takes as input pairs of configurations (zg, 1) € X x X and produces a continuous path
v:10,1] — X from the initial configuration zo=7(0) to the terminal configuration z; =~(1).
The motion planning problem is of interest in robotics; see, for example, Latombe [Lat91] and
Sharir [Sha97].

473

https://doi.org/10.1112/50010437X09004424 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004424

D. C. COHEN

A topological approach to this problem was recently developed by Farber; see the
survey [Far05]. Let PX denote the space of all continuous paths v: [0, 1] — X, equipped with
the compact-open topology. The map 7: PX — X x X, v~ (7(0),v(1)), defined by sending a
path to its endpoints is a fibration with fiber 2.X ;| the based loop space of X. The motion-planning
problem asks for a section of this fibration, i.e. a map s: X x X — PX satisfying m o s =idx« x.

It would be desirable for the motion planning algorithm to depend continuously on the input.
However, one can show that there exists a globally continuous section s: X x X — PX if and
only if X is contractible; see [Far03, Theorem 1].

DEFINITION 4.1. The topological complexity of X, denoted by TC(X), is the smallest positive
integer k for which X x X =U; U - - U Uy where each U; is open and there exists a continuous
section s;: U; — PX, mos; =idy,, for each ¢ with 1 <¢<k. In other words, the topological
complexity of X is the sectional category (or Schwarz genus) of the path space fibration,
TC(X) =secat(m: PX — X x X).

Observe that the topological complexity of X is a homotopy-type invariant. If G is a discrete
group, we define TC(G), the topological complexity of G, to be that of an Eilenberg-MacLane
space of type K (G, 1). In [Far05, § 31], Farber poses the problem of determining the topological
complexity of G in terms of other invariants of G such as the cohomological dimension, dim(G).
In this section, we solve this problem for a large class of almost-direct products of free groups.

THEOREM 4.2. Let G =F,, X --- % F,, be an almost-direct product of free groups. If n; > 2
for each j and m is a non-negative integer, then TC(G x Z™) =20 +m + 1.

This result is a consequence of Theorem 3.1, together with known properties of topological
complexity. We record these requisite properties before giving the proof.

First, if X is a finite-dimensional cell complex as above, then TC(X) <2dim(X) + 1;
see [Far05, Theorem 14.1]. Recall that the geometric dimension, geom dim(G), of a group G
is the smallest dimension of an Eilenberg—MacLane complex of type K (G, 1).

LEmMMA 4.3. If G is an almost-direct product of free groups, the geometric dimension of G is
equal to the cohomological dimension of G, that is, dim(G) = geom dim(G).

Proof. For an arbitrary iterated semidirect product of finitely generated free groups G = ><|f:1Fnz.
of cohomological dimension ¢, a K (G, 1)-complex of dimension ¢ is constructed in [CS98, §1.3]. O

Note that this lemma follows from a classic result of Eilenberg and Ganea [EG57] in the
case where dim(G) > 3. If G = F,, x F,,,, the cell complex of [CS98, §1.3] is the ‘presentation
2-complex’ associated to the presentation of Proposition 2.2. For an iterated semidirect product
of free groups G, this lemma and the dimensional upper bound noted above yield

TC(G) <2dim(G) + 1. (10)
Next, the topological complexity of a product space admits the upper bound
TCX xY)<TC(X)+TCY) —1;
see [Far04, § 12]. Consequently, if G; and G2 are groups (of finite cohomological dimension), then
TC(Gy1 x G2) < TC(Gy) + TC(Ga) — 1. (11)

Finally, the sectional category of an arbitrary fibration admits a cohomological lower bound.
If A= @ﬁzo A7 is a graded algebra over a field k, with A7 finite-dimensional for each j, define
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cl(A), the cup length of A, to be the largest integer ¢ for which there are homogeneous elements
ai, . .., aq of positive degree in A such that a; - - - a, #0. If p: E — B is a fibration, the sectional
category admits the lower bound
secat(p: E— B) > cl(ker(p*: H*(B; k) — H*(E; k)));
see [Jam78, §8]. We will work with rational coefficients and write H*(Y) = H*(Y; Q).
For the path space fibration 7: PX — X x X, we have

TC(X) =secat(m: PX — X x X) > cl(ker(p*: H*(X x X) - H*(PX)))
= cl(ker(H*(X) ® H*(X) — H*(X))),
using the Kiinneth formula and the fact that PX ~ X; see [Far03, Theorem 7]. In other words,

the topological complexity of X is greater than the zero-divisor cup length zcl(H*(X)), the cup

length of the ideal Z =ker(H*(X) ® H*(X) = H*(X)) of zero divisors. In terms of groups,
this lower bound may be stated as

TC(G) > zcd(H*(GQ)). (12)
We now establish the main result of this section.

Proof of Theorem 4.2. Let G = F,, X - - - x Fy,, be an almost-direct product of free groups with
n; > 2 for each j, and let m be a non-negative integer. The topological complexity of the
m-dimensional torus (S')*™ is equal to m 4+ 1; see [Far03, Theorem 13]. Since this torus is
a K(Z™,1)-space, we have TC(Z™)=TC((S')*™) =m + 1. The product inequality (11) and
dimensional upper bound (10) yield

TCGxZ™)<TCG)+TCZ™)—1<(20+1)+(m+1)—1=20+m+ 1.

In light of the lower bound (12), it suffices to show that zcl(H*(G x Z™)) > 2 + m.

By the Kiinneth formula, we have H*(G x Z™)= H*"(G) ® H*(Z™) (recall that we use
rational coefficients). The cohomology of Z™ is an exterior algebra, generated by degree one
elements zi, ..., z,. For each i, let 2, =1® z; — z; ® 1 € H*(Z™) @ H*(Z™). Observe that Z; is
a zero divisor. The product 27 - 25 - - - 2, is non-zero. In fact, one has

2129 om= Z(—l)m sign(a) 21 @ 2y, (13)
(1,1")
where the sum is over all partitions (I, I’) by ordered subsets of [z] ={1,...,m}, zr =z, - - - 2;,
if I =(i1,...,ix), and o is the shuffle on [m] which puts every element of I’ after all elements
of I, preserving the orders inside I and I’; see [FY04, Lemma 10]. This, together with the fact
that TC(Z™) =m + 1, implies that zcl(H*(Z™)) = m.

Since, clearly, zcl(H*(G) @ H*(Z'™)) > zc(H*(G)) + zcl(H*(Z™)), it remains to show that
zcl(H*(G)) = 2¢. For each i with 1<i</{, let z;=¢;1 and y; =e;2 be classes in H(G)
corresponding to distinct generators of the free group F),,. As above, consider the zero divisors
Ti=1®x;, —x; ®1and g, =1 QR y; — y; ® 1. We will show that the product

l l
[[ég=][0ee-—neon(ey-yol) (14)
i=1 i=1
is non-zero in H*(G) ® H*(G).

By Theorem 3.1, H*(G) = E/J, where E is the exterior algebra on H!(G) and J is the ideal

generated by the elements 177" recorded in (9). We first consider the product (14) in E® E.
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For 1<k </, if I is an ordered subset of [k] ={1,...,k}, define X[I, k] =wuy -- - ug, where
u;=x; if i €1 and u; =y; if i ¢ I. For each such k, consider the element Zj = Hle Z;y; in
E®E. Let J be the ideal in E® E generated by {n ®1,1®n|neJ}.

CrAamM. For each k with 1 <k </,
Zk—Hq:lyl—ek Z DXL E @ YL, K] + wg,

where ¢, = (—=1)¥/2) Y[I, k] = X[[k]\I, k] and wj, € J'.
The proof of the claim is by induction on k. For k=1, since multiplication in E ® E is given by
(a®b) - (c®d)=(—1)lac @ bd,
where |u| denotes the degree of u, we have
Tig; = y; @ x5 — 2 ©yj + 2y © 1+ 1@ x5y, (15)
for each j. Since z1y1 =ej €12 = 7]}’2 €J, X[0,1] =1, X[[1],1] =21, and € =1, the claim

holds for Z1 = Z19;.
For the inductive step, assume that Z;_1 = Hf:_ll Ziy; is as asserted, and consider

Zyp = Zi1850n = <ek1 Z (XL E-1oY[Lk-1]+ w“);ﬁkgk. (16)
IC[k—1]

Since wy,_1 € J' by the inductive hypothesis, we have wy_12,9, € J'. A straightforward calculation
reveals that the sum
e > (—DVIX[T k@ V[T, K]
JCK]
is equal to

<ek1 > ()X k-1eY([k- 1]) (yr @ T — Tk D Yp)-
IC[k—1]

Using (16) and (15), to establish the claim it remains to show that X[I,k — 1]axyyx € J for
I C [k —1]. By (9), we have
k—1 n; ng

_ _ 1 2 58
TrYk = €k,1€k2 = 77k €irCk,s-
i=1 r=1s

Since X[, k—1]=wu1 - - up—1=¢€1q - - €k—1,4,_,, Where g; € {1,2}, it suffices to show that
€lq """ Ch—1,q._,Cirhs €J for 1<i<k—1, 1<r<n;, and 1<s<ng. Since eqperq € J for
1 < p < g < nq, this may be accomplished by repeated use of (9) as above, completing the proof
of the claim.

Now consider the product (14) in H*(G) ® H*(G) =A® A, where A=E/J. If { € E, recall
that & denotes the image of £ under the natural projection p: E — A. From the claim, we obtain

Zy=e Y (DX, 0@ Y11
IC[

in H*(G) ® H*(G). Using Remark 3.4 to check that the set {X[I,/]|I C[f]} is linearly
independent in H*(G), we conclude that the product Hle Z;9; is non-zero in H*(G) @ H*(G).
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So we have
20< ze(H*(GR)) < TC(G) £ 2dim(G) + 1 =20 + 1.
Thus, TC(G) =2+ 1 and TC(G x Z™) =20+ m + 1. O

COROLLARY 4.4. Let G=F,, X ---x I, be an almost-direct product of free groups. If n; > 2
for each j and m is a non-negative integer, then zcl(H*(G x Z™)) = 2{ + m.

Ezample 4.5. Let G = P, be the pure braid group, with center Z(P;). It is well-known that
Z(P;) =7 is infinite cyclic, that Py = P,/Z(P;) = N?:—;Fi is an almost-direct product of free
groups, and that P2 Py x Z. Theorem 4.2 yields TC(P;) =2¢ —3 and TC(FP) =2/ — 2, the
latter recovering the calculation of the topological complexity of the configuration space of /¢
ordered points in C due to Farber and Yuzvinsky [FY04].

More generally, let Py, = ker(Pjy¢ — P)) be the kernel of the homomorphism that forgets
the last £ > 1 strands of a pure braid. This group may be realized as the fundamental group of the
configuration space F(Cy, ¢) of ¢ ordered points in Cy = C\{k points}, and is an almost-direct
product of free groups, namely Py = Nfi,f_lFi. Since F'(Cy, ¢) is a K(Pp , 1)-space, Theorem 4.2
implies that TC(F(Cy, £)) = TC(Prr) =20 + 1 if k > 2, as first shown by Farber et al. [FGYO07].

The pure braid group and the group Fp; may be realized as fundamental groups of
complements of fiber-type hyperplane arrangements. For an arbitrary fiber-type arrangement A
in C%, the complement M =C/\\Jycq H is a K(G,1)-space, and the fundamental group
G=m(M)= NleFm is an almost-direct product of free groups. Call the integers ni, ..., ny
the exponents of A.

COROLLARY 4.6. Let G be the fundamental group of the complement of a fiber-type hyperplane
arrangement A. If the exponents of A are all at least 2, then

TC(G xZ™)=2dim(G) + m + 1.

This can also be obtained using results of Farber and Yuzvinsky [FY04].

We conclude with a final example.

Ezample 4.7. The basis-conjugating automorphism group P2, of the free group F;, is the

subgroup of IA,, < Aut(F,,) generated by the automorphisms ; ; recorded in (3). The subgroup

of PY, generated by the automorphisms 3;; with 1<i<j<n is known as the upper

triangular McCool group, and is an almost-direct product of free groups; see [CPVWO08]. If

Tip = Pnin—p+1, then PXT = m?;llFi where F; =(x;1,...,7;;). The presentation of PX}
provided by Proposition 2.2 has relations

S {:capa:j’q[a:j_’;, z;, ifg=i+1,

LjqTip = .
in%iq otherwise,

where 1 <i < j<n—1;cf. [CPO8, CPVWO0S].

Theorem 3.1 reveals that H*(PX,}) 2 E/J, where E is the exterior algebra generated by e; ,,
with 1<p<i<n—1, and J is the ideal generated by e; ;i1 — €jp€jit1, with 1<p<i<j<
n — 1. It is readily checked that this differs from the description of H*(PX;") given in [CPVWO0S]
only by a change in indexing. By Theorem 3.2, H*(PX) is Koszul. This was first established
in [CPO08] by other means.
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In [CP08, Proposition 2.3], it is shown that the center Z(PX") of PX; is infinite cyclic,
that ﬁ,j =PX}/Z(PEY}) = x!"}F; is an almost-direct product of free groups, and that
PXt=PX " x Z. Theorem 4.2 yields TC(PX,") = 2¢ — 3 and TC(PX;) = 20 — 2, as first shown
in [CPOS].
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